223 research outputs found

    XANES Study of Structural Disorder in Amorphous Silicon

    Get PDF
    An investigation of the structure of several amorphous silicon (a-Si) films is presented. Samples were prepared by using the ion beam sputtering technique at different substrate deposition temperatures. X-ray absorption spectroscopy and multiple scattering formalism have been used to detect structural variations of the a-Si films. The analysis of the XANES (X-ray absorption near-edge structure) spectra shows that increasing the substrate deposition temperature leads to a structural change toward a higher-level short-range order.

    Spectral sum rules for the Tomonaga-Luttinger model

    Full text link
    In connection with recent publications we discuss spectral sum rules for the Tomonaga-Luttinger model without using the explicit result for the one-electron Green's function. They are usefull in the interpretation of recent high resolution photoemission spectra of quasi-one-dimensional conductors. It is shown that the limit of infinite frequency and band cut\-off do not commute. Our result for arbitrary shape of the interaction potential generalizes an earlier discussion by Suzumura. A general analytical expression for the spectral function for wave vectors far from the Fermi wave vector kFk_{F} is presented. Numerical spectra are shown to illustrate the sum rules.Comment: 9 pages, REVTEX 3.0, 2 figures added as postscript file

    Finite temperature spectral-functions of strongly correlated one-dimensional electron systems

    Full text link
    The spectral functions of tJ and tJ_{XY} models in the limit of J/t-> 0 and at finite temperatures T>>t are calculated using the spin-charge factorized wave function. We find that the Luttinger-liquid like scaling behavior for a finite system with L sites is restricted below temperatures of the order T = J/L. We also observe weight redistribution in the photoemission spectral function in the energy range t, which is much larger than the temperature.Comment: revtex, 4 pages, 3 eps figure

    Spectral function of the 1D Hubbard model in the U+U\to +\infty limit

    Full text link
    We show that the one-particle spectral functions of the one-dimensional Hubbard model diverge at the Fermi energy like ωεF3/8|\omega-\varepsilon_F|^{-3/8} in the U+U\to +\infty limit. The Luttinger liquid behaviour ωεFα|\omega-\varepsilon_F|^\alpha, where α1/8\alpha \to 1/8 as U+U\to +\infty , should be limited to ωεFt2/U|\omega-\varepsilon_F| \sim t^2/U (for UU large but finite), which shrinks to a single point, ω=εF\omega=\varepsilon_F,in that limit. The consequences for the observation of the Luttinger liquid behaviour in photoemission and inverse photoemission experiments are discussed.Comment: 4 pages, RevTeX, 2 figures on reques

    Critical Properties of Spectral Functions for the 1D Anisotropic t-J Models with an Energy Gap

    Full text link
    We exactly calculate the momentum-dependent critical exponents for spectral functions in the one-dimensional anisotropic t-J models with a gap either in the spin or charge excitation spectrum. Our approach is based on the Bethe ansatz technique combined with finite-size scaling techniques in conformal field theory. It is found that the spectral functions show a power-law singularity, which occurs at frequencies determined by the dispersion of a massive spin (or charge) excitation.We discuss how the nontrivial contribution of a massive excitation controls the singular behavior in optical response functions.Comment: 4 pages, REVTeX, 2 figures(available upon request), accepted for publication in JPSJ 66 (1997) No.

    Critical Properties in Photoemmision Spectra for One Dimensional Orbitally Degenerate Mott Insulator

    Full text link
    Critical properties in photoemission spectra for the one-dimensional Mott insulator with orbital degeneracy are studied by exploiting the integrable {\it t-J} model, which is a supersymmetric generalization of the SU(nn) degenerate spin model. We discuss the critical properties for the holon dispersion as well as the spinon dispersions, by applying the conformal field theory analysis to the exact finite-size energy spectrum. We study the effect of orbital-splitting on the spectra by evaluating the momentum-dependent critical exponents.Comment: 8 pages, REVTeX, 2 figures(available upon request), accepted for publication in JPSJ 68 (1999) No.

    Surface characterization and surface electronic structure of organic quasi-one-dimensional charge transfer salts

    Get PDF
    We have thoroughly characterized the surfaces of the organic charge-transfer salts TTF-TCNQ and (TMTSF)2PF6 which are generally acknowledged as prototypical examples of one-dimensional conductors. In particular x-ray induced photoemission spectroscopy turns out to be a valuable non-destructive diagnostic tool. We show that the observation of generic one-dimensional signatures in photoemission spectra of the valence band close to the Fermi level can be strongly affected by surface effects. Especially, great care must be exercised taking evidence for an unusual one-dimensional many-body state exclusively from the observation of a pseudogap.Comment: 11 pages, 12 figures, v2: minor changes in text and figure labellin

    Spectral functions of the 1D Hubbard model in the U -> \infty limit: How to use the factorized wave-function

    Full text link
    We give the details of the calculation of the spectral functions of the 1D Hubbard model using the spin-charge factorized wave-function for several versions of the U -> +\infty limit. The spectral functions are expressed as a convolution of charge and spin dynamical correlation functions. A procedure to evaluate these correlation functions very accurately for large systems is developed, and analytical results are presented for the low energy region. These results are fully consistent with the conformal field theory. We also propose a direct method of extracting the exponents from the matrix elements in more general cases.Comment: 15 pages,7 eps figures, RevTeX, needs epsf and multico
    corecore