43 research outputs found

    Performance assessment of a programmable five degrees-of-freedom motion platform for quality assurance of motion management techniques in radiotherapy.

    Get PDF
    Inter-fraction and intra-fraction motion management methods are increasingly applied clinically and require the development of advanced motion platforms to facilitate testing and quality assurance program development. The aim of this study was to assess the performance of a 5 degrees-of-freedom (DoF) programmable motion platform HexaMotion (ScandiDos, Uppsala, Sweden) towards clinically observed tumor motion range, velocity, acceleration and the accuracy requirements of SABR prescribed in AAPM Task Group 142. Performance specifications for the motion platform were derived from literature regarding the motion characteristics of prostate and lung tumor targets required for real time motion management. The performance of the programmable motion platform was evaluated against (1) maximum range, velocity and acceleration (5 DoF), (2) static position accuracy (5 DoF) and (3) dynamic position accuracy using patient-derived prostate and lung tumor motion traces (3 DoF). Translational motion accuracy was compared against electromagnetic transponder measurements. Rotation was benchmarked with a digital inclinometer. The static accuracy and reproducibility for translation and rotation was <0.1 mm or <0.1°, respectively. The accuracy of reproducing dynamic patient motion was <0.3 mm. The motion platform’s range met the need to reproduce clinically relevant translation and rotation ranges and its accuracy met the TG 142 requirements for SABR. The range, velocity and acceleration of the motion platform are sufficient to reproduce lung and prostate tumor motion for motion management. Programmable motion platforms are valuable tools in the investigation, quality assurance and commissioning of motion management systems in radiation oncology

    Performance assessment of a programmable five degrees-of-freedom motion platform for quality assurance of motion management techniques in radiotherapy.

    Get PDF
    Inter-fraction and intra-fraction motion management methods are increasingly applied clinically and require the development of advanced motion platforms to facilitate testing and quality assurance program development. The aim of this study was to assess the performance of a 5 degrees-of-freedom (DoF) programmable motion platform HexaMotion (ScandiDos, Uppsala, Sweden) towards clinically observed tumor motion range, velocity, acceleration and the accuracy requirements of SABR prescribed in AAPM Task Group 142. Performance specifications for the motion platform were derived from literature regarding the motion characteristics of prostate and lung tumor targets required for real time motion management. The performance of the programmable motion platform was evaluated against (1) maximum range, velocity and acceleration (5 DoF), (2) static position accuracy (5 DoF) and (3) dynamic position accuracy using patient-derived prostate and lung tumor motion traces (3 DoF). Translational motion accuracy was compared against electromagnetic transponder measurements. Rotation was benchmarked with a digital inclinometer. The static accuracy and reproducibility for translation and rotation was <0.1 mm or <0.1°, respectively. The accuracy of reproducing dynamic patient motion was <0.3 mm. The motion platform’s range met the need to reproduce clinically relevant translation and rotation ranges and its accuracy met the TG 142 requirements for SABR. The range, velocity and acceleration of the motion platform are sufficient to reproduce lung and prostate tumor motion for motion management. Programmable motion platforms are valuable tools in the investigation, quality assurance and commissioning of motion management systems in radiation oncology

