261 research outputs found

    “A Considerable Surgical Operation”: Article III, Equity, and Judge-Made Law in the Federal Courts

    Get PDF
    This Article examines the history of judge-made law in the federal courts through the lens of the early-nineteenth-century federal courts’ equity powers. In a series of equity cases, and in the Federal Equity Rules promulgated by the Court in 1822 and 1842, the Supreme Court vehemently insisted that lower federal courts employ a uniform corpus of nonstate equity principles with respect to procedure, remedies, and - in certain instances - primary rights and liabilities. Careful attention to the historical sources suggests that the uniform equity doctrine was not simply the product of an overreaching, consolidationist Supreme Court, but is best understood in the context of important and surprisingly underappreciated early-nineteenth-century debates concerning judicial reform. During this period, both Congress and the Court were preoccupied with the disuniformity in the administration of the federal judicial system, especially in the farther reaches of the republic. When reform was not forthcoming through legislation, the Supreme Court achieved a modicum of uniformity in the federal courts through the application of a single body of equity principles drawn from federal and English sources. But the Court did not act unilaterally. Congress’s repeated acquiescence to, and extension of, the Court’s uniform equity doctrine reveals a complex, interbranch dynamic at work. Retelling the story of nonstate, judge-made law in the federal courts through the lens of equity is not intended to demonstrate that such a formulation of federal judicial power was (or is) correct. Rather, by recuperating the history of federal equity power, this Article illuminates the significant metamorphosis of the meaning of Article III’s grant of judicial power. This change has been elided in modern accounts of federal judge-made law in an effort to bolster the legitimacy of a modern vision of federal judicial power

    Representing Injustice: Justice as an Icon of Woman Suffrage

    Get PDF
    The meeting in Carnegie Hall . . . opened with a pageant of free nations, grouped colorfully about the central figure of Justice enthroned, before whom enchained America with a black-draped following of mourning women came to beg for a place in the light of true democracy. . . . Miss Vida Milholland took the central part of Justice, receiving the beautifully costumed women of free nations, who grouped about her in a glorious massing of color and light as the black-robed women of disfranchised America approached to make their plea. This vignette is taken from a March 1919 edition of The Suffragist- the weekly publication of the National Woman\u27s Party (NWP) - and describes one of the last suffrage pageants staged by that early twentiethcentury American woman suffrage organization during the final push for a federal suffrage amendment. Suffrage pageants were not unusual. In the last decades of the fight over woman suffrage in America, the contest was waged in images and symbols as much as words, on the streets and in theaters as much as in the courts and legislatures. As in the Carnegie Hall pageant, the figure of Justice played a prominent role in pro-suffrage spectacle. Other candidates were available, and among the pantheon of female allegorical figures others - including Liberty, Truth, and Columbia - also featured in suffrage spectacles. But, as shown below, Justice frequently was the star-likely her first modern feminist role.\u27 In this Essay, I offer a brief, historically sensitive interpretation of the figure of Justice in woman suffrage spectacle and propaganda, deciphering, as best as possible, Justice\u27s salience and function in the battle over woman suffrage

    Taxonomic changes in the gut microbiota are associated with cartilage damage independent of adiposity, high fat diet, and joint injury

    Get PDF
    Abstract Lipodystrophic mice are protected from cartilage damage following joint injury. This protection can be reversed by the implantation of a small adipose tissue graft. The purpose of this study was to evaluate the relationship between the gut microbiota and knee cartilage damage while controlling for adiposity, high fat diet, and joint injury using lipodystrophic (LD) mice. LD and littermate control (WT) mice were fed a high fat diet, chow diet, or were rescued with fat implantation, then challenged with destabilization of the medial meniscus surgery to induce osteoarthritis (OA). 16S rRNA sequencing was conducted on feces. MaAslin2 was used to determine associations between taxonomic relative abundance and OA severity. While serum LPS levels between groups were similar, synovial fluid LPS levels were increased in both limbs of HFD WT mice compared to all groups, except for fat transplanted animals. The Bacteroidetes:Firmicutes ratio of the gut microbiota was significantly reduced in HFD and OA-rescued animals when compared to chow. Nine novel significant associations were found between gut microbiota taxa and OA severity. These findings suggest the presence of causal relationships the gut microbiome and cartilage health, independent of diet or adiposity, providing potential therapeutic targets through manipulation of the microbiome

