209 research outputs found

    The other side of malnutrition in inflammatory bowel disease (Ibd): Non-alcoholic fatty liver disease

    Get PDF
    Steatohepatitis and hepatobiliary manifestations constitute some of the most common extraintestinal manifestations of Inflammatory Bowel Disease (IBD). On the other hand, non-alcoholic fatty liver disease (NAFLD) affects around 25% of the world’s population and is attracting ever more attention in liver transplant programs. To outline the specific pathways linking these two conditions is a pressing task for 21st-century researchers. We are accustomed to expecting the occurrence of fatty liver disease in obese people, but current evidence suggests that there are several different pathways also occurring in underweight patients. Genetic factors, inflammatory signals and microbiota are key players that could help in understanding the entire pathogenesis of NAFLD, with the aim of defining the multiple expressions of malnutrition. In the current review, we summarize the most recent literature regarding the epidemiology, pathogenesis and future directions for the management of NAFLD in patients affected by IBD

    Hybrid gastroenterostomy using a lumen-apposing metal stent: a case report focusing on misdeployment and systematic review of the current literature

    Get PDF
    Background: Gastric outlet obstruction can result from several benign and malignant diseases, in particular gastric, duodenal or pancreatic tumors. Surgical gastroenterostomy and enteral endoscopic stenting have represented effective therapeutic options, although recently endoscopic ultrasound-guided gastroenterostomy using lumen-apposing metal stent (LAMS) is spreading improving the outcome of this condition. However, this procedure, although mini-invasive, is burdened with not negligible complications, including misdeployment. Main body: We report the case of a 60-year-old male with gastric outlet obstruction who underwent ultrasound-guided gastroenterostomy using LAMS. The procedure was complicated by LAMS misdeployment being managed by laparoscopy-assisted placement of a second LAMS. We performed a systematic review in order to identify all reported cases of misdeployment in EUS-GE and their management. The literature shows that misdeployment occurs in up to 10% of all EUS-GE procedures with a wide spectrum of possible strategies of treatment. Conclusion: The here reported hybrid technique may offer an innovative strategy to manage LAMS misdeployment when this occurs. Moreover, a hybrid approach may be valuable to overcome this complication, especially in early phases of training of EUS-guided gastroenterostomy

    Biliary Diseases from the Microbiome Perspective: How Microorganisms Could Change the Approach to Benign and Malignant Diseases

    Get PDF
    Recent evidence regarding microbiota is modifying the cornerstones on pathogenesis and the approaches to several gastrointestinal diseases, including biliary diseases. The burden of biliary diseases, indeed, is progressively increasing, considering that gallstone disease affects up to 20% of the European population. At the same time, neoplasms of the biliary system have an increasing incidence and poor prognosis. Framing the specific state of biliary eubiosis or dysbiosis is made difficult by the use of heterogeneous techniques and the sometimes unwarranted invasive sampling in healthy subjects. The influence of the microbial balance on the health status of the biliary tract could also account for some of the complications surrounding the post-liver-transplant phase. The aim of this extensive narrative review is to summarize the current evidence on this topic, to highlight gaps in the available evidence in order to guide further clinical research in these settings, and, eventually, to provide new tools to treat biliary lithiasis, biliopancreatic cancers, and even cholestatic disease

    The Raf-like kinase ILK1 and the high affinity K\u3csup\u3e+\u3c/sup\u3e transporter HAK5 are required for innate immunity and abiotic stress response

    Get PDF
    © 2016 American Society of Plant Biologists. All rights reserved. Plant perception of pathogen-associated molecular patterns (PAMPs) and other environmental stresses trigger transient ion fluxes at the plasma membrane. Apart from the role of Ca2+ uptake in signaling, the regulation and significance of PAMPinduced ion fluxes in immunity remain unknown. We characterized the functions of INTEGRIN-LINKED KINASE1 (ILK1) that encodes a Raf-like MAP2K kinase with functions insufficiently understood in plants. Analysis of ILK1 mutants impaired in the expression or kinase activity revealed that ILK1 contributes to plant defense to bacterial pathogens, osmotic stress sensitivity, and cellular responses and total ion accumulation in the plant upon treatment with a bacterial-derived PAMP, flg22. The calmodulin-like protein CML9, a negative modulator of flg22-triggered immunity, interacted with, and suppressed ILK1 kinase activity. ILK1 interacted with and promoted the accumulation of HAK5, a putative (H+)/K+ symporter that mediates a high-affinity uptake during K+ deficiency. ILK1 or HAK5 expression was required for several flg22 responses including gene induction, growth arrest, and plasma membrane depolarization. Furthermore, flg22 treatment induced a rapid K+ efflux at both the plant and cellular levels in wild type, while mutants with impaired ILK1 or HAK5 expression exhibited a comparatively increased K+ loss. Taken together, our results position ILK1 as a link between plant defense pathways and K+ homeostasis

