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ABSTRACT 

Purpose: Kilovoltage Intrafraction Monitoring (KIM) is a real-time 3D tumor monitoring 

system for cancer radiotherapy. KIM uses the commonly available gantry-mounted x-ray 15 

imager as input, making this method potentially more widely available than dedicated real-

time 3D tumor monitoring systems. KIM is being piloted in a clinical trial for prostate cancer 

patients treated with VMAT (NCT01742403). The purpose of this work was to develop 

clinical process and quality assurance (QA) practices for the clinical implementation of KIM. 

Methods: Informed by and adapting existing guideline documents from other real-time 20 

monitoring systems, KIM-specific QA practices were developed. The following five KIM-

specific QA tests were included: (1) static localization accuracy, (2) dynamic localization 

accuracy, (3) treatment interruption accuracy, (4) latency measurement and (5) clinical 

conditions accuracy. Tests (1)-(4) were performed using KIM to measure static and 

representative patient-derived prostate motion trajectories using a 3D programmable motion 25 

stage supporting an anthropomorphic phantom with implanted gold markers to represent the 

clinical treatment scenario. The threshold for system tolerable latency is <1s. The tolerances 

for all other tests are that both the mean and standard deviation of the difference between the 

programmed trajectory and the measured data are <1mm. The (5) clinical conditions accuracy 

test compared the KIM measured positions with those measured by kV/MV triangulation 30 

from five treatment fractions acquired in a previous pilot study. 

Results: For the (1) static localization, (2) dynamic localization and (3) treatment 

interruption accuracy tests, the mean and standard deviation of the difference is < 1.0 mm. 

(4) The measured latency is 350 ms. (5) For the tests with previously acquired patient data, 

the mean and standard deviation of the difference between KIM and kV/MV triangulation is 35 

< 1.0 mm.  

Conclusions: Clinical process and QA practices for the safe clinical implementation of KIM, 

a novel real-time monitoring system using commonly available equipment, have been 

developed and implemented for prostate cancer VMAT.  

  40 
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I. INTRODUCTION 

Tumors move during radiotherapy treatments resulting in geometric and dosimetric 

inaccuracies. The current proliferation of hypofractionated treatments
1
 means tumor motion 

during treatment is becoming more significant. In order to increase dosimetric accuracy and 

reduce normal tissue toxicity, real-time motion adaptation strategies are needed. Real-time 45 

tumor localization modalities supply the appropriate real-time tumor positions to enable 

motion adaptation strategies. A variety of real-time localization modalities have been 

evaluated, e.g. ultrasound,
2
 megavoltage (MV) imaging,

3
 kV/kV triangulation,

4
 kV/MV 

triangulation,
5
 the Calypso electromagnetic (EM) tracking system,

6
 MRI

7
 and the Navotek 

radioactive fiducial tracking system.
8
 However, most of these modalities are either 50 

experimental, not widely available or expensive. 

A promising real-time localization modality is Kilovoltage Intrafraction Monitoring, or 

KIM.
9, 10

 KIM measures tumor motion with the commonly available gantry-mounted x-ray 

imager deployed during treatment, making this method potentially more widely available 

than dedicated real-time 3D tumor monitoring systems. KIM has been experimentally 55 

investigated for dosimetric phantom treatments,
11, 12

 and applied in non-interventional clinical 

prostate
13

 and liver
14

 cancer treatments where the acquired images were analyzed 

retrospectively.  The resultant KIM accuracy for the clinical studies was determined to be 

0.46 mm for prostate and 0.60 mm for liver.  Encouraged by these results the KIM software 

has been refactored and enhanced for real-time operation, and a clinical trial for prostate 60 

VMAT treatments is open to accrual (NCT01742403) where the treatment will be gated if the 

prostate motion exceeds 3mm for more than 5 seconds.  

