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ABSTRACT

Protein kinases control cellular responses by phos-
phorylating specific substrates. Recent proteome-
wide mapping of protein phosphorylation sites by
mass spectrometry has discovered thousands of
in vivo sites. Systematically assigning all 518 human
kinases to all these sites is a challenging problem.
The NetworKIN database (http://networkin.info)
integrates consensus substrate motifs with context
modelling for improved prediction of cellular
kinase–substrate relations. Based on the latest
human phosphoproteome from the Phospho.ELM
and PhosphoSite databases, the resource offers
insight into phosphorylation-modulated interaction
networks. Here, we describe how NetworKIN can
be used for both global and targeted molecular
studies. Via the web interface users can query the
database of precomputed kinase–substrate rela-
tions or obtain predictions on novel phosphopro-
teins. The database currently contains a predicted
phosphorylation network with 20 224 site-specific
interactions involving 3978 phosphoproteins and
73 human kinases from 20 families.

INTRODUCTION

Dynamical protein phosphorylation governs many cell
biological processes (1). Decades of targeted studies and
recent progress in phosphoproteomics has resulted in a
large body of protein phosphorylation data (2).
Determining how these phosphorylation sites change
through time, for example during the cell cycle or
following exposure to extracellular stimuli is now possible
with techniques such as quantitative mass spectrometry
(3). However, it remains difficult to determine which of

the 518 human kinases is responsible for the phosphoryla-
tion of an observed site; a glance at the Phospho.ELM
database reveals that only about a quarter of known
in vivo phosphorylation sites have been assigned as
substrates of a specific kinase, and this fraction is
constantly decreasing (2).
This has motivated the development of numerous

computational methods for predicting kinase–substrate
relations, for example, Scansite (4), NetphosK (5,6),
PREDIKIN (7), PredPhospho (8) GPS (9), PPSP (10) and
KinasePhos (11). These methods all rely on consensus
sequence motifs recognized by the active site of the
enzymes, represented by either position-specific scoring
matrices (PSSMs), neural networks, support vector
machines or other machine-learning representations.
However, kinase specificity is known to also depend on
other factors, such as auxiliary protein interactions,
scaffolds, coexpression and colocalization (collectively
referred to as ‘context’). We recently introduced a
computational framework, NetworKIN, which uses a
probabilistic protein association network [STRING (12)] to
model the context of kinases and substrates; combined
with consensus sequence motifs, this gave a 2.5-fold leap
in prediction accuracy over previous methods (13).
Here, we present a database of predicted kinase–

substrate relations based on the latest human phospho-
proteome and protein association network from the
Phospho.ELM (2), PhosphoSite (14) and STRING (12)
databases. This database is available via a web interface at
http://networkin.info, which enables the user to query the
database for any kinases or substrates of interest, to
submit new substrates and to explore the evidence
underlying a prediction.

RESOURCE OVERVIEW

The foundation of the NetworKIN algorithm is the fact
that signalling proteins are modular in nature, that is
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they consist of discrete functional modules, such as
protein kinase domains and the linear peptide motifs
they recognize and phosphorylate. This makes it possible
to model the behaviour of such proteins by coupling
the prediction of linear motifs to that of identifying
the corresponding binding module in a network context.
Due to the improved capability of mass spectrometry to
identify phosphorylation sites and other post-translational
modifications, the scope of modelling these events has
changed from predicting what could get phosphorylated
to predicting what kinase phosphorylates which sites.
The NetworKIN algorithm is designed to work from a

set of experimentally identified in vivo phosphorylation
sites (although the algorithm can also be used ab initio).
The precomputed results in the database are based on the
latest human phosphoproteome from the Phospho.ELM
and PhosphoSite databases (2,14) (Figure 1). The release
cycle of the database is approximately every 3 months due
to the high throughput of mass-spectrometry-driven
proteomics, and we intend to keep NetworKIN up-
to-date with future releases of Phospho.ELM and
PhosphoSite.
These data are processed through the NetworKIN

algorithm, which is implemented in Python and C.

