1,207 research outputs found

    On the equation of state of a dense columnar liquid crystal

    Full text link
    An accurate description of a columnar liquid crystal of hard disks at high packing fractions is presented using an improved free-volume theory. It is shown that the orientational entropy of the disks in the one-dimensional fluid direction leads to a different high-density scaling pressure compared to the prediction from traditional cell theory. Excellent quantitative agreement is found with recent Monte-Carlo simulation results for various thermodynamic and structural properties of the columnar state.Comment: 4 pages, 2 figures, to appear in Phys. Rev. Let

    Transient x-ray diffraction used to diagnose shock compressed Si crystals on the Nova laser

    Get PDF
    Transient x-ray diffraction is used to record time-resolved information about the shock compression of materials. This technique has been applied on Nova shock experiments driven using a hohlraum x-ray drive. Data were recorded from the shock release at the free surface of a Si crystal, as well as from Si at an embedded ablator/Si interface. Modeling has been done to simulate the diffraction data incorporating the strained crystal rocking curves and Bragg diffraction efficiencies. Examples of the data and post-processed simulations are presented

    Photothermal Absorption Spectroscopy of Individual Semiconductor Nanocrystals

    Full text link
    Photothermal heterodyne detection is used to record the first room-temperature absorption spectra of single CdSe/ZnS semiconductor nanocrystals. These spectra are recorded in the high cw excitation regime, and the observed bands are assigned to transitions involving biexciton and trion states. Comparison with the single nanocrystals photoluminescence spectra leads to the measurement of spectral Stokes shifts free from ensemble averaging

    Influence of Nanoparticle Size and Shape on Oligomer Formation of an Amyloidogenic Peptide

    Full text link
    Understanding the influence of macromolecular crowding and nanoparticles on the formation of in-register β\beta-sheets, the primary structural component of amyloid fibrils, is a first step towards describing \emph{in vivo} protein aggregation and interactions between synthetic materials and proteins. Using all atom molecular simulations in implicit solvent we illustrate the effects of nanoparticle size, shape, and volume fraction on oligomer formation of an amyloidogenic peptide from the transthyretin protein. Surprisingly, we find that inert spherical crowding particles destabilize in-register β\beta-sheets formed by dimers while stabilizing β\beta-sheets comprised of trimers and tetramers. As the radius of the nanoparticle increases crowding effects decrease, implying smaller crowding particles have the largest influence on the earliest amyloid species. We explain these results using a theory based on the depletion effect. Finally, we show that spherocylindrical crowders destabilize the ordered β\beta-sheet dimer to a greater extent than spherical crowders, which underscores the influence of nanoparticle shape on protein aggregation

    Synthesis of CdS and CdSe nanocrystallites using a novel single-molecule precursors approach

    Get PDF
    The synthesis of CdS and CdSe nanocrystallites using the thermolysis of several dithioor diselenocarbamato complexes of cadmium in trioctylphosphine oxide (TOPO) is reported. The nanodispersed materials obtained show quantum size effects in their optical spectra and exhibit near band-edge luminescence. The influence of experimental parameters on the properties of the nanocrystallites is discussed. HRTEM images of these materials show well-defined, crystalline nanosized particles. Standard size fractionation procedures can be performed in order to narrow the size dispersion of the samples. The TOPO-capped CdS and CdSe nanocrystallites and simple organic bridging ligands, such as 2,2¢-bipyrimidine, are used as the starting materials for the preparation of novel nanocomposites. The optical properties shown by these new nanocomposites are compared with those of the starting nanodispersed materials

    A pseudopotential study of electron-hole excitations in colloidal, free-standing InAs quantum dots

    Full text link
    Excitonic spectra are calculated for free-standing, surface passivated InAs quantum dots using atomic pseudopotentials for the single-particle states and screened Coulomb interactions for the two-body terms. We present an analysis of the single particle states involved in each excitation in terms of their angular momenta and Bloch-wave parentage. We find that (i) in agreement with other pseudopotential studies of CdSe and InP quantum dots, but in contrast to k.p calculations, dot states wavefunction exhibit strong odd-even angular momentum envelope function mixing (e.g. ss with pp) and large valence-conduction coupling. (ii) While the pseudopotential approach produced very good agreement with experiment for free-standing, colloidal CdSe and InP dots, and for self-assembled (GaAs-embedded) InAs dots, here the predicted spectrum does {\em not} agree well with the measured (ensemble average over dot sizes) spectra. (1) Our calculated excitonic gap is larger than the PL measure one, and (2) while the spacing between the lowest excitons is reproduced, the spacings between higher excitons is not fit well. Discrepancy (1) could result from surface states emission. As for (2), agreement is improved when account is taken of the finite size distribution in the experimental data. (iii) We find that the single particle gap scales as R1.01R^{-1.01} (not R2R^{-2}), that the screened (unscreened) electron-hole Coulomb interaction scales as R1.79R^{-1.79} (R0.7R^{-0.7}), and that the eccitonic gap sclaes as R0.9R^{-0.9}. These scaling laws are different from those expected from simple models.Comment: 12 postscript figure

