1,734 research outputs found
A multidisciplinary study of archaeological grape seeds.
We report here the first integrated investigation of both ancient DNA and proteins in archaeobotanical samples: medieval grape (Vitis vinifera L.) seeds, preserved by anoxic waterlogging, from an early medieval (seventh-eighth century A.D.) Byzantine rural settlement in the Salento area (Lecce, Italy) and a late (fourteenth-fifteenth century A.D.) medieval site in York (England). Pyrolysis gas chromatography mass spectrometry documented good carbohydrate preservation, whilst amino acid analysis revealed approximately 90% loss of the original protein content. In the York sample, mass spectrometry-based sequencing identified several degraded ancient peptides. Nuclear microsatellite locus (VVS2, VVMD5, VVMD7, ZAG62 and ZAG79) analysis permitted a tentative comparison of the genetic profiles of both the ancient samples with the modern varieties. The ability to recover microsatellite DNA has potential to improve biomolecular analysis on ancient grape seeds from archaeological contexts. Although the investigation of five microsatellite loci cannot assign the ancient samples to any geographic region or modern cultivar, the results allow speculation that the material from York was not grown locally, whilst the remains from Supersano could represent a trace of contacts with the eastern Mediterranean
The impact of BCG strains and repeat vaccinations on immunodiagnostic tests in Eurasian badgers (Meles meles)
Publication history: Accepted - 29 June 2022; Published online - 9July 2022.Bacille Calmette-Guerin (BCG) is a potential tool in the control of Mycobacterium bovis in European badgers (Meles meles). A five year Test and Vaccinate or Remove (TVR) research intervention project commenced in 2014 using two BCG strains (BCG Copenhagen 1331 (Years 1–3/ BadgerBCG) and BCG Sofia SL2222 (Years 4–5). Badgers were recaptured around 9 weeks after the Year 5 vaccination and then again a year later.
The Dual-Path Platform (DPP) Vet TB assay was used to detect serological evidence of M. bovis infection. Of the 48 badgers, 47 had increased Line 1 readings (MPB83 antigen) between the Year 5 vaccination and subsequent recapture. The number of BCG Sofia vaccinations influenced whether a badger tested positive to the recapture DPP VetTB assay Line 1 (p < 0.001) while the number of BadgerBCG vaccinations did not significantly affect recapture Line 1 results (p = 0.59). Line 1 relative light units (RLU) were more pronounced in tests run with sera than whole blood. The results from an in_house MPB83 ELISA results indicated that the WB DPP VetTB assay may not detect lower MPB83 IgG levels as well as the serum DPP VetTB assay. Changes in interferon gamma assay (IFN-Îł) results were seen in 2019 with significantly increased CFP-10 and PPDB readings.
Unlike BadgerBCG, BCG Sofia induces an immune response to MPB83 (the immune dominant antigen in M. bovis badger infection) that then affects the use of immunodiagnostic tests. The use of the DPP VetTB assay in recaptured BCG Sofia vaccinated badgers within the same trapping season is precluded and caution should be used in badgers vaccinated with BCG Sofia in previous years. The results suggest that the DPP VetTB assay can be used with confidence in badgers vaccinated with BadgerBCG as a single or repeated doses.This work was funded by the Department of Agriculture, Environment and Rural Affairs, Northern Ireland (DAERA)
A fresh look at the evolution and diversification of photochemical reaction centers
In this review, I reexamine the origin and diversification of photochemical reaction centers based on the known phylogenetic relations of the core subunits, and with the aid of sequence and structural alignments. I show, for example, that the protein folds at the C-terminus of the D1 and D2 subunits of Photosystem II, which are essential for the coordination of the water-oxidizing complex, were already in place in the most ancestral Type II reaction center subunit. I then evaluate the evolution of reaction centers in the context of the rise and expansion of the different groups of bacteria based on recent large-scale phylogenetic analyses. I find that the Heliobacteriaceae family of Firmicutes appears to be the earliest branching of the known groups of phototrophic bacteria; however, the origin of photochemical reaction centers and chlorophyll synthesis cannot be placed in this group. Moreover, it becomes evident that the Acidobacteria and the Proteobacteria shared a more recent common phototrophic ancestor, and this is also likely for the Chloroflexi and the Cyanobacteria. Finally, I argue that the discrepancies among the phylogenies of the reaction center proteins, chlorophyll synthesis enzymes, and the species tree of bacteria are best explained if both types of photochemical reaction centers evolved before the diversification of the known phyla of phototrophic bacteria. The primordial phototrophic ancestor must have had both Type I and Type II reaction centers
Phosphine Resistance in the Rust Red Flour Beetle, Tribolium castaneum (Coleoptera: Tenebrionidae): Inheritance, Gene Interactions and Fitness Costs
The recent emergence of heritable high level resistance to phosphine in stored grain pests is a serious concern among major grain growing countries around the world. Here we describe the genetics of phosphine resistance in the rust red flour beetle Tribolium castaneum (Herbst), a pest of stored grain as well as a genetic model organism. We investigated three field collected strains of T. castaneum viz., susceptible (QTC4), weakly resistant (QTC1012) and strongly resistant (QTC931) to phosphine. The dose-mortality responses of their test- and inter-cross progeny revealed that most resistance was conferred by a single major resistance gene in the weakly (3.2×) resistant strain. This gene was also found in the strongly resistant (431×) strain, together with a second major resistance gene and additional minor factors. The second major gene by itself confers only 12–20× resistance, suggesting that a strong synergistic epistatic interaction between the genes is responsible for the high level of resistance (431×) observed in the strongly resistant strain. Phosphine resistance is not sex linked and is inherited as an incompletely recessive, autosomal trait. The analysis of the phenotypic fitness response of a population derived from a single pair inter-strain cross between the susceptible and strongly resistant strains indicated the changes in the level of response in the strong resistance phenotype; however this effect was not consistent and apparently masked by the genetic background of the weakly resistant strain. The results from this work will inform phosphine resistance management strategies and provide a basis for the identification of the resistance genes
- …