945 research outputs found
Sample preparation for nanoanalytical electron microscopy using the FIB lift-out method and low energy ion milling
Thinning specimens to electron transparency for electron microscopy analysis can be done by conventional (2 - 4 kV) argon ion milling or focused ion beam (FIB) lift-out techniques. Both these methods tend to leave ''mottling'' visible on thin specimen areas, and this is believed to be surface damage caused by ion implantation and amorphisation. A low energy (250 - 500 V) Argon ion polish has been shown to greatly improve specimen quality for crystalline silicon samples. Here we investigate the preparation of technologically important materials for nanoanalysis using conventional and lift-out methods followed by a low energy polish in a GentleMill™ low energy ion mill. We use a low energy, low angle (6 - 8°) ion beam to remove the surface damage from previous processing steps. We assess this method for the preparation of technologically important materials, such as steel, silicon and GaAs. For these materials the ability to create specimens from specific sites, and to be able to image and analyse these specimens with the full resolution and sensitivity of the STEM, allows a significant increase of the power and flexibility of nanoanalytical electron microscopy
Enhanced Nonperturbative Effects in Z Decays to Hadrons
We use soft collinear effective field theory (SCET) to study nonperturbative
strong interaction effects in Z decays to hadronic final states that are
enhanced in corners of phase space. These occur, for example, in the jet energy
distribution for two jet events near E_J=M_Z/2, the thrust distribution near
unity and the jet invariant mass distribution near zero. The extent to which
such nonperturbative effects for different observables are related is
discussed.Comment: 17 pages. Paper reorganized, and more discussion and results include
Energy Flow in Interjet Radiation
We study the distribution of transverse energy, Q_Omega, radiated into an
arbitrary interjet angular region, Omega, in high-p_T two-jet events. Using an
approximation that emphasizes radiation directly from the partons that undergo
the hard scattering, we find a distribution that can be extrapolated smoothly
to Q_Omega=Lambda_QCD, where it vanishes. This method, which we apply
numerically in a valence quark approximation, provides a class of predictions
on transverse energy radiated between jets, as a function of jet energy and
rapidity, and of the choice of the region Omega in which the energy is
measured. We discuss the relation of our approximation to the radiation from
unobserved partons of intermediate energy, whose importance was identified by
Dasgupta and Salam.Comment: 26 pages, 8 eps figures. Revised to include a discussion of
non-global logarithm
Bianchi type II models in the presence of perfect fluid and anisotropic dark energy
Spatially homogeneous but totally anisotropic and non-flat Bianchi type II
cosmological model has been studied in general relativity in the presence of
two minimally interacting fluids; a perfect fluid as the matter fluid and a
hypothetical anisotropic fluid as the dark energy fluid. The Einstein's field
equations have been solved by applying two kinematical ans\"{a}tze: we have
assumed the variation law for the mean Hubble parameter that yields a constant
value of deceleration parameter, and one of the components of the shear tensor
has been considered proportional to the mean Hubble parameter. We have
particularly dwelled on the accelerating models with non-divergent expansion
anisotropy as the Universe evolves. Yielding anisotropic pressure, the fluid we
consider in the context of dark energy, can produce results that can be
produced in the presence of isotropic fluid in accordance with the \Lambda CDM
cosmology. However, the derived model gives additional opportunities by being
able to allow kinematics that cannot be produced in the presence of fluids that
yield only isotropic pressure. We have obtained well behaving cases where the
anisotropy of the expansion and the anisotropy of the fluid converge to finite
values (include zero) in the late Universe. We have also showed that although
the metric we consider is totally anisotropic, the anisotropy of the dark
energy is constrained to be axially symmetric, as long as the overall energy
momentum tensor possesses zero shear stress.Comment: 15 pages; 5 figures; matches the version published in The European
Physical Journal Plu
Effect of different standing poses on whole body volume acquisition by three-dimensional photonic scanning
The present study compared whole body volumes obtained by three-dimensional (3D) photonic scanning of two different poses and discussed its effect on body composition estimation. Pose A with large angles of shoulder abduction and feet separated and Pose B with shoulders abducted slightly, the elbows extended and heels together. 16 male and 13 female participants were scanned twice in each pose using a 3D scanner. The mean of whole body volume and the mean of body composition obtained with Pose B was corrected by a regression equation and compared with the results obtained from Pose A. After correction, the whole body volumes acquired with these two poses were similar [limit of agreement = (-0.71 l,0.71 l)] but the body compositions obtained with Pose A and Pose B were different [limit of agreement = (-4.4%, 4.4%)]. The results indicated that scanning using either pose gives reliable estimations for whole body volume and body composition. The whole body volume obtained from different poses can be adjusted using the regression equation but small volumetric differences translate into much more substantial differences in body fat percentage. Hence, it is recommended to use the same scanning pose consistently when monitoring individuals longitudinally