    A Screen for Spore Wall Permeability Mutants Identifies a Secreted Protease Required for Proper Spore Wall Assembly

    Get PDF
    The ascospores of Saccharomyces cerevisiae are surrounded by a complex wall that protects the spores from environmental stresses. The outermost layer of the spore wall is composed of a polymer that contains the cross-linked amino acid dityrosine. This dityrosine layer is important for stress resistance of the spore. This work reports that the dityrosine layer acts as a barrier blocking the diffusion of soluble proteins out of the spore wall into the cytoplasm of the ascus. Diffusion of a fluorescent protein out of the spore wall was used as an assay to screen for mutants affecting spore wall permeability. One of the genes identified in this screen, OSW3 (RRT12/YCR045c), encodes a subtilisin-family protease localized to the spore wall. Mutation of the active site serine of Osw3 results in spores with permeable walls, indicating that the catalytic activity of Osw3 is necessary for proper construction of the dityrosine layer. These results indicate that dityrosine promotes stress resistance by acting as a protective shell around the spore. OSW3 and other OSW genes identified in this screen are strong candidates to encode enzymes involved in assembly of this protective dityrosine coat

    Lactobacillus casei BL23 Produces Microvesicles Carrying Proteins That Have Been Associated with Its Probiotic Effect

    Get PDF
    Archaea, bacteria, and eukarya secrete membrane microvesicles (MVs) as a mechanism for intercellular communication. We report the isolation and characterization of MVs from the probiotic strain Lactobacillus casei BL23. MVs were characterized using analytical high performance techniques, DLS, AFM and TEM. Similar to what has been described for other Gram-positive bacteria, MVs were on the nanometric size range (30–50 nm). MVs carried cytoplasmic components such as DNA, RNA and proteins. Using a proteomic approach (LC-MS), we identified a total of 103 proteins; 13 exclusively present in the MVs. The MVs content included cell envelope associated and secretory proteins, heat and cold shock proteins, several metabolic enzymes, proteases, structural components of the ribosome, membrane transporters, cell wall-associated hydrolases and phage related proteins. In particular, we identified proteins described as mediators of Lactobacillus’ probiotic effects such as p40, p75 and the product of LCABL_31160, annotated as an adhesion protein. The presence of these proteins suggests a role for the MVs in the bacteria-gastrointestinal cells interface. The expression and further encapsulation of proteins into MVs of GRAS (Generally Recognized as Safe) bacteria could represent a scientific novelty, with applications in food, nutraceuticals and clinical therapies

    Influence of the fabrication accuracy of hot-embossed PCL scaffolds on cell growths

    Get PDF
    Polycaprolactone (PCL) is a biocompatible and biodegradable polymer widely used for the realization of 3D scaffold for tissue engineering applications. The hot embossing technique (HE) allows the obtainment of PCL scaffolds with a regular array of micro pillars on their surface. The main drawback affecting this kind of micro fabrication process is that such structural superficial details can be damaged when detaching the replica from the mold. Therefore, the present study has focused on the optimization of the HE processes through the development of an analytical model for the prediction of the demolding force as a function of temperature. This model allowed calculating the minimum demolding force to obtain regular micropillars without defects. We demonstrated that the results obtained by the analytical model agree with the experimental data. To address the importance of controlling accurately the fabricated microstructures, we seeded on the PCL scaffolds human stromal cell line (HS-5) and monocytic leukemia cell line (THP-1) to evaluate how the presence of regular or deformed pillars affect cells viability. In vitro viability results, scanning electron and fluorescence microscope imaging analysis show that the HS-5 preferentially grows on regular microstructured surfaces, while the THP-1 on irregular microstructured ones

    Implications of a High-Mass Diphoton Resonance for Heavy Quark Searches

    Get PDF
    Heavy vector-like quarks coupled to a scalar SS will induce a coupling of this scalar to gluons and possibly (if electrically charged) photons. The decay of the heavy quark into SqSq, with qq being a Standard Model quark, provides, if kinematically allowed, new channels for heavy quark searches. Inspired by naturalness considerations, we consider the case of a vector-like partner of the top quark. For illustration, we show that a singlet partner can be searched for at the 13 \,TeV LHC through its decay into a scalar resonance in the 2γ+ℓ+X2\gamma+\ell + X final states, especially if the diphoton branching ratio of the scalar SS is further enhanced by the contribution of non coloured particles. We then show that conventional heavy quark searches are also sensitive to this new decay mode, when SS decays hadronically, by slightly tightening the current selection cuts. Finally, we comment about the possibility of disentangling, by scrutinising appropriate kinematic distributions, heavy quark decays to StSt from other standard decay modes.Comment: 8 pages, 3 figures and 1 table; v3: typos fixed. Matches published versio
    • …
    corecore