583 research outputs found

    Quantum enhancement of N-photon phase sensitivity by interferometric addition of down-converted photon pairs to weak coherent light

    Full text link
    It is shown that the addition of down-converted photon pairs to coherent laser light enhances the N-photon phase sensitivity due to the quantum interference between components of the same total photon number. Since most of the photons originate from the coherent laser light, this method of obtaining non-classical N-photon states is much more efficient than methods based entirely on parametrically down-converted photons. Specifically, it is possible to achieve an optimal phase sensitivity of about delta phi^2=1/N^(3/2), equal to the geometric mean of the standard quantum limit and the Heisenberg limit, when the average number of down-converted photons contributing to the N-photon state approaches (N/2)^(1/2).Comment: 21 pages, including 6 figures. Extended version gives more details on down-conversion efficiencies and clarifies the relation between phase sensitivity and squeezing. The title has been changed in order to avoid misunderstandings regarding these concept

    Does environment affect the star formation histories of early-type galaxies?

    Full text link
    Differences in the stellar populations of galaxies can be used to quantify the effect of environment on the star formation history. We target a sample of early-type galaxies from the Sloan Digital Sky Survey in two different environmental regimes: close pairs and a general sample where environment is measured by the mass of their host dark matter halo. We apply a blind source separation technique based on principal component analysis, from which we define two parameters that correlate, respectively, with the average stellar age (eta) and with the presence of recent star formation (zeta) from the spectral energy distribution of the galaxy. We find that environment leaves a second order imprint on the spectra, whereas local properties - such as internal velocity dispersion - obey a much stronger correlation with the stellar age distribution.Comment: 5 pages, 2 figures. Proceedings of JENAM 2010, Symposium 2: "Environment and the formation of galaxies: 30 years later

    States for phase estimation in quantum interferometry

    Full text link
    Ramsey interferometry allows the estimation of the phase ϕ\phi of rotation of the pseudospin vector of an ensemble of two-state quantum systems. For ϕ\phi small, the noise-to-signal ratio scales as the spin-squeezing parameter ξ\xi, with ξ<1\xi<1 possible for an entangled ensemble. However states with minimum ξ\xi are not optimal for single-shot measurements of an arbitrary phase. We define a phase-squeezing parameter, ζ\zeta, which is an appropriate figure-of-merit for this case. We show that (unlike the states that minimize ξ\xi), the states that minimize ζ\zeta can be created by evolving an unentangled state (coherent spin state) by the well-known 2-axis counter-twisting Hamiltonian. We analyse these and other states (for example the maximally entangled state, analogous to the optical "NOON" state ψ>=(N,0>+0,N>)/2|\psi> = (|N,0>+|0,N>)/\sqrt{2}) using several different properties, including ξ\xi, ζ\zeta, the coefficients in the pseudo angular momentum basis (in the three primary directions) and the angular Wigner function W(θ,ϕ)W(\theta,\phi). Finally we discuss the experimental options for creating phase squeezed states and doing single-shot phase estimation.Comment: 8 pages and 5 figure

    The Potential-Density Phase Shift Method for Determining the Corotation Radii in Spiral and Barred Galaxies

    Get PDF
    We have developed a new method for determining the corotation radii of density waves in disk galaxies, which makes use of the radial distribution of an azimuthal phase shift between the potential and density wave patterns. The approach originated from improved theoretical understandings of the relation between the morphology and kinematics of galaxies, and on the dynamical interaction between density waves and the basic-state disk stars which results in the secular evolution of disk galaxies. In this paper, we present the rationales behind the method, and the first application of it to several representative barred and grand-design spiral galaxies, using near-infrared images to trace the mass distributions, as well as to calculate the potential distributions used in the phase shift calculations. We compare our results with those from other existing methods for locating the corotations, and show that the new method both confirms the previously-established trends of bar-length dependence on galaxy morphological types, as well as provides new insights into the possible extent of bars in disk galaxies. Application of the method to a larger sample and the preliminary analysis of which show that the phase shift method is likely to be a generally-applicable, accurate, and essentially model-independent method for determining the pattern speeds and corotation radii of single or nested density wave patterns in galaxies. Other implications of this work are: most of the nearby bright disk galaxies appear to possess quasi-stationary spiral modes; that these density wave modes and the associated basic state of the galactic disk slowly transform over time; and that self-consistent N-particle systems contain physics not revealed by the passive orbit analysis approaches.Comment: 48 pages, 16 figures. Accepted for publication in the Astronomical Journa

    The tidal tails of NGC 2298

    Get PDF
    We present an implementation of the matched-filter technique to detect tidal tails of globular clusters. The method was tested using SDSS data for the globular cluster Palomar 5 revealing its well known tidal tails. We also ran a simulation of a globular cluster with a tidal tail where we successfully recover the tails for a cluster at the same position and with the same characteristics of NGC 2298. Based on the simulation we estimate that the matched-filter increases the contrast of the tail relative to the background of stars by a factor of 2.5 for the case of NGC 2298. We also present the photometry of the globular cluster NGC 2298 using the MOSAIC2 camera installed on the CTIO 4m telescope. The photometry covers ~ 3deg2 reaching V ~ 23. A fit of a King profile to the radial density profile of NGC 2298 shows that this cluster has a tidal radius of 15.91' \pm 1.07' which is twice as in the literature. The application of the matched-filter to NGC 2298 reveals several extra-tidal structures, including a leading and trailing tail. We also find that NGC 2298 has extra-tidal structures stretching towards and against the Galactic disk, suggesting strong tidal interaction. Finally, we assess how the matched-filter performs when applied to a globular cluster with and without mass segregation taken into account. We find that disregarding the effects of mass segregation may significantly reduce the detection limit of the matched-filter.Comment: 11 pages, 9 figures, 1 table. Accepted for publication on MNRAS main journa

    On the Generation of the Hubble Sequence through an Internal Secular Dynamical Process

    Full text link
    The secular evolution process, which slowly transforms the morphology of a galaxy over its lifetime, could naturally account for observed properties of the great majority of physical galaxies if both stellar and gaseous accretion processes are taken into account. As an emerging paradigm for galaxy evolution, its dynamical foundation had been established in the past few years, and its observational consequences are yet to be fully explored. The secular evolution picture provides a coherent framework for understanding the extraordinary regularity and the systematic variation of galaxy properties along the Hubble sequence.Comment: 10 pages, 1 figure, invited talk presented at the international conference on "Penetrating Bars through the Masks of Cosmic Dust: The Hubble Tuning Fork Strikes a New Note", June 2004, South Afric

    Imaging tests in determination of brain death

    Get PDF
    In this issue, an excellent review is published on the imaging findings in non-neonatal hypoxic-ischemic encephalopathy [1]. The authors also go into detail on imaging “brain death”, an entity that is currently causing debate as far as the imaging approach is concerned. Brain death refers to the irreversible end of all brain activity due to necrosis of neurons. The diagnosis of brain death allows organ donation for transplantation or withdrawal of life support. Legal standard and/or practice guidelines are currently present in most countries. There is uniform agreement on the clinical neurological examination to evaluate absence of brain function. This examination includes the assessment of coma, the absence of brain reflexes, and the assessment of apnea. Some guidelines require a confirmatory test for the diagnosis o
    corecore