Biological anthropology in the Indo-Pacific Region: New approaches to age-old questions
Biological anthropological research, the study of both modern and past humans, is a burgeoning field in the Indo-Pacific region. It is becoming increasingly apparent that the unique environments of the Indo-Pacific have resulted in an archaeological record that does not necessarily align with those in the northern hemisphere. New, regionally-specific archaeological models are being developed, and biological anthropological research has an important role to play in establishing past human experience within these models. In the Indo-Pacific, research using ancient and modern human tissues is adding insight into global processes of prehistoric settlement and migrations, subsistence change and human biosocial adaptation. This review synthesises current themes in biological anthropology in this region. It highlights the diverse methods and approaches used by biological anthropologists to address globally-relevant archaeological questions. In recent decades a collaborative approach between archaeologists, biological anthropologists and local communities has become the norm in the region. The many positive outcomes of this multi-disciplinary approach are highlighted here through the use of regionally-specific case studies. This review ultimately aims to stimulate further collaborations between archaeologists, biological anthropologists and the communities in the region, and demonstrate how the evidence from Indo-Pacific research may be relevant to global archaeological models
Nuclear shadowing at low Q^2
We re-examine the role of vector meson dominance in nuclear shadowing at low
Q^2. We find that models which incorporate both vector meson and partonic
mechanisms are consistent with both the magnitude and the Q^2 slope of the
shadowing data.Comment: 7 pages, 2 figures; to appear in Phys. Rev.
Equation of state for Universe from similarity symmetries
In this paper we proposed to use the group of analysis of symmetries of the
dynamical system to describe the evolution of the Universe. This methods is
used in searching for the unknown equation of state. It is shown that group of
symmetries enforce the form of the equation of state for noninteracting scaling
multifluids. We showed that symmetries give rise the equation of state in the
form and energy density
, which
is commonly used in cosmology. The FRW model filled with scaling fluid (called
homological) is confronted with the observations of distant type Ia supernovae.
We found the class of model parameters admissible by the statistical analysis
of SNIa data. We showed that the model with scaling fluid fits well to
supernovae data. We found that and (), which can correspond to (hyper) phantom fluid, and to a
high density universe. However if we assume prior that
then the favoured model is close to concordance
CDM model. Our results predict that in the considered model with
scaling fluids distant type Ia supernovae should be brighter than in
CDM model, while intermediate distant SNIa should be fainter than in
CDM model. We also investigate whether the model with scaling fluid is
actually preferred by data over CDM model. As a result we find from
the Akaike model selection criterion prefers the model with noninteracting
scaling fluid.Comment: accepted for publication versio
Event Shape/Energy Flow Correlations
We introduce a set of correlations between energy flow and event shapes that
are sensitive to the flow of color at short distances in jet events. These
correlations are formulated for a general set of event shapes, which includes
jet broadening and thrust as special cases. We illustrate the method for
electron-positron annihilation dijet events, and calculate the correlation at
leading logarithm in the energy flow and at next-to-leading-logarithm in the
event shape.Comment: 43 pages, eight eps figures; minor changes, references adde
Some anisotropic universes in the presence of imperfect fluid coupling with spatial curvature
We consider Bianchi VI spacetime, which also can be reduced to Bianchi types
VI0-V-III-I. We initially consider the most general form of the energy-momentum
tensor which yields anisotropic stress and heat flow. We then derive an
energy-momentum tensor that couples with the spatial curvature in a way so as
to cancel out the terms that arise due to the spatial curvature in the
evolution equations of the Einstein field equations. We obtain exact solutions
for the universes indefinetly expanding with constant mean deceleration
parameter. The solutions are beriefly discussed for each Bianchi type. The
dynamics of the models and fluid are examined briefly, and the models that can
approach to isotropy are determined. We conclude that even if the observed
universe is almost isotropic, this does not necessarily imply the isotropy of
the fluid (e.g., dark energy) affecting the evolution of the universe within
the context of general relativity.Comment: 17 pages, no figures; to appear in International Journal of
Theoretical Physics; in this version (which is more concise) an equation
added, some references updated and adde
- …
