1,196 research outputs found

    Unconstrained Hamiltonian formulation of General Relativity with thermo-elastic sources

    Get PDF
    A new formulation of the Hamiltonian dynamics of the gravitational field interacting with(non-dissipative) thermo-elastic matter is discussed. It is based on a gauge condition which allows us to encode the six degrees of freedom of the ``gravity + matter''-system (two gravitational and four thermo-mechanical ones), together with their conjugate momenta, in the Riemannian metric q_{ij} and its conjugate ADM momentum P^{ij}. These variables are not subject to constraints. We prove that the Hamiltonian of this system is equal to the total matter entropy. It generates uniquely the dynamics once expressed as a function of the canonical variables. Any function U obtained in this way must fulfil a system of three, first order, partial differential equations of the Hamilton-Jacobi type in the variables (q_{ij},P^{ij}). These equations are universal and do not depend upon the properties of the material: its equation of state enters only as a boundary condition. The well posedness of this problem is proved. Finally, we prove that for vanishing matter density, the value of U goes to infinity almost everywhere and remains bounded only on the vacuum constraints. Therefore the constrained, vacuum Hamiltonian (zero on constraints and infinity elsewhere) can be obtained as the limit of a ``deep potential well'' corresponding to non-vanishing matter. This unconstrained description of Hamiltonian General Relativity can be useful in numerical calculations as well as in the canonical approach to Quantum Gravity.Comment: 29 pages, TeX forma

    Tensor mass and particle number peak at the same location in the scalar-tensor gravity boson star models - an analytical proof

    Get PDF
    Recently in boson star models in framework of Brans-Dicke theory, three possible definitions of mass have been identified, all identical in general relativity, but different in scalar-tensor theories of gravity.It has been conjectured that it's the tensor mass which peaks, as a function of the central density, at the same location where the particle number takes its maximum.This is a very important property which is crucial for stability analysis via catastrophe theory. This conjecture has received some numerical support. Here we give an analytical proof of the conjecture in framework of the generalized scalar-tensor theory of gravity, confirming in this way the numerical calculations.Comment: 9 pages, latex, no figers, some typos corrected, reference adde

    The New Albany Shale gas play in southern Indiana

    Get PDF
    This poster was presented at the 2006 Eastern Section American Association of Petroleum Geologists, 35th Annual Meeting, in Buffalo, N.Y., October 8-11, 2006.The New Albany Shale (Devonian and Mississippian) in Indiana is mostly brownish-black organic-rich shale with lesser greenish-gray shale. The formation is 100 to 140 feet thick in southeastern Indiana and dips and thickens to the southwest into the Illinois Basin, where it attains a thickness of more than 360 feet in Posey County. Gas production from New Albany Shale began in 1885 and drilling activity continued into the 1930s, when interest waned in favor of more lucrative opportunities elsewhere. Renewed activity, driven by higher gas prices, has been brisk since the mid-1990s, witnessed by the completion of more than 400 productive wells. The majority of these wells were drilled in Harrison County, where production typically occurs at depths from 500 to 1,100 feet and production rates generally range from 20 to 450 MCFGPD. In the past 2 years, Daviess County and surrounding areas have become the focus of New Albany exploration after the El Paso Production No. 2-10 Peterson horizontal discovery well was rumored to have tested 1.3 MMCFGPD at an approximate measured depth of 2,200 feet. New Albany production is mostly from the organic-rich Clegg Creek Member. Gas compositions (C1-C4 and CO2) and carbon and hydrogen isotopic signatures indicate that both purely thermogenic and mixed thermogenic and biogenic gases are produced from the New Albany. Produced water ranges from brine to water diluted through recharge by modern precipitation; the brine zones contain primarily thermogenic gas and the diluted water zones contain gas of mixed thermogenic and biogenic origin

    Evolution of the Bianchi I, the Bianchi III and the Kantowski-Sachs Universe: Isotropization and Inflation

    Get PDF
    We study the Einstein-Klein-Gordon equations for a convex positive potential in a Bianchi I, a Bianchi III and a Kantowski-Sachs universe. After analysing the inherent properties of the system of differential equations, the study of the asymptotic behaviors of the solutions and their stability is done for an exponential potential. The results are compared with those of Burd and Barrow. In contrast with their results, we show that for the BI case isotropy can be reached without inflation and we find new critical points which lead to new exact solutions. On the other hand we recover the result of Burd and Barrow that if inflation occurs then isotropy is always reached. The numerical integration is also done and all the asymptotical behaviors are confirmed.Comment: 22 pages, 12 figures, Self-consistent Latex2e File. To be published in Phys. Rev.

