48,786 research outputs found

    NLO corrections in MC event generator for angular distribution of Drell-Yan lepton pair production

    Full text link
    Using a subtraction method, we derive the formulae suitable for use in Monte-Carlo event generators to give the angular distribution for the gluon-quark induced NLO corrections in Drell-Yan lepton pair production. We also give the corresponding helicity density matrix for W and Z boson production.Comment: 14 pages, 2 figure

    Higgs boson production in high energy proton-nucleus collisions

    Full text link
    We study Higgs boson production from gluon-gluon fusion at mid-rapidity in high energy proton-nucleus collisions. For this process the presently still little known gluon distribution function h1gh_1^{\perp g} gives a numerically relevant contribution. We show by explicite calculation that using CGC (color glass condensate) model input the result obtained in the naive k_t factorization approach matches the result obtained in the TMD factorization framework for a dilute medium. We also verify the earlier finding that the k_t factorization formalism for Higgs production breaks down in a dense medium. In doing so we formulate a hybrid model which allows one to treat such reactions theoretically.Comment: a few more references added, vision

    Massive quark scattering at strong coupling from AdS/CFT

    Full text link
    We extend the analysis of Alday and Maldacena for obtaining gluon scattering amplitudes at strong coupling to include external massive quark states. Our quarks are actually the N=2 hypermultiplets which arise when D7-brane probes are included in the AdS_5 x S^5 geometry. We work in the quenched approximation, treating the N=2 matter multiplets as external sources coupled to the N=4 SYM fields. We first derive appropriate massive-particle boundary conditions for the string scattering worldsheets. We then find an exact worldsheet which corresponds to the scattering of two massive quarks and two massless gluons and extract from this the associated scattering amplitude. We also find the worldsheet and amplitude for the scattering of four massive quarks. Our worldsheet solutions reduce to the four massless gluon solution of Alday and Maldacena in the limit of zero quark mass. The amplitudes we compute can also be interpreted in terms of 2-2 scattering involving gluons and massive W-bosons.Comment: 46 pages, 11 figures, v4: additional comments added to intr

    Measurements in the turbulent boundary layer at constant pressure in subsonic and supersonic flow. Part 1: Mean flow

    Get PDF
    Experiments were carried out to test the accuracy of laser Doppler instrumentation for measurement of Reynolds stresses in turbulent boundary layers in supersonic flow. Two facilities were used to study flow at constant pressure. In one facility, data were obtained on a flat plate at M sub e = 0.1, with Re theta up to 8,000. In the other, data were obtained on an adiabatic nozzle wall at M sub e = 0.6, 0.8, 1.0, 1.3, and 2.2, with Re theta = 23,000 and 40,000. The mean flow as observed using Pitot tube, Preston tube, and floating element instrumentation is described. Emphasis is on the use of similarity laws with Van Driest scaling and on the inference of the shearing stress profile and the normal velocity component from the equations of mean motion. The experimental data are tabulated

    Transverse-Momentum Dependent Factorization for gamma^* pi^0 to gamma

    Full text link
    With a consistent definition of transverse-momentum dependent (TMD) light-cone wave function, we show that the amplitude for the process γπ0γ\gamma^* \pi^0 \to\gamma can be factorized when the virtuality of the initial photon is large. In contrast to the collinear factorization in which the amplitude is factorized as a convolution of the standard light-cone wave function and a hard part, the TMD factorization yields a convolution of a TMD light-cone wave function, a soft factor and a hard part. We explicitly show that the TMD factorization holds at one loop level. It is expected that the factorization holds beyond one-loop level because the cancelation of soft divergences is on a diagram-by-diagram basis. We also show that the TMD factorization helps to resum large logarithms of type ln2x\ln^2x.Comment: Published version in Phys.Rev.D75:014014,200

    Scientific CCD technology at JPL

    Get PDF
    Charge-coupled devices (CCD's) were recognized for their potential as an imaging technology almost immediately following their conception in 1970. Twenty years later, they are firmly established as the technology of choice for visible imaging. While consumer applications of CCD's, especially the emerging home video camera market, dominated manufacturing activity, the scientific market for CCD imagers has become significant. Activity of the Jet Propulsion Laboratory and its industrial partners in the area of CCD imagers for space scientific instruments is described. Requirements for scientific imagers are significantly different from those needed for home video cameras, and are described. An imager for an instrument on the CRAF/Cassini mission is described in detail to highlight achieved levels of performance

    Inelastic final-state interaction

    Get PDF
    The final-state interaction in multichannel decay processes is sytematically studied with application to B decay in mind. Since the final-state inteaction is intrinsically interwoven with the decay interaction in this case, no simple phase theorem like "Watson's theorem" holds for experimentally observed final states. We first examine in detail the two-channel problem as a toy-model to clarify the issues and to remedy common mistakes made in earlier literature. Realistic multichannel problems are too challenging for quantitative analysis. To cope with mathematical complexity, we introduce a method of approximation that is applicable to the case where one prominant inelastic channel dominates over all others. We illustrate this approximation method in the amplitude of the decay B to pi K fed by the intermediate states of a charmed meson pair. Even with our approximation we need more accurate information of strong interactions than we have now. Nonethless we are able to obtain some insight in the issue and draw useful conclusions on general fearyres on the strong phases.Comment: The published version. One figure correcte

    Diffractive jet production in a simple model with applications to HERA

    Full text link
    In diffractive jet production, two high energy hadrons A and B collide and produce high transverse momentum jets, while hadron A is diffractively scattered. Ingelman and Schlein predicted this phenomenon. In their model, part of the longitudinal momentum transferred from hadron A is delivered to the jet system, part is lost. Lossless diffractive jet production, in which all of this longitudinal momentum is delivered to the jet system, has been discussed by Collins, Frankfurt, and Strikman. We study the structure of lossless diffractive jet production in a simple model. The model suggests that the phenomenon can be probed experimentally at HERA, with A being a proton and B being a bremsstrahlung photon with virtuality Q2Q^2. Lossless events should be present for small Q2Q^2, but not for Q2Q^2 larger than 1/RP21/R_{\rm P}^2, where RPR_{\rm P} is a characteristic size of the pomeron.Comment: 23 pages, REVTeX 3.0 with 8 postscript figures compressed with uufiles, OITS 536 and AZPH-TH/94-0
    corecore