1,336 research outputs found
Depression, School Performance, and the Veridicality of Perceived Grades and Causal Attributions
An external criterion was assessed to test whether depressives have distorted perceptions of covariation information and whether their attributions are consistent with this information. Studentsâ actual and self-perceived grades, depression status, and attributions for failures were assessed. Furthermore, partici pants estimated average grades. Generally, self-perceived own past grades were inflated. Depressed students and those with low grades distorted their own grades (but not the average grade) more to their favor than individuals low in depression and those with high grades. Depression went along with lower actual grades and with internal, stable, and global failure attributions. Mood differences in attributions were not due to differences in previous grades. Depressed individuals drew (unrealistically) more depressogenic causal inferences when they perceived average grades to be low than when average grades were perceived to be high. However, they (realistically) attributed failure more in a depressogenic fashion than did nondepressives when their own grade history was low
On the Properties of Plastic Ablators in Laser-Driven Material Dynamics Experiments
Radiation hydrodynamics simulations were used to study the effect of plastic
ablators in laser-driven shock experiments. The sensitivity to composition and
equation of state was found to be 5-10% in ablation pressure. As was found for
metals, a laser pulse of constant irradiance gave a pressure history which
decreased by several percent per nanosecond. The pressure history could be made
more constant by adjusting the irradiance history. The impedance mismatch with
the sample gave an increase o(100%) in the pressure transmitted into the
sample, for a reduction of several tens of percent in the duration of the peak
load applied to the sample, and structured the release history by adding a
release step to a pressure close to the ablation pressure. Algebraic relations
were found between the laser pulse duration, the ablator thickness, and the
duration of the peak pressure applied to the sample, involving quantities
calculated from the equations of state of the ablator and sample using shock
dynamics.Comment: Typos fixe
Building capacity for co-operative governance as a basis for integrated water resource managing in the Inkomati and Mvoti catchments, South Africa
South Africaâs National Water Act and National Water Resource Strategy set out an ambitious vision for Integrated Water Resources Management including a strong focus on the redistribution of water resources towards the poor and on empowering historically disadvantaged communities. To achieve this vision the Department of Water Affairs & Forestry (DWAF) has been pursuing a programme for devolving powers to 19 stakeholder-led catchment management agencies (CMAs) and more locally, transforming irrigation boards into more inclusive water user associations (WUAs), as well as creating new associations.Co-operative governance is a core principle of this programme. As well as being enshrined in South Africaâs constitution, this principle is seen as key to enabling CMAs to implement their core functions, which include co-ordinating the activities of water users and water management institutions within their water management area. For WUAs also, the principle of co-operative governance is key to building engagement between White commercial farmers and emerging Black farmers, as well as (in some cases) engaging with a wider set of stakeholder interests including local government and environmental interests.Despite a commitment to the principle of co-operative governance, individual and institutional capacity for facilitating co-operative development processes is in relatively short supply within the South African water sector. This paper describes work-in-progress to build capacity in this area, working with:âą DWAFâs national Institutional Governance teamâą The Inkomati CMA (ICMA), the first of South Africaâs new catchment management agenciesâą Two irrigation boards and a number of other stakeholders in the Mvoti catchment â with a view to the development of an appropriate institutional arrangement (WUA or otherwise) for the co-operative governance of this catchment.This paper focuses on the development of an interactive approach to capacity building in each of these three sites, drawing from a broad portfolio of approaches variously described as social learning, social appraisal, or whole system development. In the Inkomati we have worked primarily with the whole system approach known as Future Search, whereas in the Mvoti we have used the U-process and social appraisal as guiding metaphors and design principles.This paper describes some of our achievements, challenges and reflections to date, and argues that the interactive approaches we have been taking are better suited to the implementation of DWAFâs institutional reform processes than the more established, top-down approaches, which involve issuing guidance, supported by training programmes. The paper concludes with a discussion of the implications for scaling up these types of approaches across the South African water system as a whole, and for the practice of integrated water resource management.Keywords: adaptive IWRM, catchment management agencies, cooperative governance, dialogue, interactive capacity building, social learning, water user association
The marrow cell continuum: stochastic determinism.
