77 research outputs found

    In Silico Analysis of Nanoplastics' and β-amyloid Fibrils' Interactions

    Get PDF
    : Plastic pollution has become a global environmental threat, which leads to an increasing concern over the consequences of plastic exposition on global health. Plastic nanoparticles have been shown to influence the folding of proteins and influence the formation of aberrant amyloid proteins, therefore potentially triggering the development of systemic and local amyloidosis. This work aims to study the interaction between nanoplastics and β-amyloid fibrils to better understand the potential role of nanoplastics in the outbreak of neurodegenerative disorders. Using microsecond-long coarse-grained molecular dynamics simulations, we investigated the interactions between neutral and charged nanoparticles made of the most common plastic materials (i.e., polyethylene, polypropylene, and polystyrene) and β-amyloid fibrils. We observe that the occurrence of contacts, region of amyloid fibril involved, and specific amino acids mediating the interaction depend on the type and charge of the nanoparticles

    Anticipatory Postural Adjustments During Gait Initiation in Stroke Patients

    Get PDF
    Prior to gait initiation (GI), anticipatory postural adjustments (GI-APA) are activated in order to reorganize posture, favorably for gait. In healthy subjects, the center of pressure (CoP) is displaced backward during GI-APA, bilaterally by reducing soleus activities and activating the tibialis anterior (TA) muscles, and laterally in the direction of the leading leg, by activating hip abductors. In post-stroke hemiparetic patients, TA, soleus and hip abductor activities are impaired on the paretic side. Reduction in non-affected triceps surae activity can also be observed. These may result in a decreased ability to execute GI-APA and to generate propulsion forces during step execution. A systematic review was conducted to provide an overview of the reorganization which occurs in GI-APA following stroke as well as of the most effective strategies for tailoring gait-rehabilitation to these patients. Sixteen articles were included, providing gait data from a total of 220 patients. Stroke patients show a decrease in the TA activity associated with difficulties in silencing soleus muscle activity of the paretic leg, a decreased CoP shift, lower propulsive anterior forces and a longer preparatory phase. Regarding possible gait-rehabilitation strategies, the selected studies show that initiating gait with the paretic leg provides poor balance. The use of the non-paretic as the leading leg can be a useful exercise to stimulate the paretic postural muscles

    New-onset myasthenia gravis after mRNA SARS-CoV-2 vaccination: a case series

    Get PDF
    Background Myasthenia gravis (MG) is an autoimmune disease that targets acetylcholine receptor (AChR) of the neuromuscular junction. New-onset MG after SARS-CoV-2 vaccination has rarely been reported. Case presentation We report about three patients who presented new-onset myasthenia gravis after receiving mRNA SARSCoV-2 vaccination. The patients were all males and older than 55 years. All the patients presented with ocular and bulbar symptoms. The interval between vaccine administration and MG onset ranged from 3 days after the frst dose to 10 days after the second dose. All the patients had elevated serum AChR antibodies and responded to pyridostigmine. Two out of three patients were successfully treated with IVIG or plasma exchange and with long-term immunosuppression. Conclusions MG is a rare disease; clinicians should be aware of possible new-onset MG after SARS-CoV-2 vaccination, especially with the current recommendation of booster doses. The hyperstimulation of the innate immune system or the exacerbation of a subclinical pre-existing MG could be possible explanations

    RFC1 expansions are a common cause of idiopathic sensory neuropathy

    Get PDF
    After extensive evaluation, one-third of patients affected by polyneuropathy remain undiagnosed and are labelled as having chronic idiopathic axonal polyneuropathy, which refers to a sensory or sensory-motor, axonal, slowly progressive neuropathy of unknown origin. Since a sensory neuropathy/neuronopathy is identified in all patients with genetically confirmed RFC1 cerebellar ataxia, neuropathy, vestibular areflexia syndrome, we speculated that RFC1 expansions could underlie a fraction of idiopathic sensory neuropathies also diagnosed as chronic idiopathic axonal polyneuropathy. We retrospectively identified 225 patients diagnosed with chronic idiopathic axonal polyneuropathy (125 sensory neuropathy, 100 sensory-motor neuropathy) from our general neuropathy clinics in Italy and the UK. All patients underwent full neurological evaluation and a blood sample was collected for RFC1 testing. Biallelic RFC1 expansions were identified in 43 patients (34%) with sensory neuropathy and in none with sensory-motor neuropathy. Forty-two per cent of RFC1-positive patients had isolated sensory neuropathy or sensory neuropathy with chronic cough, while vestibular and/or cerebellar involvement, often subclinical, were identified at examination in 58%. Although the sensory ganglia are the primary pathological target of the disease, the sensory impairment was typically worse distally and symmetric, while gait and limb ataxia were absent in two-thirds of the cases. Sensory amplitudes were either globally absent (26%) or reduced in a length-dependent (30%) or non-length dependent pattern (44%). A quarter of RFC1-positive patients had previously received an alternative diagnosis, including Sj\uf6gren's syndrome, sensory chronic inflammatory demyelinating polyneuropathy and paraneoplastic neuropathy, while three cases had been treated with immune therapies

    Accelerated surgery versus standard care in hip fracture (HIP ATTACK): an international, randomised, controlled trial

    Get PDF

    01 PG121_122

    No full text
    Abstract Transcranial magnetic stimulation (TMS) transiently induces an electrical field in the tissues beneath the area of application, thereby perturbing local cortical activity if applied over the scalp. It can therefore be used to modulate cerebellar function in healthy humans. Even though the role of the cerebellum in eye movement control and adaptation is well known, few experiments have used eye movements to evaluate the effect of TMS over the cerebellum. Single-pulse TMS over the posterior vermis resulted in impaired accuracy of reflexive saccades, acceleration of smooth pursuit, and coordination of saccades and head movements. TMS over the cerebellar hemisphere decreased pursuit gain. Repetitive TMS (rTMS) over the posterior vermis impaired saccade adaptation in a double-step paradigm. Comparing the effects of TMS on different behavioural paradigms could be useful to test cerebellar control of reflexive and voluntary eye movements, and as a probe of cerebellar plasticity. rTMS appears to be especially interesting since its effects outlast the stimulation period and its behavioural consequences can therefore be measured without interfering with the execution of eye movements or with the experimental procedures
    • …
    corecore