40 research outputs found

    Characterization of a Fetal Liver Cell Population Endowed with Long-Term Multiorgan Endothelial Reconstitution Potential.

    Get PDF
    Stable reconstitution of vascular endothelial beds upon transplantation of progenitor cells represents an important challenge due to the paucity and generally limited integration/expansion potential of most identified vascular related cell subsets. We previously showed that mouse fetal liver (FL) hemato/vascular cells from day 12 of gestation (E12), expressing the Stem Cell Leukaemia (SCL) gene enhancer transgene (SCL-PLAP+ cells), had robust endothelial engraftment potential when transferred to the blood stream of newborns or adult conditioned recipients, compared to the scarce vascular contribution of adult bone marrow cells. However, the specific SCL-PLAP+ hematopoietic or endothelial cell subset responsible for the long-term reconstituting endothelial cell (LTR-EC) activity and its confinement to FL developmental stages remained unknown. Using a busulfan-treated newborn transplantation model, we show that LTR-EC activity is restricted to the SCL-PLAP+ VE-cadherin+ CD45- cell population, devoid of hematopoietic reconstitution activity and largely composed by Lyve1+ endothelial-committed cells. SCL-PLAP+ Ve-cadherin+ CD45- cells contributed to the liver sinusoidal endothelium and also to the heart, kidney and lung microvasculature. LTR-EC activity was detected at different stages of FL development, yet marginal activity was identified in the adult liver, revealing unknown functional differences between fetal and adult liver endothelial/endothelial progenitors. Importantly, the observations that expanding donor-derived vascular grafts colocalize with proliferating hepatocyte-like cells and participate in the systemic circulation, support their functional integration into young livers. These findings offer new insights into the engraftment, phonotypical, and developmental characterization of a novel endothelial/endothelial progenitor cell subtype with multiorgan LTR-EC activity, potentially instrumental for the treatment/genetic correction of vascular diseases. Stem Cells 2017;35:507-521.Spanish Ministry of Economy and Competitiveness (Grant IDs: BFU2010- 15801, CSD-2007-00008), Junta de Andalucıa Regional Government (Grant ID: CVI-295), European Regional Development Funds, Wellcome Trust, Medical Research CouncilThis is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/stem.249

    Sox2 promotes tamoxifen resistance in breast cancer cells

    Get PDF
    Development of resistance to therapy continues to be a serious clinical problem in breast cancer management. Cancer stem/progenitor cells have been shown to play roles in resistance to chemo- and radiotherapy. Here, we examined their role in the development of resistance to the oestrogen receptor antagonist tamoxifen. Tamoxifen-resistant cells were enriched for stem/progenitors and expressed high levels of the stem cell marker Sox2. Silencing of the SOX2 gene reduced the size of the stem/progenitor cell population and restored sensitivity to tamoxifen. Conversely, ectopic expression of Sox2 reduced tamoxifen sensitivity in vitro and in vivo. Gene expression profiling revealed activation of the Wnt signalling pathway in Sox2-expressing cells, and inhibition of Wnt signalling sensitized resistant cells to tamoxifen. Examination of patient tumours indicated that Sox2 levels are higher in patients after endocrine therapy failure, and also in the primary tumours of these patients, compared to those of responders. Together, these results suggest that development of tamoxifen resistance is driven by Sox2-dependent activation of Wnt signalling in cancer stem/progenitor cells

    A Sox2–Sox9 signalling axis maintains human breast luminal progenitor and breast cancer stem cells

    Get PDF
    Increased cancer stem cell content during development of resistance to tamoxifen in breast cancer is driven by multiple signals, including Sox2-dependent activation of Wnt signalling. Here, we show that Sox2 increases and estrogen reduces the expression of the transcription factor Sox9. Gain and loss of function assays indicate that Sox9 is implicated in the maintenance of human breast luminal progenitor cells. CRISPR/Cas knockout of Sox9 reduces growth of tamoxifen-resistant breast tumours in vivo. Mechanistically, Sox9 acts downstream of Sox2 to control luminal progenitor cell content and is required for expression of the cancer stem cell marker ALDH1A3 and Wnt signalling activity. Sox9 is elevated in breast cancer patients after endocrine therapy failure. This new regulatory axis highlights the relevance of SOX family transcription factors as potential therapeutic targets in breast cancer

    Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility

    Get PDF
    Circulating tumor cells (CTCs) are present at low concentrations in the peripheral blood of patients with solid tumors. It has been proposed that the isolation, ex vivo culture, and characterization of CTCs may provide an opportunity to noninvasively monitor the changing patterns of drug susceptibility in individual patients as their tumors acquire new mutations. In a proof-of-concept study, we established CTC cultures from six patients with estrogen receptor–positive breast cancer. Three of five CTC lines tested were tumorigenic in mice. Genome sequencing of the CTC lines revealed preexisting mutations in the PIK3CA gene and newly acquired mutations in the estrogen receptor gene (ESR1), PIK3CA gene, and fibroblast growth factor receptor gene (FGFR2), among others. Drug sensitivity testing of CTC lines with multiple mutations revealed potential new therapeutic targets. With optimization of CTC culture conditions, this strategy may help identify the best therapies for individual cancer patients over the course of their disease

    NR5A2/LRH-1 regulates the PTGS2-PGE2-PTGER1 pathway contributing to pancreatic islet survival and function

    Get PDF
    LRH-1/NR5A2 is implicated in islet morphogenesis postnatally, and its activation using the agonist BL001 protects islets against apoptosis, reverting hyperglycemia in mouse models of Type 1 Diabetes Mellitus. Islet transcriptome profiling revealed that the expression of PTGS2/COX2 is increased by BL001. Herein, we sought to define the role of LRH-1 in postnatal islet morphogenesis and chart the BL001 mode of action conferring beta cell protection. LRH-1 ablation within developing beta cells impeded beta cell proliferation, correlating with mouse growth retardation, weight loss, and hypoglycemia leading to lethality. LRH-1 deletion in adult beta cells abolished the BL001 antidiabetic action, correlating with beta cell destruction and blunted Ptgs2 induction. Islet PTGS2 inactivation led to reduced PGE levels and loss of BL001 protection against cytokines as evidenced by increased cytochrome c release and cleaved-PARP. The PTGER1 antagonist—ONO-8130—negated BL001-mediated islet survival. Our results define the LRH-1/PTGS2/PGE/PTGER1 signaling axis as a key pathway mediating BL001 survival properties.The authors are supported by grants from the Consejería de Salud, Fundación Pública Andaluza Progreso y Salud, Junta de Andalucía (PI-0727-2010 to B.R.G., PI-0085-2013 to P.I.L., PI-0247-2016 to F.J.B.S.), the Consejería de Economía, Innovación y Ciencia (P10.CTS.6359 to B.R.G.), the Ministerio de Ciencia e Innovación co-funded by Fondos FEDER (PI10/00871, PI13/00593 and BFU2017-83588-P to B.R.G and PI17/01004 to F.J.B.S.), Vencer el Cancer (B.R.G), DiabetesCero (B.R.G.) and the Juvenile Diabetes Research Foundation Ltd (17-2013-372 and 2-SRA-2019-837-S-B to B.R.G.). E.M.V. is recipient of a Fellowship from the Ministerio de Ciencia e Innovación co-funded by Fondos FEDER (PRE2018-084907). F.J.B.S. is a recipient of a "Nicolás Monardes" research contracts from Consejería de Salud Junta de Andalucía, (C-0070-2012). A.M.M. is supported by CPII19/00023 and PI18/01590 from the Instituto de Salud Carlos III co-funded by Fondos FEDER. V.C. is supported by a AECC investigator award. CIBERDEM is an initiative of the Instituto de Salud Carlos III

    SETD1A modulates cell cycle progression through a miRNA network that regulates p53 target genes

    Get PDF
    Expression of the p53-inducible antiproliferative gene BTG2 is suppressed in many cancers in the absence of inactivating gene mutations, suggesting alternative mechanisms of silencing. Using a shRNA screen targeting 43 histone lysine methyltransferases (KMTs), we show that SETD1A suppresses BTG2 expression through its induction of several BTG2-targeting miRNAs. This indirect but highly specific mechanism, by which a chromatin regulator that mediates transcriptional activating marks can lead to the downregulation of a critical effector gene, is shared with multiple genes in the p53 pathway. Through such miRNA-dependent effects, SETD1A regulates cell cycle progression in vitro and modulates tumorigenesis in mouse xenograft models. Together, these observations help explain the remarkably specific genetic consequences associated with alterations in generic chromatin modulators in cancer

    Enzyme-Responsive Zr-Based Metal–Organic Frameworks for Controlled Drug Delivery: Taking Advantage of Clickable PEG-Phosphate Ligands

    No full text
    <p>Enzyme-Responsive Zr-Based Metal–Organic Frameworks for Controlled Drug Delivery: Taking Advantage of Clickable PEG-Phosphate Ligands</p><p>Carolina Carrillo-Carrión*, Valentine Comaills, Ana M. Visiga, Benoit R. Gauthier, and Noureddine Khiar*</p><p><i>ACS Appl. Mater. Interfaces</i> 2023, 15, 23, 27600–27611</p><p> </p&gt
    corecore