7 research outputs found

    Amperometric and impedance monitoring systems for biomedical applications

    No full text
    The book presents the conception and realization of a pervasive electronic architecture for electrochemical applications, focusing on electronic instrumentation design and device development, particularly in electrochemical Point-of-Care and Lab-on-a-Chip devices, covering examples based on amperometric (DC) and impedance detection (AC) techniques. The presented electronics combine tailored front-end instrumentation and back-end data post-processing, enabling applications in different areas, and across a variety of techniques, analytes, transducers and environments. It addresses how the electronics are designed and implemented with special interest in the flow process: starting from electronic circuits and electrochemical biosensor design to a final validation and implementation for specific applications. Similarly, other important aspects are discussed throughout the book, such as electrochemical techniques, different analytes, targets, electronics reliability and robustness. The book also describes the use of the presented electronics in different electrochemical applications through some examples: instantaneous and non-destructive cellular monitoring and portable glucose monitoring device. Moreover, the book aims to introduce a comprehensive approach to electronic circuits, techniques and electrochemical sensors in POC devices to a general audience of students in biomedical and electronics engineering, scientists, and engineers

    ‘Plug-and-Power’ Point-of-Care diagnostics: A novel approach for self-powered electronic reader-based portable analytical devices

    No full text
    This paper presents an innovative approach in the portable Point-of-Care diagnostics field, the Plug-and-Power concept. In this new disposable sensor and plug-and-play reader paradigm, the energy required to perform a measurement is always available within the disposable test component. The reader unit contains all the required electronic modules to run the test, process data and display the result, but does not include any battery or power source. Instead, the disposable part acts as both the sensor and the power source. Additionally, this approach provides environmental benefits related to battery usage and disposal, as the paper-based power source has non-toxic redox chemistry that makes it eco-friendly and safe to follow the same waste stream as disposable test strips. The feasibility of this Plug-and-Power approach is demonstrated in this work with the development of a self-powered portable glucometer consisting of two parts: a test strip including a paper-based power source and a paper-based biofuel cell as a glucose sensor; and an application-specific battery-less electronic reader designed to extract the energy from the test strip, process the signal provided and show the glucose concentration on a display. The device was tested with human serum samples with glucose concentrations between 5 and 30 mM, providing quantitative results in good agreement with commercial measuring instruments. The advantages of the present approach can be extended to any kind of biosensors measuring different analytes and biological matrices, and in this way, strengthen the goals of Point-of-Care diagnostics towards laboratory decentralization, personalized medicine and improving patient compliance

    Competitive usb-powered hand-held potentiostat for poc applications : An hrp detection case

    No full text
    Funding: This research was funded by the Spanish Ministry of Economy, Agencia Estatal de Investigación, Fondo de Investigaciones Sanitarias of Instituto de Salud Carlos III (ISCIII) and Fondo Europeo de Desarrollo Regional (AEI/FEDER, UE), through projects TEC2016-78284-C3-3-R and DTS17/00145. EB is funded by a Miguel Servet II contract from ISCIII-FEDER (CPII18/00025). GR is supported by a VHIR predoctoral fellowship funded by Amics del VHIR. Diagnostic Nanotools is a Consolidated Group supported by the Secretaria d'Universitats i Recerca of Generalitat de Catalunya (Grant 2017 SGR 240).Considerable efforts are made to develop Point-of-Care (POC) diagnostic tests. POC devices have the potential to match or surpass conventional systems regarding time, accuracy, and cost, and they are significantly easier to operate by or close to the patient. This strongly depends on the availability of miniaturized measurement equipment able to provide a fast and sensitive response. This paper presents a low-cost, portable, miniaturized USB-powered potentiostat for electrochemical analysis, which has been designed, fabricated, characterized, and tested against three forms of high-cost commercial equipment. The portable platform has a final size of 10.5 × 5.8 × 2.5 cm, a weight of 41 g, and an approximate manufacturing cost o

    Energy harvesting for a green internet of things

    No full text
    The ubiquitous nature of energy autonomous microsystems, which are easy to install and simple to connect to a network, make them attractive in the rapidly growing Internet of Things (IoT) ecosystem. The growing energy consumption of the IoT infrastructure is becoming more and more visible. Energy harvesting describes the conversion of ambient into electrical energy, enabling green power supplies of IoT key components, such as autonomous sensor nodes. Energy harvesting methods and devices have reached a credible state-of-art, but only a few devices are commercially available and off-the-shelf harvester solutions often require extensive adaption to the envisaged application. A synopsis of typical energy sources, state-of-the-art materials, and transducer technologies for efficient energy conversion, as well as energy storage devices and power management solutions, depicts a wide range of successful research results. Developing power supplies for actual usage reveals their strong dependence on application-specific installation requirements, power demands, and environmental conditions. The industrial challenges for a massive spread of autonomous sensor systems are manifold and diverse. Reliability issues, obsolescence management, and supply chains need to be analyzed for commercial use in critical applications. The current gap between use-case scenarios and innovative product development is analyzed from the perspective of the user. The white paper then identifies the key advantages of energy autonomy in environmental, reliability, sustainability, and financial terms. Energy harvesting could lead to a lower CO2 footprint of future IoT devices by adopting environmentally friendly materials and reducing cabling and battery usage. Further research and development are needed to achieve technology readiness levels acceptable for the industry. This white paper derives a future research and innovation strategy for industry-ready green microscale IoT devices, providing useful information to the stakeholders involved: scientists, engineers, innovators, the general public, and decision makers in industry as well as in public and venture-funding bodies. This inclusive strategy could bridge the energy harvesting technology frontier and the IoT node power demands to create value

    Energy harvesting for a green internet of things: PSMA white paper

    Get PDF
    The ubiquitous nature of energy autonomous microsystems, which are easy to install and simple to connect to a network, make them attractive in the rapidly growing Internet of Things (IoT) ecosystem. The growing energy consumption of the IoT infrastructure is becoming more and more visible. Energy harvesting describes the conversion of ambient into electrical energy, enabling green power supplies of IoT key components, such as autonomous sensor nodes. Energy harvesting methods and devices have reached a credible state-of-art, but only a few devices are commercially available and off-the-shelf harvester solutions often require extensive adaption to the envisaged application. A synopsis of typical energy sources, state-of-the-art materials, and transducer technologies for efficient energy conversion, as well as energy storage devices and power management solutions, depicts a wide range of successful research results. Developing power supplies for actual usage reveals their strong dependence on application-specific installation requirements, power demands, and environmental conditions. The industrial challenges for a massive spread of autonomous sensor systems are manifold and diverse. Reliability issues, obsolescence management, and supply chains need to be analyzed for commercial use in critical applications. The current gap between use-case scenarios and innovative product development is analyzed from the perspective of the user. The white paper then identifies the key advantages of energy autonomy in environmental, reliability, sustainability, and financial terms. Energy harvesting could lead to a lower CO2 footprint of future IoT devices by adopting environmentally friendly materials and reducing cabling and battery usage. Further research and development are needed to achieve technology readiness levels acceptable for the industry. This white paper derives a future research and innovation strategy for industry-ready green microscale IoT devices, providing useful information to the stakeholders involved: scientists, engineers, innovators, the general public, and decision makers in industry as well as in public and venture-funding bodies. This inclusive strategy could bridge the energy harvesting technology frontier and the IoT node power demands to create value

    Nano-enabled medical devices based on biosensing principles: technology basis and new concepts

    No full text
    corecore