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Abstract 

Inter-fraction and intra-fraction motion management methods are increasingly applied clinically 

and require the development of advanced motion platforms to facilitate testing and quality 

assurance program development. The aim of this study was to assess the performance of a 5 

degrees-of-freedom (DoF) programmable motion platform HexaMotion (ScandiDos, Uppsala, 

Sweden) towards clinically observed tumor motion range, velocity, acceleration and the accuracy 

requirements of SABR prescribed in AAPM Task Group 142. Performance specifications for the 

motion platform were derived from literature regarding the motion characteristics of prostate and 

lung tumor targets required for real time motion management. The performance of the 

programmable motion platform was evaluated against (1) maximum range, velocity and 

acceleration (5 DoF), (2) static position accuracy (5 DoF) and (3) dynamic position accuracy 

using patient-derived prostate and lung tumor motion traces (3 DoF). Translational motion 

accuracy was compared against electromagnetic transponder measurements. Rotation was 

benchmarked with a digital inclinometer. The static accuracy and reproducibility for translation 

and rotation was <0.1 mm or <0.1°, respectively. The accuracy of reproducing dynamic patient 

motion was <0.3 mm. The motion platform’s range met the need to reproduce clinically relevant 

translation and rotation ranges and its accuracy met the TG 142 requirements for SABR. The 

range, velocity and acceleration of the motion platform are sufficient to reproduce lung and 

prostate tumor motion for motion management. Programmable motion platforms are valuable 

tools in the investigation, quality assurance and commissioning of motion management systems 

in radiation oncology. 

 

  



Introduction 

Tumors are not static during radiotherapy treatment but move dynamically, especially for 

thoracic, abdominal and pelvic cancers. Prostate tumors were observed to translate up to 25 mm 

during radiotherapy [1] and lung tumors to rotate up to 45° [2]. In the modern image-guided 

radiation therapy (IGRT) era, a number of imaging techniques such as cone-beam computed 

tomography (CBCT) have reduced the impact of interfractional tumor motion [3]. Intrafractional 

tumor motion management is currently the more critical issue to manage and various strategies to 

detect and correct or encompass motion are in use or under investigation. For example, 

continuous kV imaging [4] and Calypso electromagnetic transponders (Varian, CA, USA) [1] 

have been used for tumor motion detection. Couch tracking [5], gating [6, 7], dynamic multileaf 

collimator (DMLC) tracking [8], robotic tracking with CyberKnife [9] and VERO [10] 

techniques have all been used for treatment adaptation. 

 

With the recent clinical implementation of tumor motion monitoring and MLC tracking on 

standard linear accelerators [11, 12, 13], adaptive radiotherapy is set to become increasingly 

accessible. Clinical tools are required to evaluate the accuracy of the tumor motion management 

systems. Several 3D [14], 4D [15], static 6 degrees-of-freedom (DoF) [16] and dynamic 6 DoF 

[17] phantoms and motion platforms were built for the purposes of system commissioning, 

validation and quality assurance (QA) at academic clinics but commercial products are now 

becoming available. 

 

This paper addressed the gap in knowledge of the performance of a commercial 

multidimensional programmable motion platform, HexaMotion (Scandidos, Uppsala, Sweden) 

for quality assurance of motion management in radiotherapy. We developed comprehensive 

performance criteria from literature and published clinical data for the Hexamotion. We also 

extended Cetnar’s approach [18] to include the range, velocity and acceleration of the 

HexaMotion. These limitations are of importance when using the motion platform for linac 

machine QA. 

 

Materials and methods 

Determination of performance specification 

We reviewed the radiotherapy equipment QA literature to develop performance specification for 

HexaMotion. Task Group 40 (TG40) recommended the threshold for QA medical accelerator to 

be 2 mm and 1° [19]. Task Group 142 (TG142)’s requirements for SABR is more demanding, 

with the spatial accuracy <1 mm/0.5° [20]. The tolerance of the on-board imager of the Novalis 

Tx linear accelerator was 2 mm/1° [21]. For modern motion adaptation systems, 1 mm was set 

for tolerance and the reported achievable geometric precision/accuracy was 0.7 mm [22], and 0.8 

mm [23] for CyberKnife and VERO respectively. 

