579 research outputs found

    NetworKIN: a resource for exploring cellular phosphorylation networks

    Get PDF
    Protein kinases control cellular responses by phosphorylating specific substrates. Recent proteome-wide mapping of protein phosphorylation sites by mass spectrometry has discovered thousands of in vivo sites. Systematically assigning all 518 human kinases to all these sites is a challenging problem. The NetworKIN database (http://networkin.info) integrates consensus substrate motifs with context modelling for improved prediction of cellular kinase–substrate relations. Based on the latest human phosphoproteome from the Phospho.ELM and PhosphoSite databases, the resource offers insight into phosphorylation-modulated interaction networks. Here, we describe how NetworKIN can be used for both global and targeted molecular studies. Via the web interface users can query the database of precomputed kinase–substrate relations or obtain predictions on novel phosphoproteins. The database currently contains a predicted phosphorylation network with 20 224 site-specific interactions involving 3978 phosphoproteins and 73 human kinases from 20 families.Genome Canada (through Ontario Genomics Institute)National Institutes of Health (U.S.) (U54-CA112967)National Institutes of Health (U.S.) (GM60594)European Community’s Human Potential Programme (BioSapiens Network of Excellence (contract number LSHG-CT-2003-503265))European Community’s Human Potential Programme (ADIT Integrated Project (contract number LSHB-CT-2005511065)

    Role of the mesoamygdaloid dopamine projection in emotional learning

    Get PDF
    Amygdala dopamine is crucially involved in the acquisition of Pavlovian associations, as measured via conditioned approach to the location of the unconditioned stimulus (US). However, learning begins before skeletomotor output, so this study assessed whether amygdala dopamine is also involved in earlier 'emotional' learning. A variant of the conditioned reinforcement (CR) procedure was validated where training was restricted to curtail the development of selective conditioned approach to the US location, and effects of amygdala dopamine manipulations before training or later CR testing assessed. Experiment 1a presented a light paired (CS+ group) or unpaired (CS- group) with a US. There were 1, 2 or 10 sessions, 4 trials per session. Then, the US was removed, and two novel levers presented. One lever (CR+) presented the light, and lever pressing was recorded. Experiment 1b also included a tone stimulus. Experiment 2 applied intra-amygdala R(+) 7-OH-DPAT (10 nmol/1.0 A mu l/side) before two training sessions (Experiment 2a) or a CR session (Experiment 2b). For Experiments 1a and 1b, the CS+ group preferred the CR+ lever across all sessions. Conditioned alcove approach during 1 or 2 training sessions or associated CR tests was low and nonspecific. In Experiment 2a, R(+) 7-OH-DPAT before training greatly diminished lever pressing during a subsequent CR test, preferentially on the CR+ lever. For Experiment 2b, R(+) 7-OH-DPAT infusions before the CR test also reduced lever pressing. Manipulations of amygdala dopamine impact the earliest stage of learning in which emotional reactions may be most prevalent

    Academic self-concept, gender and single-sex schooling

    Get PDF
    This paper assesses gender differences in academic self-concept for a cohort of children born in 1958 (the National Child Development Study). We address the question of whether attending single-sex or co-educational schools affected students’ perceptions of their own academic abilities (academic self-concept). Academic selfconcept was found to be highly gendered, even controlling for prior test scores. Boys had higher self-concepts in maths and science, and girls in English. Single-sex schooling reduced the gender gap in self-concept, while selective schooling was linked to lower academic self-concept overall

    Towards NHS Zero: greener gastroenterology and the impact of virtual clinics on carbon emissions and patient outcomes. A multisite, observational, cross-sectional study

    Get PDF
    OBJECTIVE: The National Health Service (NHS) produces more carbon emissions than any public sector organisation in England. In 2020, it became the first health service worldwide to commit to becoming carbon net zero, the same year as the COVID-19 pandemic forced healthcare systems globally to rapidly adapt service delivery. As part of this, outpatient appointments became largely remote. Although the environmental benefit of this change may seem intuitive the impact on patient outcomes must remain a priority. Previous studies have evaluated the impact of telemedicine on emission reduction and patient outcomes but never before in the gastroenterology outpatient setting. METHOD: 2140 appointments from general gastroenterology clinics across 11 Trusts were retrospectively analysed prior to and during the pandemic. 100 consecutive appointments during two periods of time, from 1 June 2019 (prepandemic) to 1 June 2020 (during the pandemic), were used. Patients were telephoned to confirm the mode of transport used to attend their appointment and electronic patient records reviewed to assess did-not-attend (DNA) rates, 90-day admission rates and 90-day mortality rates. RESULTS: Remote consultations greatly reduced the carbon emissions associated with each appointment. Although more patients DNA their remote consultations and doctors more frequently requested follow-up blood tests when reviewing patients face-to-face, there was no significant difference in patient 90-day admissions or mortality when consultations were remote. CONCLUSION: Remote consultations greatly reduced the carbon emissions associated with each appointment. Although more patients DNA their remote consultations and doctors more frequently requested follow-up blood tests when reviewing patients face-to-face, there was no significant difference in patient 90-day admissions or mortality when consultations were remote
    corecore