16,915 research outputs found
Study of certain launching techniques using long orbiting tethers
A study of the basic equations governing orbital transfers using long orbiting tethers is presented. A very simple approximation to the general transfer equation is derived for the case of short tethers and low eccentricity orbits. Numerical examples are calculated for the case of injection into a circular orbit from a platform in eccentric orbit and injection into eccentric orbit from a platform in circular orbit. For the case of long tethers, a method is derived for reducing tether mass and increasing payload mass by tapering the tether to maintain constant stress per unit of tether cross section. Formulas are presented for calculating the equilibrium orbital parameters taking into account the mass of the platform, tether, and payload
Regular Moebius transformations of the space of quaternions
Let H be the real algebra of quaternions. The notion of regular function of a
quaternionic variable recently presented by G. Gentili and D. C. Struppa
developed into a quite rich theory. Several properties of regular quaternionic
functions are analogous to those of holomorphic functions of one complex
variable, although the diversity of the quaternionic setting introduces new
phenomena. This paper studies regular quaternionic transformations. We first
find a quaternionic analog to the Casorati-Weierstrass theorem and prove that
all regular injective functions from H to itself are affine. In particular, the
group Aut(H) of biregular functions on H coincides with the group of regular
affine transformations. Inspired by the classical quaternionic linear
fractional transformations, we define the regular fractional transformations.
We then show that each regular injective function from the Alexandroff
compactification of H to itself is a regular fractional transformation.
Finally, we study regular Moebius transformations, which map the unit ball B
onto itself. All regular bijections from B to itself prove to be regular
Moebius transformations.Comment: 12 page
An alternative option to the dual-probe out-of-ecliptic mission via Jupiter swingby
The possibility of having a high-inclination out-of-the-ecliptic probe complemented by a second probe going from Jupiter to the sun along a rectilinear path (at least for the segment from 0.3 a.u. inward to the sun) is theoretically examined. Orbit calculations of spacecraft trajectories are included
Feasibility experiments on time-resolved fluorosensing applied to oil slicks
The introduction of time resolved observations can provide a very penetrating tool in the practice of laser fluorosensing. The investigations have demonstrated a relevance of multispectral, time resolved analysis for oil fingerprinting. By comparative studies on a variety of crude oils and their most significant fractions, it was found that the process of time decay in a composite oil is characterized by a few steps, which are associated with specific components in the medium light range. The average decay times of these pure fractions are markedly differentiated as to absolute values and spectral spread; as a consequence, the corresponding parameters in the resultant crude are quite sensitive to the particular mixture of these components. Measurements of the time response give then a finer discrimination between oil classes, depending on the relative content of certain fractions. Experiments were pursued with an improved fluorosensor facility, in order to test the application of time resolved fluorosensing to remote samples on water
Thermodynamics of beta-amyloid fibril formation
Amyloid fibers are aggregates of proteins. They are built out of a peptide
called --amyloid (A) containing between 41 and 43 residues,
produced by the action of an enzyme which cleaves a much larger protein known
as the Amyloid Precursor Protein (APP). X-ray diffraction experiments have
shown that these fibrils are rich in --structures, whereas the shape of
the peptide displays an --helix structure within the APP in its
biologically active conformation. A realistic model of fibril formation is
developed based on the seventeen residues A12--28 amyloid peptide, which
has been shown to form fibrils structurally similar to those of the whole
A peptide. With the help of physical arguments and in keeping with
experimental findings, the A12--28 monomer is assumed to be in four
possible states (i.e., native helix conformation, --hairpin, globular
low--energy state and unfolded state). Making use of these monomeric states,
oligomers (dimers, tertramers and octamers) were constructed. With the help of
short, detailed Molecular Dynamics (MD) calculations of the three monomers and
of a variety of oligomers, energies for these structures were obtained. Making
use of these results within the framework of a simple yet realistic model to
describe the entropic terms associated with the variety of amyloid
conformations, a phase diagram can be calculated of the whole many--body
system, leading to a thermodynamical picture in overall agreement with the
experimental findings. In particular, the existence of micellar metastable
states seem to be a key issue to determine the thermodynamical properties of
the system
Understanding the determinants of stability and folding of small globular proteins from their energetics
The results of minimal model calculations suggest that the stability and the
kinetic accessibility of the native state of small globular proteins are
controlled by few "hot" sites. By mean of molecular dynamics simulations around
the native conformation, which simulate the protein and the surrounding solvent
at full--atom level, we generate an energetic map of the equilibrium state of
the protein and simplify it with an Eigenvalue decomposition. The components of
the Eigenvector associated with the lowest Eigenvalue indicate which are the
"hot" sites responsible for the stability and for the fast folding of the
protein. Comparison of these predictions with the results of mutatgenesis
experiments, performed for five small proteins, provide an excellent agreement
Curating data for urban biodiversity: three catalogues on local issues in Milan
Preserving urban biodiversity is a widely recognized goal, with cities implementing initiatives to achieve it. However, when examining policies and local efforts, conflicts often arise among citizens, municipalities, and private stakeholders. Debates on urban biodiversity leave digital traces on social media, forums, and newspapers.
This text illustrates the potential of online data to inform planning and participation in urban biodiversity projects. In contrast to established formats for data analysis, such as dashboards, we explore catalogues as tools to curate, analyze, and display data from online sources.
Through case studies focused on biodiversity policies in Milan, this chapter demonstrates how curated datasets displayed in printed catalogues can be used to map debates surrounding urban nature. As catalysts for public engagement, catalogues prioritize individual data points, promote the slow fruition of data, and give space to marginalized voices
Nanofriction behavior of cluster-assembled carbon films
We have characterized the frictional properties of nanostructured (ns) carbon
films grown by Supersonic Cluster Beam Deposition (SCBD) via an Atomic
Force-Friction Force Microscope (AFM-FFM). The experimental data are discussed
on the basis of a modified Amonton's law for friction, stating a linear
dependence of friction on load plus an adhesive offset accounting for a finite
friction force in the limit of null total applied load. Molecular Dynamics
simulations of the interaction of the AFM tip with the nanostructured carbon
confirm the validity of the friction model used for this system. Experimental
results show that the friction coefficient is not influenced by the
nanostructure of the films nor by the relative humidity. On the other hand the
adhesion coefficient depends on these parameters.Comment: 22 pages, 6 figures, RevTex
On the first Gaussian map for Prym-canonical line bundles
We prove by degeneration to Prym-canonical binary curves that the first
Gaussian map of the Prym canonical line bundle is
surjective for the general point [C,A] of R_g if g >11, while it is injective
if g < 12.Comment: To appear in Geometriae Dedicata. arXiv admin note: text overlap with
arXiv:1105.447
- …