 

To develop a comprehensive performance criteria, we further studied published clinical data [4] 

and calculate prostate and lung tumor mean and 95th percentile of motion range, velocity and 



acceleration for each of the 6 DoF. Up to 50 fractions of three lung cancer patients’ and 276 

fractions of ten prostate patients’ data was analyzed. 

 

Configuration of the motion platform and the assessment of the maximum range, velocity and 

acceleration 

The Hexamotion consisted of two parts: the control system—software, Ethernet cable, remote 

control and the motion platform—a base stage with stepper motors and a cabled tower on wheels 

(Fig. 1). The HexaMotion was originally set up with the Delta4 dosimeter [18] (ScandiDos, 

Uppsala, Sweden, Fig. 1, bottom left) to verify dose in moving targets. It was also mounted on an 

in-house platform to carry user phantoms, such as anthropomorphic pelvis or dosimetry phantom 

(Fig. 1, bottom right). 

The motion platform moves in 5 DoF—left–right (LR), superior–inferior (SI) and anterior–

posterior (AP) pitch and roll in the IEC 1217:1996 coordinate system (Fig. 1, bottom right). We 

used in-house software to generate various input trajectory files to determine range, velocity and 

acceleration. An input trajectory file has five columns of data representing the 5 DoF motion 

with the unit of mm/° and in the frequency of 50 Hz. 

 

The motion platform’s range was determined by creating a long continuous motion trajectory 

with range slightly below the manufacturer’s advice. This trajectory file was executed and 

revised up until it could not be carried out; then the range was determined. Maximum velocity 

and acceleration for each axis were determined individually in the same manner. 

 

Assessment of the static position accuracy 

The translation accuracy assessment was performed against the Calypso electromagnetic 

transponders tracking system, which has been shown to detect transponders with high system 

stability and precision [24, 25]. The in-house platform carried a cubic phantom with embedded 

Calypso transponders and moved to various designated positions (Fig. 2, left). Four positions 

were measured for LR, SI and AP axis respectively and each position was repeated five times. 

The transponder reported positions were compared with the input position. 

The rotational accuracy of static angles was measured by a Digi-Pas™ DWL-280 inclinometer 

(Fig. 2, right) which has a manufacturer quoted resolution and accuracy of 0.05°. The 

inclinometer was calibrated before each set of measurements and then mounted on the Delta4, 

perpendicular to either roll or pitch rotation axes. The Delta4 rotated with HexaMotion and 

carried the inclinometer to rotate in pitch and roll independently. Six positions were chosen for 

pitch and five positions were chosen for roll. Each position was repeated five times. Rotation 

angle displayed on the inclinometer were recorded and compared with the requested rotation. 

 

Hysteresis in the LR, SI and AP axis was tested by sending the HexaMotion to various positions, 

bringing it back and then measuring the returned position. Eight measurements were done for 

each axis. 

 



Evaluation of the dynamic accuracy to reproduce patient measured trajectories 

Two clinically recorded tumor motion trajectories were selected to assess the accuracy of 

reproducing dynamic motion: erratic prostate motion [26] and lung tumor motion [4]. The 

prostate erratic motion trajectory contains 14,734 data points and lasts 300 s which is long 

enough to represent a SABR treatment course. The lung tumor trajectory contains 7577 data 

points and spans 150 s, with amplitude of 1–3 mm and ~2 s per cycle. The lung tumor motion is 

faster so it represents a more challenging case for the motion platform. Only translational motion 

(3 DoF) was evaluated as there was no means available to independently measure rotation in 

real-time. 

 

The motion platform was setup to carry a cubic phantom embedded with three Calypso 

transponders. Motion trajectories were executed and the transponders’ real-time positions were 

recorded and used to compare with the ground truth—the requested trajectory. Alignment of the 

requested and measured trajectory was done by minimizing the root mean square differences 

between the two. We assumed there was no delay between the direction motion and the actual 

motion. 

