4 research outputs found

    MicroRNA-21/PDCD4 proapoptotic signaling from circulating CD34+ cells to vascular endothelial cells:a potential contributor to adverse cardiovascular outcomes in patients with critical limb ischemia

    Get PDF
    Dataset related to the article with title: MicroRNA-21/PDCD4 proapoptotic signaling from circulating CD34+ cells to vascular endothelial cells: a potential contributor to adverse cardiovascular outcomes in patients with critical limb ischemia By:Gaia Spinetti1, Elena Sangalli1, Elena Tagliabue1, Davide Maselli1, Ornella Colpani1, David Ferland-McCollough2, Franco Carnelli1, Patrizia Orlando1, Agostino Paccagnella3, Anna Furlan3, Piero Maria Stefani3, Luisa Sambado3, Maria Sambataro3, and Paolo Madeddu2. 1IRCCS MultiMedica, Milan, Italy; 2University of Bristol, Bristol, UK, 3Ca Foncello Hospital, Treviso, Italy. Diabetes Care. 2020 Jul;43(7):1520-1529. doi: 10.2337/dc19-2227. Epub 2020 May 1. Abstract Objective. In patients with type 2 diabetes (T2D) and critical limb ischemia (CLI), migration of circulating CD34+ cells predicted cardiovascular mortality at 18 months post-revascularization. This study aimed to provide long-term validation and mechanistic understanding of the biomarker. Research Design and Methods. The association between CD34+ cell migration and cardiovascular mortality was reassessed at 6 years post-revascularization. In a new series of T2D-CLI and control subjects, immuno-sorted bone marrow (BM)-CD34+ cells were profiled for microRNA expression and assessed for apoptosis and angiogenesis activity. The differentially regulated microRNA-21, and its pro-apoptotic target PDCD4, were titrated to verify their contribution in transferring damaging signals from CD34+ cells to endothelial cells. Results. Multivariable regression analysis confirmed CD34+ cell migration forecasts long-term cardiovascular mortality. CD34+ cells from T2D-CLI patients were more apoptotic and less proangiogenic than controls and featured microRNA-21 downregulation, modulation of several long non-coding RNAs acting as microRNA-21 sponges, and upregulation of the microRNA-21 proapoptotic target PDCD4. Silencing miR-21 in control CD34+ cells phenocopied the T2D-CLI cell behavior. In coculture, T2D-CLI CD34+ cells imprinted naĂŻve endothelial cells, increasing apoptosis, reducing network formation, and modulating the TUG1 sponge/microRNA-21/PDCD4 axis. Silencing PDCD4 or scavenging ROS protected endothelial cells from the negative influence of T2D-CLI CD34+ cells Conclusions. Migration of CD34+ cells predicts long-term cardiovascular mortality in T2D-CLI patients. An altered paracrine signalling conveys anti-angiogenic and pro-apoptotic features from CD34+ cells to the endothelium. This damaging interaction may increase the risk for life-threatening complications

    Hematopoietic progenitor cell liabilities and alarmins S100A8/A9-related inflammaging associate with frailty and predict poor cardiovascular outcomes in older adults

    Get PDF
    Frailty affects the physical, cognitive, and social domains exposing older adults to an increased risk of cardiovascular disease and death. The mechanisms linking frailty and cardiovascular outcomes are mostly unknown. Here, we studied the association of abundance (flow cytometry) and gene expression profile (RNAseq) of stem/progenitor cells (HSPCs) and molecular markers of inflammaging (ELISA) with the cardiorespiratory phenotype and prospective adverse events of individuals classified according to levels of frailty. Two cohorts of older adults were enrolled in the study. In a cohort of pre‐frail 35 individuals (average age: 75 years), a physical frailty score above the median identified subjects with initial alterations in cardiorespiratory function. RNA sequencing revealed S100A8/A9 upregulation in HSPCs from the bone marrow (>10‐fold) and peripheral blood (>200‐fold) of individuals with greater physical frailty. Moreover higher frailty was associated with increased alarmins S100A8/A9 and inflammatory cytokines in peripheral blood. We then studied a cohort of 104 more frail individuals (average age: 81 years) with multidomain health deficits. Reduced levels of circulating HSPCs and increased S100A8/A9 concentrations were independently associated with the frailty index. Remarkably, low HSPCs and high S100A8/A9 simultaneously predicted major adverse cardiovascular events at 1‐year follow‐up after adjustment for age and frailty index. In conclusion, inflammaging characterized by alarmin and pro‐inflammatory cytokines in pre‐frail individuals is mirrored by the pauperization of HSPCs in frail older people with comorbidities. S100A8/A9 is upregulated within HSPCs, identifying a phenotype that associates with poor cardiovascular outcomes

    HDL in Atherosclerotic Cardiovascular Disease: In Search of a Role

    No full text
    For a long time, high-density lipoprotein cholesterol (HDL-C) has been regarded as a cardiovascular disease (CVD) protective factor. Recently, several epidemiological studies, while confirming low plasma levels of HDL-C as an established predictive biomarker for atherosclerotic CVD, indicated that not only people at the lowest levels but also those with high HDL-C levels are at increased risk of cardiovascular (CV) mortality. This “U-shaped” association has further fueled the discussion on the pathophysiological role of HDL in CVD. In fact, genetic studies, Mendelian randomization approaches, and clinical trials have challenged the notion of HDL-C levels being causally linked to CVD protection, independent of the cholesterol content in low-density lipoproteins (LDL-C). These findings have prompted a reconsideration of the biological functions of HDL that can be summarized with the word “HDL functionality”, a term that embraces the many reported biological activities beyond the so-called reverse cholesterol transport, to explain this lack of correlation between HDL levels and CVD. All these aspects are summarized and critically discussed in this review, in an attempt to provide a background scenario for the “HDL story”, a lipoprotein still in search of a role

    Statin use and risk of dementia or Alzheimer's disease: a systematic review and meta-analysis of observational studies

    No full text
    Aims: As the potential impact of statins on cognitive decline and dementia is still debated, we conducted a meta-analysis of observational studies to examine the effect of statin use on the risk of Alzheimer's disease (AD) and dementia. Methods and results: PubMed, Cochrane, and EMBASE were searched since inception to January 2021. Inclusion criteria were: (i) cohort or case-control studies; (ii) statin users compared to non-users; and (iii) AD and/or dementia risk as outcome. Estimates from original studies were pooled using restricted maximum-likelihood random-effect model. Measure of effects were reported as odds ratio (OR) and 95% confidence intervals (CIs). In the pooled analyses, statins were associated with a decreased risk of dementia [36 studies, OR 0.80 (CI 0.75-0.86)] and of AD [21 studies, OR 0.68 (CI 0.56-0.81)]. In the stratified analysis by sex, no difference was observed in the risk reduction of dementia between men [OR 0.86 (CI 0.81-0.92)] and women [OR 0.86 (CI 0.81-0.92)]. Similar risks were observed for lipophilic and hydrophilic statins for both dementia and AD, while high-potency statins showed a 20% reduction of dementia risk compared with a 16% risk reduction associated with low-potency statins, suggesting a greater efficacy of the former, although a borderline statistical significance (P = 0.05) for the heterogeneity between estimates. Conclusion: These results confirm the absence of a neurocognitive risk associated with statin treatment and suggest a potential favourable role of statins. Randomized clinical trials with an ad hoc design are needed to explore this potential neuroprotective effect
    corecore