To ensure that KIM can be used effectively and safely in a clinical environment, Quality 

Assurance (QA) processes for KIM are needed. The QA processes used in this study are 

adapted from the prescriptive QA processes developed by Santanam et al.
15

 for another real-65 

time localization modality, Calypso. The processes are also informed by AAPM Task Groups 

104
16

 and 147.
17

 The four important differences between KIM and Calypso which require 

adapting Santanam’s approach are: (1) KIM delivers kV dose to the patient while Calypso 

does not; (2) KIM only monitors the prostate position when the kV beam is activated while 

Calypso continuously monitors the prostate position; (3) KIM does not require additional 70 

equipment (assuming KIM is implemented on a linac with an existing gantry-mounted kV 

imager); and (4) KIM does not require a dedicated couch.  

The aim of this study is to describe the QA processes for KIM that will be used for the 

first time in a prospective clinical trial for prostate cancer.   
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II. METHODS AND MATERIALS 75 

II.A. The Kilovoltage Intrafraction Monitoring system 

Figure 1 shows the clinical process workflow for KIM with radiation beam gating, henceforth 

referred to as KIM gating.  

 

Figure 1. The clinical process workflow for Kilovoltage Intrafraction Monitoring gating. 80 

 

A standard computed tomography (CT) scan for the patient is acquired. The treatment plan is 

created ensuring that the treatment isocenter is placed at the geometric center of the center of 

the three fiducial markers (Figure 1-A). This step involves some uncertainty due to the CT 
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reconstruction of the markers, which gives uncertainty in the size and center of the markers.  85 

Note that because of the varying volume of the markers, the isocenter is placed at the 

geometric center of the marker centers, which will be different from the center of mass if the 

marker images have different volumes. Prior to treatment, the patient is localized via kV/kV 

match or cone beam computed tomography (CBCT) (Figure 1-1). The KIM software is 

activated (Figure 1-2) and a single kV image is acquired to determine if the present marker 90 

positions match the CT scan marker positions (Figure 1-3). A 120° pretreatment arc is then 

acquired and the markers in these images segmented (Figure 1-4) to build a probability 

density function (pdf) required for the KIM 3D trajectory determination
10

 with real-time 3D 

trajectories displayed after 40° of gantry rotation. The pdf is built using with the most recent 

500 images. To improve the marker segmentation performance, the most recent 3 frames are 95 

averaged. The pdf is updated after every new image has been acquired.  These values were 

determined by running the code with various settings using prior image data
13

 to find a set of 

values that performed well across the range of clinical variation observed to date. The 

parameter values are user-configurable.  

During MV beam on, kV images of the prostate are acquired at a frequency of 5 or 10 100 

Hz (Figure 1-5). The KIM software segments the markers in each new image to determine the 

2D marker positions (Figure 1-6). These 2D marker positions are converted to 3D positions 

via a specialized mathematical algorithm developed by Poulsen et al.
10

 (Figure 1-7). Based 

on whether any of the LR, SI or AP positions (Figure 1-8) of the prostate has exceeded a 

preset threshold (e.g. 3 mm for 5 s) (Figure 1-8), it is decided whether to continue treatment 105 

(Figure 1-9) or pause the MV treatment beam and shift the couch (Figure 1-10). If the kV 

beam is paused, e.g. during a couch shift, then images are briefly acquired to determine if the 

prostate is still within tolerance. This process is repeated until the treatment is complete. 

Post treatment, the KIM software is deactivated and the acquired data are saved for 

analysis (Figure 1-11 and 12).  110 
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II.B. Quality assurance tests for KIM 

The QA tests for the Calypso electromagnetic (EM) system by Santanam et al.
15

 were 

adapted for the KIM QA tests. Several of the Santanam QA tests for Calypso did not need to 

be performed for KIM as they are part of an existing kV imager QA process.
18

  For example, 115 

the camera and system calibration are adapted to KIM as the TG 142 ‘Imaging and treatment 

coordinate coincidence test’ and do not need to be repeated for the KIM-specific tests. The 

TG 142 image quality tests are also important to follow if using kV imagers for KIM.  

For all of the geometric tests, the pass criterion of 1.0 mm was applied to the mean and 

standard deviation of the KIM-measured to the ground truth. The 1 mm value was chosen so 120 

that the error from the KIM measurement was well below typical margins for prostate 

radiotherapy, and in line with other geometric errors from e.g. isocenter calibration, kV 

alignment and couch tolerance.
18

 Improvements below 1 mm are of limited practical value as 

this is within typical linac specifications.  The 1 second latency tolerance was chosen as a 

value that would allow detection and correction on a timescale that is small with respect to 125 

typical prostate motion.  