 

Results 

Performance specification 

We derived from published data and calculated the magnitude of lung and prostate tumor mean 

and 95th percentile of motion, velocity and acceleration for each of the 6 DoF—translation along 

and rotation about the LR, SI, AP directions (Table 1). 

Maximum range, velocity and acceleration 

The range, velocity and acceleration of the motion platform were measured and listed in Table 2. 

The HexaMotion pre-experiment setup involves self-calibration, aligning the system to room 

lasers and accepting the new origin. This updates the motion platform’s position and range. 

Therefore for each setup, the range can be slightly different depending on the flatness of the 

bench/couch. 

The translational range of the motion platform is much larger than clinical observed prostate and 

lung tumor motion specifications (Table 1). The acceleration was also high to encompass both 

sites’ motion acceleration. The pitch range and velocity achieve the mean magnitude of motion 

but fail to encompass the 95th percentile of the prostate and lung tumor motion. The motion 

platform also lacks the yaw rotation capability. 

 

Static position accuracy 

The accuracy of discrete static positions was measured for the motion platform. It achieved 

accuracy <0.1 mm and <0.1° for each of the 5 DoF (Fig. 3). The reproducibility of the static 

position was less than 0.1 mm/° that error bars were too small to show. Hysteresis is minimal for 

HexaMotion. In 24 measurements in the LR, SI and AP directions, all data points were 0.0 mm 

besides one LR and one SI measurement were 0.1 mm. 



 

Dynamic position accuracy 

The 300 s prostate and the 150 s lung trajectories were executed and measured by the Calypso 

system. The requested trajectory (black lines) and the measured trajectory (colored lines) were 

compared and plotted against each other in Fig. 4. For lung trajectory, only a section was 

selected to show breathing cycles. Quantitatively, the motion platform demonstrated dynamic 

position accuracy better than 0.3 mm in individual cardinal axes (Table 3). It achieved the 

TG142 accuracy requirements of 1 mm/0.5°for SABR. 

Discussion 

Tumor motion creates one of the central challenges of radiotherapy. Many novel techniques, 

including tumor motion monitoring, adaptation and dosimetric evaluation have been recently 

developed or are being developed to reduce the negative impact of tumor motion. To effectively 

test and QA these novel techniques, a programmable motion platform is necessary. The 

HexaMotion is such a motion platform that can be programmed to move in 5 degrees-of-freedom 

(LR, SI, AP, pitch and roll) to reproduce clinically measured tumor motion trajectories. The 

HexaMotion cannot rotate in yaw. Clinical data showed that yaw is less prominent; with pitch 

the dominant rotation for prostate tumors and roll the dominant rotation for respiratory induced 

motion like lung [4]. This degree of freedom is accomplished through the rotation of the couch. 

 

Our results agree favorably with Cetnar et al. who described the commissioning the HexaMotion 

phantom [18]. In this manuscript we extended Cetnar’s approach to include the range, velocity 

and acceleration of the HexaMotion. The performance was evaluated relative to patient-derived 

tumor motion compared to external respiratory motion. We used a different device—Calypso 

electromagnetic transponders to track the motion platform’s performance. We also measured the 

accuracy and precision of the HexaMotion with an in-house platform configuration which is 

widely applicable for various experiments compared to the result from the HexaMotion plus 

Delta4 configuration for dosimetry. 

 

This paper also developed a comprehensive performance tolerance to QA motion management 

techniques. It is applicable to motion management studies in general. We compared the 

HexaMotion’s performance characteristics against these criteria and showed that the translational 

and rotational range, velocity and acceleration achieved the mean and the 95th percentile of the 

prostate and lung tumor motion range, velocity and acceleration, besides the 95th percentile of 

pitch range and velocity. Its static and dynamic positional accuracy achieved the TG142 

accuracy requirements of 1 mm/0.5° for SABR. A limitation of the rotation measurements was 

that our in-house platform’s dimensions don’t match manufacturer’s Delta4 device length and 

the cubic phantom cannot be placed at the rotation pivot of the motion platform, therefore the 

requested and the Calypso reported rotation is not directly comparable. 