    Human PrimPol is a highly error-prone polymerase regulated by single-stranded DNA binding proteins

    Get PDF
    PrimPol is a recently identified polymerase involved in eukaryotic DNA damage tolerance, employed in both re-priming and translesion synthesis mechanisms to bypass nuclear and mitochondrial DNA lesions. In this report, we investigate how the enzymatic activities of human PrimPol are regulated. We show that, unlike other TLS polymerases, PrimPol is not stimulated by PCNA and does not interact with it in vivo. We identify that PrimPol interacts with both of the major single-strand binding proteins, RPA and mtSSB in vivo. Using NMR spectroscopy, we characterize the domains responsible for the PrimPol-RPA interaction, revealing that PrimPol binds directly to the N-terminal domain of RPA70. In contrast to the established role of SSBs in stimulating replicative polymerases, we find that SSBs significantly limit the primase and polymerase activities of PrimPol. To identify the requirement for this regulation, we employed two forward mutation assays to characterize PrimPol's replication fidelity. We find that PrimPol is a mutagenic polymerase, with a unique error specificity that is highly biased towards insertion-deletion errors. Given the error-prone disposition of PrimPol, we propose a mechanism whereby SSBs greatly restrict the contribution of this enzyme to DNA replication at stalled forks, thus reducing the mutagenic potential of PrimPol during genome replication

    Bacterial Pneumonias during an Influenza Pandemic: How Will We Allocate Antibiotics?

    Full text link
    We are currently in the midst of the 2009 H1N1 pandemic, and a second wave of flu in the fall and winter could lead to more hospitalizations for pneumonia. Recent pathologic and historic data from the 1918 influenza pandemic confirms that many, if not most, of the deaths in that pandemic were a result of secondary bacterial pneumonias. This means that a second wave of 2009 H1N1 pandemic influenza could result in a widespread shortage of antibiotics, making these medications a scarce resource. Recently, our University of Michigan Health System (UMHS) Scarce Resource Allocation Committee (SRAC) added antibiotics to a list of resources (including ventilators, antivirals, vaccines) that might become scarce during an influenza pandemic. In this article, we summarize the data on bacterial pneumonias during the 1918 influenza pandemic, discuss the possible impact of a pandemic on the University of Michigan Health System, and summarize our committee's guiding principles for allocating antibiotics during a pandemic.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78141/1/bsp.2009.0019.pd

    Combinatorial CRISPR-Cas9 screens for de novo mapping of genetic interactions.

    Get PDF
    We developed a systematic approach to map human genetic networks by combinatorial CRISPR-Cas9 perturbations coupled to robust analysis of growth kinetics. We targeted all pairs of 73 cancer genes with dual guide RNAs in three cell lines, comprising 141,912 tests of interaction. Numerous therapeutically relevant interactions were identified, and these patterns replicated with combinatorial drugs at 75% precision. From these results, we anticipate that cellular context will be critical to synthetic-lethal therapies

    Lipoprotein-apheresis reduces circulating microparticles in individuals with familial hypercholesterolemia