As KIM relies either on the correlation of internal motion in the observed 

(perpendicular to the kV x-ray beam in any given projection) and unobserved (parallel to the 

x-ray beam) dimensions or confinement of motion in one or more directions, a programmable 

motion phantom reproducing patient-measured prostate motion trajectories is necessary for 130 

quality assurance. For these measurements we adapted the HexaMotion (Scandidos) platform 

to accommodate a pelvic Rando phantom (The Phantom Laboratory, Salem, NY) with 

implanted markers (Figure 2). The HexaMotion platform has been evaluated previously to 

reproduce prostate trajectories with high fidelity, better than 0.5mm.
19

 The tests were 

performed using a CT scan and treatment plan of the Rando phantom, and therefore the 135 

results represent end-to-end tests.  

 

II.B.1  Static localization accuracy 

The static localization accuracy tests are used to assess whether KIM can determine static 

positions accurately and determine the direction of static shifts correctly to ensure the KIM 140 

and patient co-ordinate systems are the same. A Rando phantom was implanted with 3 gold 

fiducial markers (1.2 mm diameter × 3.0 mm length) in a position mimicking the prostate 

position and a CT scan acquired with 2mm slice width. A VMAT treatment plan was created.  

The phantom was placed with the setup as shown in Figure 2. A kV/kV localization pair 

was used to align the marker geometric center to isocenter. KIM was applied with an imaging 145 
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frequency of 10 Hz to determine the trajectory of the static phantom for a 120° pretreatment 

arc and one treatment arc for each of seven phantom positions: the phantom at the isocenter, 

and also shifted ±5 mm from the initial position along individual cardinal axes (in the ± left-

right (LR), anterior-posterior (AP) and superior-inferior (SI) directions). The accuracy of the 

determination of the static phantom position was measured against the known shift and 150 

correctness of the directions of these shifts was assessed.  

We calculated the mean difference between measured and programmed trajectories, the 

standard deviation, and the 5
th

 and 95
th

 percentile.  

 

Figure 2. Setup of the Rando phantom for the QA tests. The Rando phantom was placed on 155 

an in-house modified wooden platform mounted to the HexaMotion. The HexaMotion 

translates the Rando phantom with programmed prostate trajectories during irradiation. 

 

II.B.2 Dynamic localization accuracy 

Dynamic localization refers to the accuracy of KIM determined trajectories and was assessed 160 

against the programmed 3D prostate trajectory of the HexaMotion (Figure 3).  The 

HexaMotion was programmed to move with six ‘typical’ prostate trajectories as measured 

from prostate patients in a clinical study by Langen et al.
20

 These trajectories include; stable 

trajectory, continuous drift, persistent excursion, transient excursion, high-frequency 

excursion, and erratic behavior. No gating tolerance was applied and these trajectories were 165 

completed without treatment interruption. It is important to note that the KIM results will be 

trace dependent: in a simulation study over the Langen database the mean 3D root-mean-

square (rms) error was 0.22 mm, 0.8% of the traces had rms errors >1 mm.
9
  The 

experimental measurement errors are expected to be larger than the simulation errors.   
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General prostate motion trends include low LR motion,
6, 10, 21

 and a positive correlation 170 

between SI and AP motion.
6, 10, 22, 23

 The underlying principle of KIM is that it relies on the 

correlation of motion of internal anatomy in different directions and also finds out (and 

exploits) if motion is small. For prostate, this correlation of motion is limited to SI and AP 

motion correlation.
10

 Hence, patient trajectories, rather than artificial trajectories are needed 

for the dynamic localization and treatment interruption accuracy tests.  175 

 

II.B.3 Treatment interruption accuracy 

The treatment interruption accuracy test determines how accurately KIM can monitor the 

actual target motion under the clinically realistic situation where a position threshold has 

been exceeded during treatment and a couch shift performed, following the Figure 1 180 

workflow. The accuracy will be limited by the inherent uncertainty in remote couch shifts, 

estimated at 0.5mm for the Exact Couch (Varian). The treatment interruption tests were 

performed with the same setup in Figure 2 and method of dynamic localization with the 

gating tolerance of 3mm/5s applied. That is, if any of the LR, AP and/or SI trajectories 

exceed 3.0 mm from the isocenter for 5.0 s, the MV and kV beams are manually paused. The 185 

couch is shifted remotely so that the target moves back to isocenter. kV imaging is then 

acquired for 5 seconds to ensure that the target position remains within the 3mm/5s tolerance. 