 

The HexaMotion has been used as a tool to perform end-to-end test to verify the dosimetric 

accuracy of gated liver SABR treatment [27]. It has also been used in our center to facilitate the 



development of QA for novel motion management technologies such as kilovoltage intrafraction 

monitoring (KIM) [28, 29] and electromagnetic transponder-guided MLC tracking [11]. 

 

Conclusion 

We characterized the performance and QA a programmable 5 degrees-of-freedom motion 

platform HexaMotion. The HexaMotion can achieve clinically relevant translation and rotation 

ranges besides yaw motion and the range and velocity for pitch. It reproduced individual patient-

specific tumor trajectories, meets the TG142 accuracy requirements for SABR. The HexaMotion 

can serve as a tool to design, commission, validate and QA tumor motion management systems 

including imaging, real-time tumor position localization and motion adaptive radiotherapy 

treatment. 
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Table 1 

The magnitude of lung and prostate tumor mean and the 95th percentile of motion, velocity 

and acceleration of each of the 6 DoF 

  Motion (mm, °) Velocity (mm/s, °/s) Acceleration (mm/s2, 

°/s2) 

Mean 95th percentile Mean 95th percentile Mean 95th percentile 

Lung 

 LR 0.8 2.1 1.2 3.4 5.8 17.0 

 SI 1.8 5.3 2.8 7.4 13.9 36.8 

 AP 0.8 2.2 1.0 2.8 4.9 13.8 

 Pitch 1.8 5.7 3.2 10.9 15.8 54.3 

 Roll 2.2 6.4 4.0 13.0 19.9 64.8 

 Yaw 1.2 4.1 2.0 5.8 9.8 28.8 

Prostate 

 LR 0.3 0.9 0.1 0.2 0.5 2.0 

 SI 0.6 1.7 0.2 0.7 2.3 7.0 

 AP 0.6 1.8 0.2 0.6 1.8 6.0 

 Pitch 1.3 4.0 2.0 7.3 19.0 72.0 

 Roll 0.7 2.0 0.9 3.1 8.5 30.0 

 Yaw 0.6 1.7 1.0 3.5 9.4 34.0 

 

 

  



Table 2 

The HexaMotion maximum range, velocity and acceleration in each of the 5 degrees-of-

freedom motion direction 

  Range by 

software (mm, °) 

Range by remote 

control (mm, °) 

Velocity (mm/s, 

°/s) 

Acceleration 

(mm/s2, °/s2) 

LR −43, 43 −52, 44 −30, 30 up to ±100 

SI −43, 43 −44, 49 −30, 30 up to ±100 

AP −40, 41 −44, 51 −37.5, 20 up to ±100 

Pitch −3.5a,b, 8 −3.5a,b, 8 −6a,b, 7.5a up to ±100 

Roll −11, 11 −16.1, 15.1 −10, 10 up to ±100 

aLess than 95th percentile of lung tumor motion 

bLess than 95th percentile of prostate tumor motion 

 

 

 

 

 

  



Table 3 

HexaMotion dynamic accuracy to reproduce patient measured trajectories 

  Mean difference (mm) Root-mean-square error (mm) 

LR SI AP LR SI AP 

Prostate tumor trajectory −0.3 0.1 0.1 0.2 0.1 0.1 

Lung tumor trajectory 0.0 −0.1 0.0 0.3 0.2 0.1 

 

 

  



 

 

Fig. 1 

Configuration of the HexaMotion. The motion platform can be configured with the Delta4 to 

measure dose or an in-house developed platform to carry other phantoms 

  



 

 

Fig. 2 

Calypso was used to measure the motion platform’s static translational motion accuracy (left), 

and the inclinometer was used to measure rotational motion accuracy (right) 

 

  



 

 

Fig. 3 

HexaMotion static position accuracy 

 

  



 

 

Fig. 4 

The requested (black lines) and measured (colored lines) prostate and lung tumor trajectories 

 

 