The sites are classified by matching them to a motif
collection (Figure 1) based on the position-specific scoring
matrices from Scansite (4) (http://scansite.mit.edu) and
the artificial neural networks from NetPhosK (5) (http://
www.cbs.dtu.dk/services/NetPhosK). Each consensus
sequence motif is considered to be a representative for a
family of closely related kinases; for example, the
NetPhosK Cdk5 predictor is used for predicting possible
phosphorylation sites for all cyclin-dependent kinases.
Within a proteome, kinases are identified and assigned to
these families based on their best hit in a BLASTP (15)
sequence similarity search against a set of 82 representa-
tive kinase domain sequences, which have been manually
assigned to families. Only hits with an E-value better than
10�40 and with at least 50% sequence identity are
considered.

To capture the biological context of a substrate, we
use a probabilistic network of functional associations
extracted from the STRING database (12) (http://string.
embl.de, Figure 1). This network is based on four
fundamentally different types of evidence: genomic con-
text (gene fusion, gene neighbourhood and phylogentic
profiles), primary experimental evidence (physical protein
interactions and gene co-expression), manually curated
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Figure 1. Overview of the NetworKIN resource. NetworKIN starts from a set of known in vivo phosphorylation sites, which are obtained and kept
synchronized with the Phospho.ELM and PhosphoSite databases to facilitate reciprocal database cross-links. We first compare these phosphorylation
sites to consensus sequence motifs from the Scansite and NetPhosK resources in order to predict possible kinase families responsible for the
phosphorylation. Second, we capture the kinase and substrate context using a probabilistic functional association network from the STRING database
(12). The resulting site-specific kinase–substrate interaction network is stored in a SQL database, which is accessible via a web interface.
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pathway databases, and automatic literature mining.
We showed that the three latter evidence types are of
comparable importance, whereas genomic context meth-
ods contribute very little towards the predictions made by
NetworKIN (13). As the curated pathway databases
generally contain few errors, a confidence score of 0.9 is
assigned to this type of evidence. The best candidate
kinases within the appropriate kinase families are identi-
fied from a protein network of functional associations
[generated using the STRING database (12)] by calculating
the proximity to the substrate for all kinases, defined
as the probability of the most probable path connecting
them (Floyd–Warshall algorithm). The context is thus
used as a filter that eliminates many of the false-positive
predictions obtained from the sequence motifs and hence
improves the prediction accuracy. However, the current
algorithm is unable to recover sites that are missed by the
sequence motifs (i.e. false-negative predictions).

The resulting predicted kinase–substrate relations are
stored in a MySQL relational database. The database
also contains cross-references to the Phospho.ELM (2),
PhosphoSite (14) and STRING (12) databases. This database
can be accessed via a web interface, which consists of a
collection of CGI scripts, that query the database backend
and format the results as XHTML for display in a web
browser.

USING NetworKIN

The NetworKIN database can be accessed in several
different ways. In the following, we will explain the
various features of the web interface, using the tumour
suppressor 53BP1 as an example. For large-scale analysis
or visualization, most users will probably prefer to
download the complete set of predictions for human
phosphoproteins, which is available in tab-separated and
Cytoscape format.

For all other users, the primary entry point to
NetworKIN is its search interface shown in Figure 2A.
The user can select a specific substrate and/or kinase to
view the corresponding subset of predictions; in our
example, we query for 53BP1 as the substrate and use the
wildcard * to obtain predictions for all kinases. The web
interface also offers an advanced search form, which
enables the user to pose much more refined queries.
In either case, the search results will be presented as a
table in which each row shows a predicted relation
between a kinase and a specific phosphorylation site in a
substrate. In case of 53BP1, we get a list of 78 predictions
for 39 sites and 12 kinases; the first 10 of these predictions
are shown in Figure 2B. For each prediction we list two
scores, namely the context score and the motif score, both
of which should preferably be high. It should be noted
that the motif scores for different kinase families are not
comparable; in particular, motif scores from NetPhosK
should not be compared with motif scores from Scansite.
For this reason, the predictions for a given phosphoryla-
tion site are sorted by their context score. As the results of
a single query may be extensive, the results can also be
downloaded in the formats mentioned previously.