If this condition is not met, another couch shift is performed (Figure 1-10). Following that, 

treatment with KIM is resumed. The couch shifts are logged each time they are made. 

For each of the trajectories with couch shifts we calculated the mean difference 190 

between measured and programmed trajectories (including shifts), the standard deviation, and 

the 5
th

 and 95
th

 percentile.  

 

II.B.4 Latency measurement 

Measurement of the latency for KIM is important to ensure that positions of high velocity 195 

targets can be determined. The latency is defined as the time delay between when a target 

moves and when KIM resolves the motion. An indirect measurement of latency for KIM was 

performed using the Calypso electromagnetic tracking system. The HexaMotion was 

programmed to move with a superior-inferior sinusoidal motion of period 4 s and peak to 

peak amplitude 10 mm. Calypso beacons were placed on the Rando phantom for tracking.  200 

Calypso and KIM both localized the phantom position in ‘real-time’ during treatment. 

Video images (at 30 Hz) were acquired of the KIM and Calypso output screens together. The 

SI positions from each system were determined and plotted. A sine curve was fitted to each 
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plot and the time difference between these two sine curves was calculated. The KIM latency 

is the sum of the measured time difference and the measured Calypso (with MLC tracking) 205 

latency of 230 ms.
24

 Note that alternate methods of measuring latency exist, for example a 

measurement using a dial indicator, or using the RPM. The Calypso (with MLC tracking) was 

the simplest at our institution, and represents the upper bound of the latency measurement as 

the additional MLC tracking response time (estimated at ~80 ms) is not subtracted.  

 210 

II.B.5 Clinical conditions accuracy 

The previously described tests were performed on phantoms. A comparison of KIM and 

kV/MV triangulation from previously treated patients provides a measure of the accuracy of 

KIM under clinical conditions.
13

 This test was performed to benchmark KIM following the 

real-time refactoring of the retrospective version of the software used in the pilot study.
13

 The 215 

markers were manually segmented in MV images acquired for five fractions to obtain their 

2D positions. The 2D MV positions were triangulated with the 2D positions from kV images 

acquired at the same time to obtain the 3D positions of the markers. The mean difference and 

standard deviation of the difference between KIM and kV/MV triangulated trajectories were 

computed for those five fractions, with the kV/MV triangulated trajectories assumed to be the 220 

ground truth.   

 

III. RESULTS 

III.A. Static localization accuracy 

Table I shows the static localization test results.  The mean difference and standard deviation 225 

of the difference criteria pass for each direction for all scenarios. The directions of the shifts 

are also correct. 

 

Table I. Static localization test results. 

Phantom 

Shift  
Direction 

Mean difference 

(mm) 

(Required: < 1.0 

mm) 

Standard 

deviation (mm) 

(Required: < 1.0 

mm) 

Percentiles (5%, 

95%) 

None 

LR 0.06 0.15 (-0.23, 0.21) 

SI -0.46 0.08 (-0.58, -0.30) 

AP 0.24 0.19 (-0.17, 0.52) 

5 mm left 
LR 0.23 0.13 (-0.02, 0.37) 

SI 0.61 0.07 (0.49, 0.77) 
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AP 0.20 0.20 (-0.22, 0.50) 

5 mm right 

LR 0.44 0.17 (0.09, 0.60) 

SI 0.63 0.07 (0.52, 0.77) 

AP 0.21 0.22 (-0.27, 0.53) 

5 mm superior 

LR 0.07 0.15 (-0.24, 0.21) 

SI -0.34 0.07 (-0.46, -0.23) 