    Electrically-driven phase transition in magnetite nanostructures

    Full text link
    Magnetite (Fe3_{3}O4_{4}), an archetypal transition metal oxide, has been used for thousands of years, from lodestones in primitive compasses[1] to a candidate material for magnetoelectronic devices.[2] In 1939 Verwey[3] found that bulk magnetite undergoes a transition at TV_{V} \approx 120 K from a high temperature "bad metal" conducting phase to a low-temperature insulating phase. He suggested[4] that high temperature conduction is via the fluctuating and correlated valences of the octahedral iron atoms, and that the transition is the onset of charge ordering upon cooling. The Verwey transition mechanism and the question of charge ordering remain highly controversial.[5-11] Here we show that magnetite nanocrystals and single-crystal thin films exhibit an electrically driven phase transition below the Verwey temperature. The signature of this transition is the onset of sharp conductance switching in high electric fields, hysteretic in voltage. We demonstrate that this transition is not due to local heating, but instead is due to the breakdown of the correlated insulating state when driven out of equilibrium by electrical bias. We anticipate that further studies of this newly observed transition and its low-temperature conducting phase will shed light on how charge ordering and vibrational degrees of freedom determine the ground state of this important compound.Comment: 17 pages, 4 figure

    First-Principles Dynamical Coherent-Potential Approximation Approach to the Ferromagnetism of Fe, Co, and Ni

    Full text link
    Magnetic properties of Fe, Co, and Ni at finite temperatures have been investigated on the basis of the first-principles dynamical CPA (Coherent Potential Approximation) combined with the LDA (Local Density Approximation) + UU Hamiltonian in the Tight-Binding Linear Muffintin Orbital (TB-LMTO) representation. The Hamiltonian includes the transverse spin fluctuation terms. Numerical calculations have been performed within the harmonic approximation with 4th-order dynamical corrections. Calculated single-particle densities of states in the ferromagnetic state indicate that the dynamical effects reduce the exchange splitting, suppress the band width of the quasi-particle state, and causes incoherent excitations corresponding the 6 eV satellites. Results of the magnetization vs temperature curves, paramagnetic spin susceptibilities, and the amplitudes of local moments are presented. Calculated Curie temperatures (TCT_{\rm C}) are reported to be 1930K for Fe, 2550K for Co, and 620K for Ni; TCT_{\rm C} for Fe and Co are overestimated by a factor of 1.8, while TCT_{\rm C} in Ni agrees with the experimental result. Effective Bohr magneton numbers calculated from the inverse susceptibilities are 3.0 μB\mu_{\rm B} (Fe), 3.0 μB\mu_{\rm B} (Co), and 1.6 μB\mu_{\rm B} (Ni), being in agreement with the experimental ones. Overestimate of TCT_{\rm C} in Fe and Co is attributed to the neglects of the higher-order dynamical effects as well as the magnetic short range order.Comment: 10 pages, 13 figure

    Electrical Resistivity of Lanthanum, Praseodymium, Neodymium, and Samarium

    Full text link
    The electrical resistivities of polycrystalline samples of La, Pr, Nd, and Sm are reported in the temperature range 1.3 to 300 deg K. La exhibits a superconducting transition at 5.8 deg K. The curve for Pr has slope changes at 61 and 95 deg K. The Nd curve shows small jumps at 5 and 20 deg K. Sm shows slope changes at 14 and 106 deg K. (auth

    Task shifting and integration of HIV care into primary care in South Africa: The development and content of the streamlining tasks and roles to expand treatment and care for HIV (STRETCH) intervention

    Get PDF
    Background: Task shifting and the integration of human immunodeficiency virus (HIV) care into primary care services have been identified as possible strategies for improving access to antiretroviral treatment (ART). This paper describes the development and content of an intervention involving these two strategies, as part of the Streamlining Tasks and Roles to Expand Treatment and Care for HIV (STRETCH) pragmatic randomised controlled trial. Methods: Developing the intervention: The intervention was developed following discussions with senior management, clinicians, and clinic staff. These discussions revealed that the establishment of separate antiretroviral treatment services for HIV had resulted in problems in accessing care due to the large number of patients at ART clinics. The intervention developed therefore combined the shifting from doctors to nurses of prescriptions of antiretrovirals (ARVs) for uncomplicated patients and the stepwise integration of HIV care into primary care services. Results: Components of the intervention: The intervention consisted of regulatory changes, training, and guidelines to support nurse ART prescription, local management teams, an implementation toolkit, and a flexible, phased introduction. Nurse supervisors were equipped to train intervention clinic nurses in ART prescription using outreach education and an integrated primary care guideline. Management teams were set up and a STRETCH coordinator was appointed to oversee the implementation process. Discussion: Three important processes were used in developing and implementing this intervention: active participation of clinic staff and local and provincial management, educational outreach to train nurses in intervention sites, and an external facilitator to support all stages of the intervention rollout
    corecore