    DMLC tracking and gating can improve dose coverage for prostate VMAT

    Get PDF
    PURPOSE: To assess and compare the dosimetric impact of dynamic multileaf collimator (DMLC) tracking and gating as motion correction strategies to account for intrafraction motion during conventionally fractionated prostate radiotherapy. METHODS: A dose reconstruction method was used to retrospectively assess the dose distributions delivered without motion correction during volumetric modulated arc therapy fractions for 20 fractions of five prostate cancer patients who received conventionally fractionated radiotherapy. These delivered dose distributions were compared with the dose distributions which would have been delivered had DMLC tracking or gating motion correction strategies been implemented. The delivered dose distributions were constructed by incorporating the observed prostate motion with the patient's original treatment plan to simulate the treatment delivery. The DMLC tracking dose distributions were constructed using the same dose reconstruction method with the addition of MLC positions from Linac log files obtained during DMLC tracking simulations with the observed prostate motions input to the DMLC tracking software. The gating dose distributions were constructed by altering the prostate motion to simulate the application of a gating threshold of 3 mm for 5 s. RESULTS: The delivered dose distributions showed that dosimetric effects of intrafraction prostate motion could be substantial for some fractions, with an estimated dose decrease of more than 19% and 34% from the planned CTVD99% and PTV D95% values, respectively, for one fraction. Evaluation of dose distributions for DMLC tracking and gating deliveries showed that both interventions were effective in improving the CTV D99% for all of the selected fractions to within 4% of planned value for all fractions. For the delivered dose distributions the difference in rectum V65% for the individual fractions from planned ranged from -44% to 101% and for the bladder V65% the range was -61% to 26% from planned. The application of tracking decreased the maximum rectum and bladder V65% difference to 6% and 4%, respectively. CONCLUSIONS: For the first time, the dosimetric impact of DMLC tracking and gating to account for intrafraction motion during prostate radiotherapy has been assessed and compared with no motion correction. Without motion correction intrafraction prostate motion can result in a significant decrease in target dose coverage for a small number of individual fractions. This is unlikely to effect the overall treatment for most patients undergoing conventionally fractionated treatments. Both DMLC tracking and gating demonstrate dose distributions for all assessed fractions that are robust to intrafraction motion

    Quality assurance for the clinical implementation of kilovoltage intrafraction monitoring for prostate cancer VMAT.

    Get PDF
    PURPOSE: Kilovoltage intrafraction monitoring (KIM) is a real-time 3D tumor monitoring system for cancer radiotherapy. KIM uses the commonly available gantry-mounted x-ray imager as input, making this method potentially more widely available than dedicated real-time 3D tumor monitoring systems. KIM is being piloted in a clinical trial for prostate cancer patients treated with VMAT (NCT01742403). The purpose of this work was to develop clinical process and quality assurance (QA) practices for the clinical implementation of KIM. METHODS: Informed by and adapting existing guideline documents from other real-time monitoring systems, KIM-specific QA practices were developed. The following five KIM-specific QA tests were included: (1) static localization accuracy, (2) dynamic localization accuracy, (3) treatment interruption accuracy, (4) latency measurement, and (5) clinical conditions accuracy. Tests (1)-(4) were performed using KIM to measure static and representative patient-derived prostate motion trajectories using a 3D programmable motion stage supporting an anthropomorphic phantom with implanted gold markers to represent the clinical treatment scenario. The threshold for system tolerable latency is <1 s. The tolerances for all other tests are that both the mean and standard deviation of the difference between the programmed trajectory and the measured data are <1 mm. The (5) clinical conditions accuracy test compared the KIM measured positions with those measured by kV/megavoltage (MV) triangulation from five treatment fractions acquired in a previous pilot study. RESULTS: For the (1) static localization, (2) dynamic localization, and (3) treatment interruption accuracy tests, the mean and standard deviation of the difference are <1.0 mm. (4) The measured latency is 350 ms. (5) For the tests with previously acquired patient data, the mean and standard deviation of the difference between KIM and kV/MV triangulation are <1.0 mm. CONCLUSIONS: Clinical process and QA practices for the safe clinical implementation of KIM, a novel real-time monitoring system using commonly available equipment, have been developed and implemented for prostate cancer VMAT

    Multileaf Collimator Tracking Improves Dose Delivery for Prostate Cancer Radiation Therapy: Results of the First Clinical Trial.