AP 0.21 0.18 (-0.16, 0.50) 

5 mm inferior 

LR 0.06 0.19 (-0.33, 0.23) 

SI -0.09 0.08 (-0.21, 0.04) 

AP 0.25 0.21 (-0.15, 0.59) 

5 mm anterior 

LR -0.12 0.15 (-0.42, 0.04) 

SI 0.61 0.08 (0.51, 0.76) 

AP 0.30 0.25 (-0.22, 0.62) 

5 mm posterior 

LR -0.15 0.20 (-0.56, 0.02) 

SI 0.60 0.07 (0.48, 0.72) 

AP 0.31 0.20 (-0.12, 0.64) 

 230 

III.B. Dynamic localization accuracy 

Figure 3 shows the plots of the dynamic localization measurements with KIM. For each 

motion type, the KIM (measured) trajectory was overlaid on the HexaMotion (actual) 

trajectory. The HexaMotion trajectory was initiated at the beginning of the pretreatment arc. 

In Figure 3, the time axis is started 10s before treatment. The grey shading highlights when 235 

treatment is being delivered.  As the SI position is always perpendicular to the imager, we 

expect SI errors to be low. Errors in the AP and LR directions will be dependent on the 

gantry angle (whether the motion is being directly measured or inferred), the underlying 

correlation of motion in the different directions for the patient and noise of the input trace.   
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 240 

Figure 3. Dynamic localization trajectories. Top left: stable trajectory. Top right: continuous 

drift. Center left: persistent excursion. Center right: high-frequency excursion. Bottom left: 

transient excursion. Bottom right: erratic behavior. Time 0 corresponds to 10s before the start 

of treatment. The gray shading indicates when the MV treatment beam is on.  

 245 

Table II summarizes the dynamic localization test results as mean difference between KIM 

and HexaMotion, standard deviation of the difference, and the 5th and 95
th

 percentiles. These 

metrics were computed when the treatment beam was on. The pass criterion for the mean 

difference is values less than 1.0 mm. The pass criterion for the standard deviation of the 
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difference is also values less than 1.0 mm. The percentiles are shown to provide further detail 250 

on the positional accuracy. 

 

Table II. Dynamic localization test results. 

Motion 

Type 
Direction 

Mean difference 

(mm) 

(Required: < 1.0 

mm) 

Standard deviation 

(mm) 

(Required: < 1.0 

mm) 

Percentiles  

(5%, 95%) 

Stable 

LR 0.53 0.27 (0.13, 0.97) 

SI 0.87 0.10 (0.71, 1.04) 

AP 0.08 0.23 (-0.29, 0.44) 

Continuous 

LR 0.50 0.19 (0.11, 0.79) 

SI 0.58 0.35 (-0.03, 1.12) 

AP -0.07 0.35 (-0.67, 0.47) 

Persistent 

Excursion 

LR -0.48 0.27 (-0.88, -0.02) 

SI 0.27 0.17 (0.01, 0.55) 

AP -0.14 0.30 (-0.59, 0.37) 

High-frequency 

Excursion 

LR 0.54 0.20 (0.35, 1.03) 

SI 0.81 0.31 (0.55, 1.16) 

AP -0.04 0.74 (-0.92, 1.63) 

Transient Excursion 

LR -0.09 0.22 (-0.51, 0.21) 

SI 0.33 0.19 (0.04, 0.59) 

AP -0.09 0.67 (-1.41, 1.14) 

Erratic Behavior 

LR 0.06 0.44 (-0.68, 0.68) 

SI 0.32 0.26 (-0.06, 0.75) 

AP -0.14 0.97 (-1.89, 1.42) 

 

III.C. Treatment interruption accuracy 255 

Figure 4 shows the plots of the treatment interruption accuracy test measurements. Four of 

the 6 trajectories exceeded the 3 mm /5 s gating threshold and were used because a gating 

event occurred. The KIM measured trajectory is overlaid on the HexaMotion (programmed) 

trajectory.  