    Oscillations of General Relativistic Multi-fluid/Multi-layer Compact Stars

    Full text link
    We develop the formalism for determining the quasinormal modes of general relativistic multi-fluid compact stars in such a way that the impact of superfluid gap data can be assessed. Our results represent the first attempt to study true multi-layer dynamics, an important step towards considering realistic superfluid/superconducting compact stars. We combine a relativistic model for entrainment with model equations of state that explicity incorporate the symmetry energy. Our analysis emphasises the many different parameters that are required for this kind of modelling, and the fact that standard tabulated equations of state are grossly incomplete in this respect. To make progress, future equations of state need to provide the energy density as a function of the various nucleon number densities, the temperature (i.e. entropy), and the entrainment among the various components

    Anisotropic stresses in inhomogeneous universes

    Full text link
    Anisotropic stress contributions to the gravitational field can arise from magnetic fields, collisionless relativistic particles, hydrodynamic shear viscosity, gravitational waves, skew axion fields in low-energy string cosmologies, or topological defects. We investigate the effects of such stresses on cosmological evolution, and in particular on the dissipation of shear anisotropy. We generalize some previous results that were given for homogeneous anisotropic universes, by including small inhomogeneity in the universe. This generalization is facilitated by a covariant approach. We find that anisotropic stress dominates the evolution of shear, slowing its decay. The effect is strongest in radiation-dominated universes, where there is slow logarithmic decay of shear.Comment: 7 pages Revte

    Research Priorities for Managing Invasive Wild Pigs in North America

    Get PDF
    With recent increases in distribution and numbers of feral pigs (Sus scrofa; invasive wild pigs) in North America, there has been a concurrent increase in the ecological and economic effects they have had on native and anthropogenic ecosystems. Despite the amplified interest in invasive wild pig research, there remains a significant knowledge gap regarding their basic biology and ecology, the scope of the damage they cause, and the efficacy of many control strategies. Such information is important to support the successful management of invasive wild pigs throughout North America and other areas. In 2016, members of the National Wild Pig Task Force met and developed a set of research priorities to aid in effective management of invasive wild pigs. These research priorities identify 4 topical areas where increased effort and science is most needed to manage invasive wild pigs: biology and ecology, economic and ecological damages, control strategies, and education and human dimensions, with particular emphasis on areas where specific data gaps remain within each topical area. Resolution of such knowledge deficits would advance the understanding of invasive wild pig ecology, enabling more efficient and effective management of this species

    Self-Assembly of Amphiphilic Dendrimers: The Role of Generation and Alkyl Chain Length in siRNA Interaction

    Get PDF
    Citation: Marquez-Miranda, V., Araya-Duran, I., Camarada, M. B., Comer, J., Valencia-Gallegos, J. A., & Gonzalez-Nilo, F. D. (2016). Self-Assembly of Amphiphilic Dendrimers: The Role of Generation and Alkyl Chain Length in siRNA Interaction. Scientific Reports, 6, 15. https://doi.org/10.1038/srep29436An ideal nucleic-acid transfection system should combine the physical and chemical characteristics of cationic lipids and linear polymers to decrease cytotoxicity and uptake limitations. Previous research described new types of carriers termed amphiphilic dendrimers (ADs), which are based on polyamidoamine dendrimers (PAMAM). These ADs display the cell membrane affinity advantage of lipids and preserve the high affinity for DNA possessed by cationic dendrimers. These lipid/dendrimer hybrids consist of a low-generation, hydrophilic dendron (G2, G1, or G0) bonded to a hydrophobic tail. The G2-18C AD was reported to be an efficient siRNA vector with significant gene silencing. However, shorter tail ADs (G2-15C and G2-13C) and lower generation (G0 and G1) dendrimers failed as transfection carriers. To date, the self-assembly phenomenon of this class of amphiphilic dendrimers has not been molecularly explored using molecular simulation methods. To gain insight into these systems, the present study used coarse-grained molecular dynamics simulations to describe how ADs are able to self-assemble into an aggregate, and, specifically, how tail length and generation play a key role in this event. Finally, explanations are given for the better efficiency of G2/18-C as gene carrier in terms of binding of siRNA. This knowledge could be relevant for the design of novel, safer ADs with well-optimized affinity for siRNA

    Brans-Dicke Boson Stars: Configurations and Stability through Cosmic History

    Get PDF
    We make a detailed study of boson star configurations in Jordan--Brans--Dicke theory, studying both equilibrium properties and stability, and considering boson stars existing at different cosmic epochs. We show that boson stars can be stable at any time of cosmic history and that equilibrium stars are denser in the past. We analyze three different proposed mass functions for boson star systems, and obtain results independently of the definition adopted. We study how the configurations depend on the value of the Jordan--Brans--Dicke coupling constant, and the properties of the stars under extreme values of the gravitational asymptotic constant. This last point allows us to extract conclusions about the stability behaviour concerning the scalar field. Finally, other dynamical variables of interest, like the radius, are also calculated. In this regard, it is shown that the radius corresponding to the maximal boson star mass remains roughly the same during cosmological evolution.Comment: 9 pages RevTeX file with nine figures incorporated (uses RevTeX and epsf

    Neutron star in presence of torsion-dilaton field

    Full text link
    We develop the general theory of stars in Saa's model of gravity with propagating torsion and study the basic stationary state of neutron star. Our numerical results show that the torsion force decreases the role of the gravity in the star configuration leading to significant changes in the neutron star masses depending on the equation of state of star matter. The inconsistency of the Saa's model with Roll-Krotkov-Dicke and Braginsky-Panov experiments is discussed.Comment: 29 pages, latex, 24 figures, final version. Added: 1)comments on different possible mass definitions; 2)new sections: a)the inconsistency of the Saa's model with Roll-Krotkov-Dicke and Braginsky-Panov experiments; b)stability analysis via catastrophe theory; 3)new figers added and some figures replaced. 4)new reference
    corecore