390 research outputs found

    Mechanisms and Kinetics for Sorption of CO2 on Bicontinuous Mesoporous Silica Modified with n-Propylamine

    Get PDF
    We studied equilibrium adsorption and uptake kinetics and identified molecular species that formed during sorption of carbon dioxide on amine-modified silica. Bicontinuous silicas (AMS-6 and MCM-48) were postsynthetically modified with (3-aminopropyl)triethoxysilane or (3-aminopropyl)methyldiethoxysilane, and amine-modified AMS-6 adsorbed more CO(2) than did amine-modified MCM-48. By in situ FTIR spectroscopy, we showed that the amine groups reacted with CO(2) and formed ammonium carbamate ion pairs as well as carbamic acids under both dry and moist conditions. The carbamic acid was stabilized by hydrogen bonds, and ammonium carbamate ion pairs formed preferably on sorbents with high densities of amine groups. Under dry conditions, silylpropylcarbamate formed, slowly, by condensing carbamic acid and silanol groups. The ratio of ammonium carbamate ion pairs to silylpropylcarbamate was higher for samples with high amine contents than samples with low amine contents. Bicarbonates or carbonates did not form under dry or moist conditions. The uptake of CO(2) was enhanced in the presence of water, which was rationalized by the observed release of additional amine groups under these conditions and related formation of ammonium carbamate ion pairs. Distinct evidence for a fourth and irreversibly formed moiety was observed under sorption of CO(2) under dry conditions. Significant amounts of physisorbed, linear CO(2) were detected at relatively high partial pressures of CO(2), such that they could adsorb only after the reactive amine groups were consumed.authorCount :7</p

    Analysis of Resistant Starches in Rat Cecal Contents Using Fourier Transform Infrared Photoacoustic Spectroscopy

    Get PDF
    Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) qualitatively and quantitatively measured resistant starch (RS) in rat cecal contents. Fisher 344 rats were fed diets of 55% (w/w, dry basis) starch for 8 weeks. Cecal contents were collected from sacrificed rats. A corn starch control was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. To calibrate the FTIR-PAS analysis, samples from each diet were analyzed using an enzymatic assay. A partial least-squares cross-validation plot generated from the enzymatic assay and FTIR-PAS spectral results for starch fit the ideal curve with a R2 of 0.997. A principal component analysis plot of components 1 and 2 showed that spectra from diets clustered significantly from each other. This study clearly showed that FTIR-PAS can accurately quantify starch content and identify the form of starch in complex matrices.Reprinted with permission from Journal of Agricultural and Food Chemistry 61 (2013): 1818–1822, doi:10.1021/jf3042616. Copyright 2013 American Chemical Society.</p

    A new cytosine-copper paramagnetic complex spectroscopic study

    Get PDF
    Two different copper complexes with cytosine molecules are formed in the process of crystal growth from the aqueous solution with traces of copper. One of them is diamagnetic, turning into paramagnetic upon ionizing irradiation (complex I). The other, the subject of the present study, is paramagnetic (complex II) as prepared. For complex II, EPR spectra demonstrate that the copper ion is coordinated with one nitrogen atom and three oxygen atoms. On the basis of the detailed EPR spectroscopic analysis and quantum-chemical calculations (in the DFT approach) the model of the complex has been proposed. Both experimental data and the theoretical results support the model with the copper atom, located between the two cytosine ribbons, ligated to a nitrogen and an oxygen atom from two opposing cytosine molecules and two oxygen atoms from water molecules. For complex II the Raman spectra demonstrated concerted restructuring of the hydrogen bonding in the cytosine crystal matrix upon insertion of copper ions
    • 

    corecore