 260 
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Figure 4. Trajectories for the treatment interruption test. Shifts were applied to the actual 

trajectories. Top left: continuous drift demonstrating a single interruption and couch shift 

during treatment.  Top right: transient excursion demonstrating a couch shift during 

treatment, that had to be re-corrected before treatment resumption due to further prostate 265 

motion. Bottom left: persistent excursion demonstrating a couch shift required before 

treatment. Bottom right: erratic behavior that also had to be re-corrected before treatment 

resumption. The gray shading indicates when the treatment beam is on. The orange arrow 

represents approximately where the couch shift occurred.  

 270 

Table III shows the treatment interruption accuracy test results. The mean difference and 

standard deviation of the difference criteria pass for each direction for all scenarios. 

 

Table III. Treatment interruption test results. 

Scenario Direction 

Mean difference 

(mm) 

(Required: < 1.0 

mm) 

Standard deviation 

(mm) 

(Required: < 1.0 

mm) 

Percentiles  

(5%, 95%) 
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Continuous 

LR 0.18 0.21 (-0.23, 0.45) 

SI 0.04 0.33 (-0.42, 0.58) 

AP 0.15 0.42 (-0.49, 0.84) 

Persistent 

Excursion 

LR 0.23 0.44 (-0.70, 0.95) 

SI 0.50 0.11 (0.33, 0.69) 

AP -0.32 0.43 (-0.91, 0.34) 

Transient Excursion 

LR 0.06 0.24 (-0.50, 0.33) 

SI 0.74 0.39 (-0.03, 1.26) 

AP -0.23 0.84 (-1.49, 0.96) 

Erratic Behavior 

LR 0.35 0.43 (-0.48, 0.85) 

SI 0.61 0.26 (0.20, 1.06) 

AP -0.49 0.81 (-1.96, 0.70) 

 275 

III.D. Latency measurement 

The time difference between the KIM and Calypso fitted sine curves was measured to be 

120 ms. Adding the time difference to the measured Calypso latency of 230 ms produces a 

KIM latency of 350 ms. This value is an upper bound as the Calypso measurements include 

the additional time needed for MLC tracking, and also the KIM latency could be reduced by 280 

improved image handling and code optimization. The measured KIM latency is well below 

the set tolerance of 1 s determined for prostate real-time localization.  

 

III.E. Clinical conditions accuracy  

Table IV shows the comparison of KIM and kV/MV triangulation for the 5 patient fractions 285 

of MV images. The mean difference and standard deviation of the difference criteria pass for 

each direction for all scenarios.  

 

Table IV. An accuracy comparison of KIM compared with kV/MV triangulation from 

previously acquired clinical data. 290 

Patient/ 

Fraction 

No. of MV 

images 
Direction 

Mean difference 

(mm) 

(Required: < 1.0 

mm) 

 

Standard 

deviation  (mm) 

(Required: < 1.0 

mm) 

Percentiles 

(5%, 95%) 

    

6/40 12 
LR 0.55 0.08 (0.37, 0.70) 

SI 0.16 0.08 (-0.03, 0.25) 
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AP -0.14 0.35 (-0.55, 0.39) 

8/37 32 

LR 0.03 0.36 (-0.70, 1.00) 

SI -0.52 0.31 (-1.10, 0.10) 

AP 0.78 0.88 (-0.80, 2.40) 

9/20 264 

LR 0.07 0.64 (-0.75, 1.24) 

SI 0.28 0.19 (-0.03, 0.57) 

AP 008 0.54 (-0.70, 1.13) 

9/36 88 

LR -0.08 0.34 (-0.80, 0.80) 

SI -0.75 0.31 (-1.30, -0.10) 

AP 0.89 0.45 (-0.10, 1.90) 

10/39 23 

LR 0.58 0.16 (0.33, 0.84) 

SI 0.19 0.17 (-0.08, 0.49) 

AP -0.17 0.21 (-0.48, 0.24) 

 

III.F. Summary 

Table V shows the summary of all the QA tests performed. All required tests passed. The 

proposed test frequency is based on TG 147 recommendations.
17

 Although TG 147 is based 

on non-radiographic systems, it encompasses the QA of a real-time localization modality 295 

which can be applied other real-time methods.   

