87 research outputs found

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Comparison of two in situ reference methods to estimate indigestible NDF by near infrared reflectance spectroscopy in alfalfa

    No full text
    Undigested forage neutral detergent fiber (uNDF) from long-term ruminal in situ incubations are used to estimate indigestible neutral detergent fiber (iNDF). Measurement of iNDF is important in forage evaluation because it defines the potentially digestible pool of neutral detergent fiber (NDF). Near-infrared reflectance spectroscopy (NIRS) can be calibrated to in situ reference sets to rapidly predict uNDF. Our objective was to compare uNDF estimates after 240 h of incubation when two types of bags were used in the in situ reference method. The bags compared were 4 cm × 5 cm Ankom F57 bags (25 micron pore size), and 5 cm × 10 cm Ankom in situ bags (50 micron pore size). Alfalfa samples from Pennsylvania and Wisconsin (n = 144) of different varieties and harvest intervals were used. One-half or two gram samples, respectively, were weighed into the small and large bags in triplicate. Mass to surface area was 0.05 and 0.02 g/cm2 for the small and large bags, respectively. The iNDF content after 240 h incubation was evaluated by two types bags in three rumen-cannulated Holstein cows. Each dried and ground forage was also scanned to determine the visible–near-infrared-reflectance spectra with a FOSS 6500 spectrophotometer. Prediction equations were developed for each bag type using modified partial least square regressions. The estimated iNDF fraction from small and large bags were 13.75% and 9.97%, respectively (SED = 0.39, P < 0.001). The coefficient of determination for calibration (R2), cross-validation (1 - VR), calibration standard deviation (SEC), and interactive authentication standard deviation (SECV) was 0.94, 0.92, 0.85 and 0.98 for values determined with the small bag and 0.88, 0.85, 1.12 and 1.27 for iNDF for values determined with the large bag, respectively. Results indicate that iNDF varies among alfalfa cultivars and NIRS can be used to quickly and quantitatively estimate iNDF content in alfalfa. Bag type influences 240h NDF residues. NIRS predictions of iNDF from the small bag calibration set had higher R2 and lower SEC and SECV than the large bag calibrations

    Increasing the prepartum dose of rumen-protected choline: Effects of maternal choline supplementation on growth, feed efficiency, and metabolism in Holstein and Holstein × Angus calves

    No full text
    ABSTRACT: Feeding pregnant cows rumen-protected choline (RPC) may have the potential to affect the growth and health of offspring, but little is known about the optimal dose, or the potential mechanisms of action. The objectives of this experiment were to 1) determine if increasing RPC supplementation during late gestation in multiparous Holstein cows would improve calf growth and 2) determine if maternal choline supplementation alters global DNA methylation patterns. Pregnant multiparous Holstein cows (n = 116) were randomly assigned to diets targeting 0g choline ion (0.0 ± 0.000 choline ion, %DM, control; CTL), 15g of choline ion (recommended dose; RD) from an established RPC product (0.10 ± 0.004 choline ion, %DM, RPC1RD; ReaShure, Balchem Corp.; positive control), or 15g (0.09 ± 0.004 choline ion, %DM, RPC2RD) or 22g (0.13 ± 0.005 choline ion, %DM, high dose; RPC2HD) of choline ion from a concentrated RPC prototype (RPC2; Balchem Corp.). Treatments were mixed into a total mixed ration and cows had ad libitum access via a roughage intake control system (Hokofarm Group, Marknesse, Netherlands). All female Holstein (n = 49) and Holstein × Angus calves (male, n = 18; female, n = 30) were enrolled and fed colostrum from a cow within the same treatment. Holstein calves and Holstein × Angus calves were fed an accelerated and traditional milk replacer program, respectively, and offered ad libitum access to calf starter. Jugular vein blood samples were collected, and body weight was measured at 7, 14, 28, 42, and 56 d of age. Categorical treatment and continuous effects of actual prepartum maternal choline ion intake were analyzed using mixed effect models. An interaction of treatment with sex, nested within breed, resulted in any choline treatment increasing the proportion of methylated whole blood DNA in male, but not female calves. Although 37% of Holstein calves across all treatments experienced abomasal bloat, no evidence for differences in health measurements (signs of respiratory disease and fecal consistency) were observed across treatments. During the first 2 wk of life in Holstein calves, RPC2HD tended to increase average daily gain (ADG) and feed efficiency (FE) compared with CTL and increasing maternal choline ion intake linearly increased ADG and FE. Maternal choline supplementation increased plasma glucose compared with CTL, while increasing serum insulin-like growth factor-1 and decreasing serum lipopolysaccharide binding protein at 7 d of age in Holstein calves. In Holstein × Angus calves, the effect of treatment on ADG tended to interact with sex: in males, RPC2HD increased ADG after 2 wk of life compared with CTL, without evidence of a treatment effect in female calves. Increasing maternal choline ion intake linearly increased ADG after 2 wk of age in male Holstein × Angus calves, while quadratically increasing FE in both sexes. Altered global DNA methylation patterns in male Holstein × Angus calves, and changes in blood metabolites in Holstein calves, provide 2 potential mechanisms for observed improvements in calf growth. Continuous treatment models demonstrated that the effects of maternal choline supplementation are sensitive to the amount of maternal choline ion intake, with greater benefit to calves observed at higher maternal intakes