Traditional models of hematopoiesis have been hierarchical in nature. Over the past 10 years, we have developed data indicating that hematopoiesis is regulated in a continuum with deterministic and stochastic components. We have shown that the most primitive stem cells, as represented by lineage negative rhodamine(low) Hoechst(low) murine marrow cells are continuously or intermittently cycling as determined by in vivo BrdU labeling. When marrow stem cells are induced to transit cell cycle by in vitro exposure to cytokines, either IL-3, IL-6, IL-11, and steel factor or thrombopoietin, FLT3 ligand, and steel factor, they progress through cycle in a highly synchronized fashion. We have determined that when the stem cells progress through a cytokine stimulated cell cycle the homing, engraftment, adhesion protein, global gene expression, and hematopoietic differentiation phenotypes all change in a reversible fashion. This has led to the continuum model, in which, with cycle transit, chromatin is continually changing altering open transcription areas and providing a continually changing landscape of transcriptional opportunity. More recently, we have extended the changing differentiation profiles to differentiation into lung cells and found that non-hematopoietic differentiation also shows cycle related reversibly modulation. These observations all together support a continuum model of stem cell regulation in which the phenotype of the marrow stem cells is continually and reversibly changing over time
Influence of Nanoparticle Size and Shape on Oligomer Formation of an Amyloidogenic Peptide
Understanding the influence of macromolecular crowding and nanoparticles on
the formation of in-register -sheets, the primary structural component
of amyloid fibrils, is a first step towards describing \emph{in vivo} protein
aggregation and interactions between synthetic materials and proteins. Using
all atom molecular simulations in implicit solvent we illustrate the effects of
nanoparticle size, shape, and volume fraction on oligomer formation of an
amyloidogenic peptide from the transthyretin protein. Surprisingly, we find
that inert spherical crowding particles destabilize in-register -sheets
formed by dimers while stabilizing -sheets comprised of trimers and
tetramers. As the radius of the nanoparticle increases crowding effects
decrease, implying smaller crowding particles have the largest influence on the
earliest amyloid species. We explain these results using a theory based on the
depletion effect. Finally, we show that spherocylindrical crowders destabilize
the ordered -sheet dimer to a greater extent than spherical crowders,
which underscores the influence of nanoparticle shape on protein aggregation
Electrically-driven phase transition in magnetite nanostructures
Magnetite (FeO), an archetypal transition metal oxide, has been
used for thousands of years, from lodestones in primitive compasses[1] to a
candidate material for magnetoelectronic devices.[2] In 1939 Verwey[3] found
that bulk magnetite undergoes a transition at T 120 K from a
high temperature "bad metal" conducting phase to a low-temperature insulating
phase. He suggested[4] that high temperature conduction is via the fluctuating
and correlated valences of the octahedral iron atoms, and that the transition
is the onset of charge ordering upon cooling. The Verwey transition mechanism
and the question of charge ordering remain highly controversial.[5-11] Here we
show that magnetite nanocrystals and single-crystal thin films exhibit an
electrically driven phase transition below the Verwey temperature. The
signature of this transition is the onset of sharp conductance switching in
high electric fields, hysteretic in voltage. We demonstrate that this
transition is not due to local heating, but instead is due to the breakdown of
the correlated insulating state when driven out of equilibrium by electrical
bias. We anticipate that further studies of this newly observed transition and
its low-temperature conducting phase will shed light on how charge ordering and
vibrational degrees of freedom determine the ground state of this important
compound.Comment: 17 pages, 4 figure
Recommended from our members
A QSAR for the Mutagenic Potencies of Twelve 2-Amino-trimethylimidazopyridine Isomers: Structural, Quantum Chemical,and Hydropathic Factors