    Get PDF
    PURPOSE: To test the hypothesis that multileaf collimator (MLC) tracking improves the consistency between the planned and delivered dose compared with the dose without MLC tracking, in the setting of a prostate cancer volumetric modulated arc therapy trial. METHODS AND MATERIALS: Multileaf collimator tracking was implemented for 15 patients in a prostate cancer radiation therapy trial; in total, 513 treatment fractions were delivered. During each treatment fraction, the prostate trajectory and treatment MLC positions were collected. These data were used as input for dose reconstruction (multiple isocenter shift method) to calculate the treated dose (with MLC tracking) and the dose that would have been delivered had MLC tracking not been applied (without MLC tracking). The percentage difference from planned for target and normal tissue dose-volume points were calculated. The hypothesis was tested for each dose-volume value via analysis of variance using the F test. RESULTS: Of the 513 fractions delivered, 475 (93%) were suitable for analysis. The mean difference and standard deviation between the planned and treated MLC tracking doses and the planned and without-MLC tracking doses for all 475 fractions were, respectively, PTV D99% -0.8% ± 1.1% versus -2.1% ± 2.7%; CTV D99% -0.6% ± 0.8% versus -0.6% ± 1.1%; rectum V65% 1.6% ± 7.9% versus -1.2% ± 18%; and bladder V65% 0.5% ± 4.4% versus -0.0% ± 9.2% (P<.001 for all dose-volume results). CONCLUSION: This study shows that MLC tracking improves the consistency between the planned and delivered doses compared with the modeled doses without MLC tracking. The implications of this finding are potentially improved patient outcomes, as well as more reliable dose-volume data for radiobiological parameter determination

    MLC tracking for lung SABR reduces planning target volumes and dose to organs at risk.

    Get PDF
    PURPOSE: Assess the dosimetric impact of multi-leaf collimator (MLC) tracking and mid-ventilation (midV) planning compared with the internal target volume (ITV)-based planning approach for lung Stereotactic Ablative Body Radiotherapy (SABR). METHOD: Ten lung SABR patients originally treated with an ITV-based plan were re-planned according to MLC tracking and midV planning schemes. All plans were delivered on a linac to a motion phantom in a simulated treatment with real lung motions. Delivered dose was reconstructed in patient planning scans. ITV-based, tracking and midV regimes were compared at the planning and delivered stages based on PTV volume and dose metrics for the GTV and OAR. RESULTS: MLC tracking and midV schemes yielded favourable outcomes compared with ITV-based plans. Average reduction in PTV volume was (MLC tracking/MidV) 33.9%/22%. GTV dose coverage performed better with MLC tracking than the other regimes. Reduction in dose to OAR were for the lung (mean lung dose, 0.8Gy/0.2Gy), oesophagus (D3cc, 1.9Gy/1.4Gy), great vessels (D10cc, 3.2Gy/1.3Gy), trachea (D4cc, 1.1Gy/0.9Gy), heart (D1cc, 2.0Gy/0.5Gy) and spinal cord (D0.03cc, 0.5Gy/-0.1Gy). CONCLUSION: MLC tracking showed reduction in PTV volume, superior GTV dose coverage and organ dose sparing than MidV and ITV-based strategies

    Technical Note: In silico and experimental evaluation of two leaf-fitting algorithms for MLC tracking based on exposure error and plan complexity.

    Get PDF
    PURPOSE: Multileaf collimator (MLC) tracking is being clinically pioneered to continuously compensate for thoracic and pelvic motion during radiotherapy. The purpose of this work was to characterize the performance of two MLC leaf-fitting algorithms, direct optimization and piecewise optimization, for real-time motion compensation with different plan complexity and tumor trajectories. METHODS: To test the algorithms, both in silico and phantom experiments were performed. The phantom experiments were performed on a Trilogy Varian linac and a HexaMotion programmable motion platform. High and low modulation VMAT plans for lung and prostate cancer cases were used along with eight patient-measured organ-specific trajectories. For both MLC leaf-fitting algorithms, the plans were run with their corresponding patient trajectories. To compare algorithms, the average exposure errors, i.e., the difference in shape between ideal and fitted MLC leaves by the algorithm, plan complexity and system latency of each experiment were calculated. RESULTS: Comparison of exposure errors for the in silico and phantom experiments showed minor differences between the two algorithms. The average exposure errors for in silico experiments with low/high plan complexity were 0.66/0.88 cm2 for direct optimization and 0.66/0.88 cm2 for piecewise optimization, respectively. The average exposure errors for the phantom experiments with low/high plan complexity were 0.73/1.02 cm2 for direct and 0.73/1.02 cm2 for piecewise optimization, respectively. The measured latency for the direct optimization was 226 ± 10 ms and for the piecewise algorithm was 228 ± 10 ms. In silico and phantom exposure errors quantified for each treatment plan demonstrated that the exposure errors from the high plan complexity (0.96 cm2 mean, 2.88 cm2 95% percentile) were all significantly different from the low plan complexity (0.70 cm2 mean, 2.18 cm2 95% percentile) (P < 0.001, two-tailed, Mann-Whitney statistical test). CONCLUSIONS: The comparison between the two leaf-fitting algorithms demonstrated no significant differences in exposure errors, neither in silico nor with phantom experiments. This study revealed that plan complexity impacts the overall exposure errors significantly more than the difference between the algorithms

