1,958 research outputs found
Biomarkers of oxidative stress: methods and measures of oxidative DNA damage (COMET assay) and telomere shortening
Oxidative stress is fast becoming the nutritional and medical buzzword for the twenty-first century. The theoretical importance of oxidative stress in diabetes is highlighted by its potential double impact on metabolic dysfunction on one hand and the vascular system on the other hand. The new concept of oxidative stress, being an important trigger in the onset and progression of diabetes and its complications, emphasizes the need for measurement of markers of oxidation to assess the degree of oxidative stress. While we have been routinely measuring biomarkers in our molecular epidemiology projects, here we discuss the utility of two assays, (a) DNA damage assessment by COMET measurement and (b) telomere length measurement. As DNA damage is efficiently repaired by cellular enzymes, its measurement gives a snapshot view of the level of oxidative stress. The protocol allows for measurement of oxidative DNA damage (FPG-sensitive DNA strand breaks). Telomere length measured by Southern blotting technique allows one to estimate the chronic burden of oxidative stress at the molecular level and is now considered as biomarker of biological aging
Learning Economic Parameters from Revealed Preferences
A recent line of work, starting with Beigman and Vohra (2006) and
Zadimoghaddam and Roth (2012), has addressed the problem of {\em learning} a
utility function from revealed preference data. The goal here is to make use of
past data describing the purchases of a utility maximizing agent when faced
with certain prices and budget constraints in order to produce a hypothesis
function that can accurately forecast the {\em future} behavior of the agent.
In this work we advance this line of work by providing sample complexity
guarantees and efficient algorithms for a number of important classes. By
drawing a connection to recent advances in multi-class learning, we provide a
computationally efficient algorithm with tight sample complexity guarantees
( for the case of goods) for learning linear utility
functions under a linear price model. This solves an open question in
Zadimoghaddam and Roth (2012). Our technique yields numerous generalizations
including the ability to learn other well-studied classes of utility functions,
to deal with a misspecified model, and with non-linear prices
The statistics of the entanglement changes generated by the Hadamard-CNOT quantum circuit
We consider the change of entanglement of formation produced by
the Hadamard-CNOT circuit on a general (pure or mixed) state describing
a system of two qubits. We study numerically the probabilities of obtaining
different values of , assuming that the initial state is randomly
distributed in the space of all states according to the product measure
recently introduced by Zyczkowski {\it et al.} [Phys. Rev. A {\bf 58} (1998)
883].Comment: 12 pages, 2 figure
Stochastic Resonance in Ion Channels Characterized by Information Theory
We identify a unifying measure for stochastic resonance (SR) in voltage
dependent ion channels which comprises periodic (conventional), aperiodic and
nonstationary SR. Within a simplest setting, the gating dynamics is governed by
two-state conductance fluctuations, which switch at random time points between
two values. The corresponding continuous time point process is analyzed by
virtue of information theory. In pursuing this goal we evaluate for our
dynamics the tau-information, the mutual information and the rate of
information gain. As a main result we find an analytical formula for the rate
of information gain that solely involves the probability of the two channel
states and their noise averaged rates. For small voltage signals it simplifies
to a handy expression. Our findings are applied to study SR in a potassium
channel. We find that SR occurs only when the closed state is predominantly
dwelled. Upon increasing the probability for the open channel state the
application of an extra dose of noise monotonically deteriorates the rate of
information gain, i.e., no SR behavior occurs.Comment: 10 pages, 2 figures, to appear in Phys. Rev.
Proton structure function at small Q^2
A fit is made to the data for the proton structure function up to Q^2=10
GeV^2, including the real gamma p total cross-section. It is economical and
simple, and its form is motivated by physical principles. It is extrapolated
down to very small values of x. Data for the ratio (nu W_2^n/nu W_2^p) are also
fitted. A FORTRAN program for the fit to (nu W_2^p) is available by email on
request Figure 5 from the original version has been deleted.Comment: 10 pages plus 9 figure
Phase synchronization and noise-induced resonance in systems of coupled oscillators
We study synchronization and noise-induced resonance phenomena in systems of
globally coupled oscillators, each possessing finite inertia. The behavior of
the order parameter, which measures collective synchronization of the system,
is investigated as the noise level and the coupling strength are varied, and
hysteretic behavior is manifested. The power spectrum of the phase velocity is
also examined and the quality factor as well as the response function is
obtained to reveal noise-induced resonance behavior.Comment: to be published in Phys. Rev.
Synchronization and resonance in a driven system of coupled oscillators
We study the noise effects in a driven system of globally coupled
oscillators, with particular attention to the interplay between driving and
noise. The self-consistency equation for the order parameter, which measures
the collective synchronization of the system, is derived; it is found that the
total order parameter decreases monotonically with noise, indicating overall
suppression of synchronization. Still, for large coupling strengths, there
exists an optimal noise level at which the periodic (ac) component of the order
parameter reaches its maximum. The response of the phase velocity is also
examined and found to display resonance behavior.Comment: 17 pages, 3 figure
A perturbative approach to decays into two mesons
The modified perturbative approach in which transverse degrees of freedom as
well as Sudakov suppressions are taken into account, is applied to decays
into two mesons. The influence of various model parameters (CKM matrix
elements, decay constant, mesonic wave functions) on the results as well as
short distance corrections to the weak Hamiltonian are discussed in some
detail. The perturbative contributions to the decays yield branching ratios
of the order of which values are well below the upper
limit for the branching ratio as measured by CLEO.Comment: 26 pages, RevTex, 6 figures appended (compressed and uuencode using
'uufiles'
Warped Reheating in Multi-Throat Brane Inflation
We investigate in some quantitative details the viability of reheating in
multi-throat brane inflationary scenarios by estimating and comparing the time
scales for the various processes involved. We also calculate within
perturbative string theory the decay rate of excited closed strings into KK
modes and compare with that of their decay into gravitons; we find that in the
inflationary throat the former is preferred. We also find that over a small but
reasonable range of parameters of the background geometry, these KK modes will
preferably tunnel to another throat (possibly containing the Standard Model)
instead of decaying to gravitons due largely to their suppressed coupling to
the bulk gravitons. Once tunneled, the same suppressed coupling to the
gravitons again allows them to reheat the Standard Model efficiently. We also
consider the effects of adding more throats to the system and find that for
extra throats with small warping, reheating still seems viable.Comment: 29 pages, 4 figures, discussions on closed string decay expanded,
references adde
- …