We stress that these QA tests should need to be performed in concert with, and do not 

replace, kV imaging system tests, as described in TG 142.
18

   

 

Table V. Summary of QA tests and proposed test frequency.  300 

Test Frequency Subtest Pass Criteria 

1. Static 

localization 

accuracy 

Annual& & 

monthly 

a. Mean 

difference 
< 1.0 mm 

b. Standard 

deviation of 

differences 

< 1.0 mm 

c. Directionality Correct 

2. Dynamic 

localization 

accuracy 

Annual & 

monthly* 

a. Mean 

difference 
< 1.0 mm 

b. Standard 

deviation of 

differences 

< 1.0 mm 

3. Treatment 

interruption 

Annual & 

monthly* 

a. Mean 

difference 
< 1.0 mm 



16 

accuracy b. Standard 

deviation of 

differences 

< 1.0 mm 

4. Latency 

measurement 
Annual   < 1.0 s 

&
Annual tests should also be performed as part of commissioning, and after any software 

changes.   

*
For monthly quality assurance, single rather than multiple motion traces can be used, with a 

set schedule to cycle through different motion traces (c.f. AAPM TG 135
25

 end-to-end 

monthly tests). 305 

 

IV. DISCUSSION 

The QA tests in this study were designed with the framework outlined in Santanam et al. 

which focused on the QA of the Calypso electromagnetic system, which is also a real-time 

localization modality. The QA tests which are similar between KIM and Santanam include 310 

static localization accuracy, dynamic localization accuracy and latency measurement. 

Additional QA tests over those developed in Santanam are the tests with previously acquired 

clinical data (MV/KV triangulation), and the treatment interruption tests. The tests with 

previously acquired patient data were necessary to gauge the fidelity of KIM with real data.  

The treatment interruption accuracy tests were needed as they are unique to the KIM gating 315 

implementation which requires remote couch shifts. Separate QA to assess the accuracy of 

the couch shifts is outlined in TG 142, in which the couch tolerance is suggested to be (± 2 

mm / 1°).
18

 

The QA for the Cyberknife, a robotic radiosurgery system which also adapts to real-time 

tumor motion was outlined by Dieterich et al.
25

 While the scope of the Cyberknife QA is 320 

comprehensive and includes the entire radiosurgery system, similarities with the current study 

include the assessment of the geometric accuracy.  

KIM delivers kV dose to the patient. The assessment of dose is important as part of the 

QA of the real-time KIM system. However, KIM dose was measured in a previous study 

hence, the dose assessment is not included in this study. Typically, a single 6 cm × 6 cm 325 

projection delivers 1 µSv of dose.
26

 The 6 cm × 6 cm field size was selected based on the 

quantification of the field sizes needed to image the implanted markers through a review of 

22 prostate patient CT images.
27
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Several strategies for the dose reduction with KIM were identified and will be 

implemented when possible. These include: 330 

 Reducing the MV scatter by reading out the imaging panel prior to acquiring the kV 

image. This allows the kV frame rate to be reduced.
13

 

 Temporarily halting the MV beam during kV acquisition as proposed by Ling et al.
28

 

 Utilizing patient and gantry angle specific field sizes.
13

 

 Varying the exposure with gantry angle. At present, the same exposure parameters are 335 

used for all gantry angles. This means a higher than necessary dose is delivered for 

AP projections. Using the CT analogy of automatic brightness control can further 

reduce the dose.
13

  

 Incorporating the imaging dose into the optimization framework to reduce delivery 

time where beneficial.
29

 340 

It should also be noted that if KIM replaces daily cone beam CT imaging, then the total 

imaging dose to the patient would be reduced.   

Several aspects of the KIM gating workflow can be improved. Currently, the radiation 

beam is manually switched off based on a visual signal from the KIM user interface. The 

couch shift is also manually performed. Both of these manual steps could be easily 345 

automated, however they involve a level of integration with the linac that would require an 

extra level of regulatory review. 

 

V. CONCLUSION 

Clinical process and QA practices for the safe clinical implementation of KIM, a novel real-350 

time monitoring system using commonly available equipment, have been developed and 

implemented for prostate cancer VMAT. A prospective clinical trial of KIM is actively 

recruiting prostate cancer patients.  
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