    Real-Time 3D Image Guidance Using a Standard LINAC: Measured Motion, Accuracy, and Precision of the First Prospective Clinical Trial of Kilovoltage Intrafraction Monitoring-Guided Gating for Prostate Cancer Radiation Therapy.

    Get PDF
    PURPOSE: Kilovoltage intrafraction monitoring (KIM) is a new real-time 3-dimensional image guidance method. Unlike previous real-time image guidance methods, KIM uses a standard linear accelerator without any additional equipment needed. The first prospective clinical trial of KIM is underway for prostate cancer radiation therapy. In this paper we report on the measured motion accuracy and precision using real-time KIM-guided gating. METHODS AND MATERIALS: Imaging and motion information from the first 200 fractions from 6 patient prostate cancer radiation therapy volumetric modulated arc therapy treatments were analyzed. A 3-mm/5-second action threshold was used to trigger a gating event where the beam is paused and the couch position adjusted to realign the prostate to the treatment isocenter. To quantify the in vivo accuracy and precision, KIM was compared with simultaneously acquired kV/MV triangulation for 187 fractions. RESULTS: KIM was successfully used in 197 of 200 fractions. Gating events occurred in 29 fractions (14.5%). In these 29 fractions, the percentage of beam-on time, the prostate displacement was >3 mm from the isocenter position, reduced from 73% without KIM to 24% with KIM-guided gating. Displacements >5 mm were reduced from 16% without KIM to 0% with KIM. The KIM accuracy was measured at <0.3 mm in all 3 dimensions. The KIM precision was <0.6 mm in all 3 dimensions. CONCLUSIONS: Clinical implementation of real-time KIM image guidance combined with gating for prostate cancer eliminates large prostate displacements during treatment delivery. Both in vivo KIM accuracy and precision are well below 1 mm

    Quantification of intrafraction prostate motion and its dosimetric effect on VMAT.

    Get PDF
    Intrafraction prostate motion degrades the accuracy of radiation therapy (RT) delivery. Whilst a number of metrics in the literature have been used to quantify intrafraction prostate motion, it has not been established whether these metrics reflect the effect of motion on the RT dose delivered to the patients. In this study, prostate motion during volumetric modulated arc therapy (VMAT) treatment of 18 patients and a total of 294 fractions was quantified through novel metrics as well as those available in the literature. The impact of the motion on VMAT dosimetry was evaluated using these metrics and dose reconstructions based on a previously validated and published method. The dosimetric impact of the motion on planning target volume (PTV) and clinical target volume (CTV) coverage and organs at risk (OARs) was correlated with the motion metrics, using the coefficient of determination (R 2 ), to evaluate their utility. Action level threshold for the prostate motion metric that best described the dosimetric impact on the PTV D95% was investigated through iterative regression analysis. The average (range) of the mean motion for the patient cohort was 1.5 mm (0.3-9.9 mm). A number of motion metrics were found to be strongly correlated with PTV D95%, the range of R 2 was 0.43-0.81. For all the motion measures, correlations with CTV D99% (range of R 2 was 0.12-0.62), rectum V65% (range of R 2 was 0.33-0.58) and bladder V65% (range of R 2 was 0.51-0.69) were not as strong as for PTV D95%. The mean of the highest 50% of motion metric was one of the best indicator of dosimetric impact on PTV D95%. Action level threshold value for this metric was found to be 3.0 mm. For an individual fraction, when the metric value was greater than 3.0 mm then the PTV D95% was reduced on average by 6.2%. This study demonstrated that several motion metrics are well correlated with the dosimetric impact (PTV D95%) of individual fraction prostate motion on VMAT delivery and could be used for treatment course adaptation
    corecore