An isomeric series of heterocyclic amines related to one found in heated muscle meats was investigated for properties that predict their measured mutagenic potency. Eleven of the 12 possible 2-amino-trimethylimidazopyridine (TMIP) isomers were tested for mutagenic potency in the Ames/Salmonella test with bacterial strain TA98, and resulted in a 600-fold range in potency. Structural, quantum chemical and hydropathic data were calculated on the parent molecules and the corresponding nitrenium ions of all of the tested isomers to establish models for predicting the potency of the unknown isomer. The regression model accounting for the largest fraction of the total variance in mutagenic potency contains four predictor variables: dipole moment, a measure of the gap between amine LUMO and HOMO energies, percent hydrophilic surface, and energy of amine LUMO. The most important determinants of high mutagenic potency in these amines are: (1) a small dipole moment, (2) the combination of b-face ring fusion and N3-methyl group, and (3) a lower calculated energy of the {pi} electron system. Based on predicted potency from the average of five models, the isomer not yet synthesized and tested is expected to have a mutagenic potency of 0.84 revertants/{micro}g in test strain TA98
Task shifting and integration of HIV care into primary care in South Africa: The development and content of the streamlining tasks and roles to expand treatment and care for HIV (STRETCH) intervention
Background: Task shifting and the integration of human immunodeficiency virus (HIV) care into primary care services have been identified as possible strategies for improving access to antiretroviral treatment (ART). This paper describes the development and content of an intervention involving these two strategies, as part of the Streamlining Tasks and Roles to Expand Treatment and Care for HIV (STRETCH) pragmatic randomised controlled trial. Methods: Developing the intervention: The intervention was developed following discussions with senior management, clinicians, and clinic staff. These discussions revealed that the establishment of separate antiretroviral treatment services for HIV had resulted in problems in accessing care due to the large number of patients at ART clinics. The intervention developed therefore combined the shifting from doctors to nurses of prescriptions of antiretrovirals (ARVs) for uncomplicated patients and the stepwise integration of HIV care into primary care services. Results: Components of the intervention: The intervention consisted of regulatory changes, training, and guidelines to support nurse ART prescription, local management teams, an implementation toolkit, and a flexible, phased introduction. Nurse supervisors were equipped to train intervention clinic nurses in ART prescription using outreach education and an integrated primary care guideline. Management teams were set up and a STRETCH coordinator was appointed to oversee the implementation process. Discussion: Three important processes were used in developing and implementing this intervention: active participation of clinic staff and local and provincial management, educational outreach to train nurses in intervention sites, and an external facilitator to support all stages of the intervention rollout
Recommended from our members
Mutagenic Potency of Food-Derived Heterocyclic Amines
The understanding of mutagenic potency has been primarily approached using ''quantitative structure activity relationships'' (QSAR). Often this method allows the prediction of mutagenic potency of the compound based on its structure. But it does not give the underlying reason why the mutagenic activities differ. We have taken a set of heterocyclic amine structures and used molecular dynamic calculations to dock these molecules into the active site of a computational model of the cytochrome P-450 1A1 enzyme. The calculated binding strength using Boltzman distribution constants was then compared to the QSAR value (HF/6-31G* optimized structures) and the Ames/Salmonella mutagenic potency. Further understanding will only come from knowing the complete set of mutagenic determinants. These include the nitrenium ion half-life, DNA adduct half-life, efficiency of repair of the adduct, and ultimately fixation of the mutation through cellular processes. For two isomers, PhIP and 3-Me-PhIP, we showed that for the 100-fold difference in the mutagenic potency a 5-fold difference can be accounted for by differences in the P450 oxidation. The other factor of 20 is not clearly understood but is downstream from the oxidation step. The application of QSAR (chemical characteristics) to biological principles related to mutagenesis is explored in this report
- âŠ