    Increasing the prepartum dose of rumen-protected choline: Effects on milk production and metabolism in high-producing Holstein dairy cows

    No full text
    ABSTRACT: Peripartum rumen-protected choline (RPC) supplementation is beneficial for cow health and production, yet the optimal dose is unknown. In vivo and in vitro supplementation of choline modulates hepatic lipid, glucose, and methyl donor metabolism. The objective of this experiment was to determine the effects of increasing the dose of prepartum RPC supplementation on milk production and blood biomarkers. Pregnant multiparous Holstein cows (n = 116) were randomly assigned to one of 4 prepartum choline treatments that were fed from −21 d relative to calving (DRTC) until calving. From calving until +21 DRTC, cows were fed diets targeting 0 g/d choline ion (control, CTL) or the recommended dose (15 g/d choline ion; RD) of the same RPC product that they were fed prepartum. The resulting treatments targeted: (1) 0 g/d pre- and postpartum [0.0 ± 0.000 choline ion, percent of dry matter (%DM); CTL]; (2) 15 g/d pre- and postpartum of choline ion from an established product (prepartum: 0.10 ± 0.004 choline ion, %DM; postpartum: 0.05 ± 0.004 choline ion, %DM; ReaShure, Balchem Corp.; RPC1RD▸RD); (3) 15 g/d pre- and postpartum of choline ion from a concentrated RPC prototype (prepartum: 0.09 ± 0.004 choline ion, %DM; postpartum: 0.05 ± 0.003 choline ion, %DM; RPC2, Balchem Corp.; RPC2RD▸RD); or (4) 22 g/d prepartum and 15 g/d postpartum from RPC2 [prepartum: 0.13 ± 0.005 choline ion, %DM; postpartum: 0.05 ± 0.003 choline ion, %DM; high prepartum dose (HD), RPC2HD▸RD]. Treatments were mixed into a total mixed ration, and cows had ad libitum access via a roughage intake control system (Hokofarm Group). From calving to +21 DRTC, all cows were fed a common base diet and treatments were mixed into the total mixed ration (supplementation period, SP). Thereafter, all cows were fed a common diet (0 g/d choline ion) until +100 DRTC (postsupplementation period, postSP). Milk yield was recorded daily and composition analyzed weekly. Blood samples were obtained via tail vessel upon enrollment, approximately every other day from −7 to +21 DRTC, and at +56 and +100 DRTC. Feeding any RPC treatment reduced prepartum dry matter intake compared with CTL. During the SP, no evidence for a treatment effect on energy-corrected milk (ECM) yield was found, but during the postSP, RPC1RD▸RD and RPC2RD▸RD treatments tended to increase ECM, protein, and fat yields. During the postSP, the RPC1RD▸RD and RPC2RD▸RD treatments tended to increase, and RPC2HD▸RD increased, the de novo proportion of total milk fatty acids. During the early lactation SP, RPC2HD▸RD tended to increase plasma fatty acids and β-hydroxybutyrate concentrations, and RPC1RD▸RD and RPC2RD▸RD reduced blood urea nitrogen concentrations compared with CTL. The RPC2HD▸RD treatment reduced early lactation serum lipopolysaccharide binding protein compared with CTL. Overall, peripartum RPC supplementation at the recommended dose tended to increase ECM yield postSP, but no evidence was seen of an additional benefit on milk production with an increased prepartum dose of choline ion. The effects of RPC on metabolic and inflammatory biomarkers support the potential for RPC supplementation to affect transition cow metabolism and health and may support the production gains observed
    corecore