Furthermore, the user can investigate the predictions
in greater detail via the web interface. For each substrate,
we link to Phospho.ELM or PhosphoSite where the user
can find manually curated information on in vivo
phosphorylation sites including, when known, the
kinase(s) involved (Figure 2C). To allow the user to
investigate how a specific prediction was made by
NetworKIN, we provide a link to the STRING network
viewer, in which the most probable path connecting the
kinase and the substrate will be highlighted (Figure 2D).
Alternatively, the user can select multiple predictions
and display the network context for all the proteins
involved. From the network viewer, the evidence under-
lying each individual association can be inspected in
further detail. This ability to thoroughly investigate
individual predictions is particularly useful for interpret-
ing non-obvious cases, which are often based on indirect
links between the kinase and the substrate.
Although Phospho.ELM, PhosphoSite and hence

NetworKIN are kept up-to-date with new published
phosphorylation sites, many researchers will be interested
in predictions for their own, unpublished sites. We thus
allow users to submit protein sequences and a correspond-
ing set of phosphorylation sites for analysis; although
possible, we discourage submitting sequences without
prior knowledge on phosphorylation. After uploading
the data, the user will be presented with a confirmation
page where potential data entry errors can be detected
and fixed. The final predictions will be presented in a
tabular format similar to the one used when querying the
precomputed results in the database.
Many users are interested in specific kinases or

substrates; however, others may want to get an overview
of the complete phosphorylation network. To facilitate
this, the resource offers a global map of all predictions
currently in the database. All kinases and substrates are
shown using a colour scale to signify their connectivity,
namely the number of substrates for a given kinase or the
number of kinases for a given substrate. By selecting
one or more kinases, all corresponding substrates are
highlighted and vice versa. Deselecting one kinase will
deselect only the substrates specific for that kinase,
keeping the other ones. We find this approach to be an
intuitive way to gain insight into pleiotropic properties of
kinases. Similar to the search interface, map selections can
be visualized in their network context.

OUTLOOK

In the future, we intend to keep NetworKIN up-to-date
with the latest data on phosphorylation sites from
Phospho.ELM and PhosphoSite, functional associations
from STRING and consensus sequence motifs from Scansite
and other sources. Furthermore, the algorithm will be
extended to take into account docking motifs (e.g. for
MAP kinases) and phosphorylation-dependent binding
modules (e.g. SH2, PTB and BRCT domains), which is
expected to both improve the prediction accuracy and
facilitate more comprehensive modelling of signalling
networks. We also intend to extend the method to include
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Figure 2. Using NetworKIN. A researcher is interested in the 53BP1 tumour surpressor. From the homepage of NetworKIN, this protein is chosen
as the substrate protein to query the database for predictions relating any kinase to specific phosphorylation sites within 53BP1 (A). The system
returns a total of 78 relations involving 12 different kinases that are predicted to phosphorylated 39 different sites, which are presented in a tabular
view (B), (only the first 10 predictions are shown). These predictions can now be investigated in further detail by following either the links to the
Phospho.ELM and PhosphoSite databases for curated knowledge related to the sites (C), or by following the links to the STRING network viewer to
visualize the most probable path in the protein assocation network, which connects the kinase and the substrate (D).
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phosphatases as soon as data for this is available to us.
Although, NetworKIN is so far specifically aimed at
protein phosphorylation, many other post-translational
modifications are mediated by enzymes that recognize
short linear motifs. We thus expect the same principle of
specificity through context to apply. For example, the
modifications of histone tails through acetylation, methy-
lation and phosphorylation has been shown to be context
dependent (16), and acetylated or methylated sites in turn
bind interaction domains, such as bromo- or chromodo-
mains. Extending the resource to cover also other post-
translational modifications is thus a long-term goal.
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