    Get PDF
    Lipoprotein-apheresis (apheresis) removes LDL-cholesterol in patients with severe dyslipidemia. However, reduction is transient, indicating that the long-term cardiovascular benefits of apheresis may not solely be due to LDL removal. Microparticles (MPs) are submicron vesicles released from the plasma membrane of cells. MPs, particularly platelet-derived MPs, are increasingly being linked to the pathogenesis of many diseases. We aimed to characterize the effect of apheresis on MP size, concentration, cellular origin, and fatty acid concentration in individuals with familial hypercholesterolemia (FH). Plasma and MP samples were collected from 12 individuals with FH undergoing routine apheresis. Tunable resistive pulse sensing (np200) and nanoparticle tracking analysis measured a fall in MP concentration (33 and 15%, respectively; P < 0.05) pre- to post-apheresis. Flow cytometry showed MPs were predominantly annexin V positive and of platelet (CD41) origin both pre- (88.9%) and post-apheresis (88.4%). Fatty acid composition of MPs differed from that of plasma, though apheresis affected a similar profile of fatty acids in both compartments, as measured by GC-flame ionization detection. MP concentration was also shown to positively correlate with thrombin generation potential. In conclusion, we show apheresis nonselectively removes annexin V-positive platelet-derived MPs in individuals with FH. These MPs are potent inducers of coagulation and are elevated in CVD; this reduction in pathological MPs could relate to the long-term benefits of apheresis

    No association between a candidate TCF7L2 variant and risk of breast or ovarian cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>TCF7L2 is a transcription factor involved in Wnt/β-catenin signaling which has a variant known to be associated with risk of Type 2 diabetes and, in some studies, with risk of certain cancers, including familial breast cancer. No studies of ovarian cancer have been reported to date.</p> <p>Methods</p> <p>Two clinic-based case-control studies at the Mayo Clinic were assessed including 798 breast cancer cases, 843 breast cancer controls, 391 ovarian cancer cases, and 458 ovarian cancer controls. Genotyping at <it>TCF7L2 </it>rs12255372 used a 5' endonuclease assay, and statistical analysis used logistic regression among participants as a whole and among <it>a priori</it>-defined subsets.</p> <p>Results</p> <p>No associations with risk of breast or ovarian cancer were observed (ordinal model, p = 0.62 and p = 0.75, respectively). In addition, no associations were observed among sub-groups defined by age, BMI, family history, stage, grade, histology, or tumor behavior.</p> <p>Conclusion</p> <p>Although the biology of the Wnt/β-catenin signaling pathway and prior association between rs12255372 and numerous phenotypes warranted examination of this <it>TCF7L2 </it>SNP, no compelling evidence for association with breast or ovarian cancer was observed.</p

    The molecular basis of breast cancer pathological phenotypes

    Get PDF
    The histopathological evaluation of morphological features in breast tumours provides prognostic information to guide therapy. Adjunct molecular analyses provide further diagnostic, prognostic and predictive information. However, there is limited knowledge of the molecular basis of morphological phenotypes in invasive breast cancer. This study integrated genomic, transcriptomic and protein data to provide a comprehensive molecular profiling of morphological features in breast cancer. Fifteen pathologists assessed 850 invasive breast cancer cases from The Cancer Genome Atlas (TCGA). Morphological features were significantly associated with genomic alteration, DNA methylation subtype, PAM50 and microRNA subtypes, proliferation scores, gene expression and/or RPPA subtype. Marked nuclear pleomorphism, necrosis, inflammation and high mitotic count were associated with Basal-like subtype and have similar molecular basis. Omics-based signatures were constructed to predict morphological features. The association of morphology transcriptome signatures with overall survival in oestrogen receptor (ER)-positive and ER-negative breast cancer was first assessed using the METABRIC dataset; signatures that remained prognostic in the METABRIC multivariate analysis were further evaluated in five additional datasets. The transcriptomic signature of epithelial tubule formation was prognostic in ER-positive breast cancer. No signature was prognostic in ER-negative. This study provided new insights into the molecular basis of breast cancer morphological phenotypes. The integration of morphological with molecular data has potential to refine breast cancer classification, predict response to therapy, enhance our understanding of breast cancer biology and improve clinical management. This work is publicly accessible at www.dx.ai/tcga_breast
    • …
    corecore