4,057 research outputs found

    Editorial: water governance in a climate change world: appraising systemic and adaptive effectiveness

    Get PDF
    and other research outputs Editorial: water governance in a climate change world: appraising systemic and adaptive effectivenes

    Multinuclear ruthenium(II) complexes as anticancer agents

    Get PDF
    A series of dinuclear ruthenium(ii) complexes that contain labile chlorido ligands, [{Ru(tpy)Cl}2{μ-bbn}]2+ {designated Cl-Rubbn; tpy = 2,2′:6′,2′′-terpyridine, bbn = bis[4(4′-methyl-2,2′-bipyridyl)]-1,n-alkane (n = 7, 10, 12, 14 or 16)} and derivatives containing nitro substituents on the tpy ligand and/or secondary amines within the bbn linking chain have been synthesised and their potential as anticancer agents examined. Some of the Cl-Rubbn species showed good anticancer activity against MCF-7 and MDA-MB-231 breast cancer cell lines, with the Cl-Rubb12 complex being four-times more active than cisplatin. Inclusion of nitro substituents on the tpy ligands of Cl-Rubb12 resulted in significantly decreased anticancer activity. The incorporation of amine groups into the linking ligand did not increase the anticancer activity of the Cl-Rubbn complexes. The Cl-Rubbn complexes and those containing amine groups in the linking chain aquated at approximately the same rate, with 50% aquation within 120 minutes. By comparison, the complexes containing nitro substituents on the tpy ligand aquated extremely slowly, with 60% of the chlorido complex remaining 24 hours after they were dissolved in water. Cyclic voltammetry with the model mononuclear complex [Ru{(NO2)3tpy}(Me2bpy)Cl] + {(NO2)3tpy = 4,4′,4′′- trinitro-2,2′:6′,2′′-terpyridine} showed that the nitro substituents exerted a strong effect on the ruthenium centre, with the anodic peak corresponding to the Ru(iii/ii) couple shifted positively by 300 mV compared to that from the non-nitrated parent complex [Ru(tpy)(Me 2bpy)Cl]+. 1H NMR studies of the reaction of the Cl-Rubbn complexes with GMP indicated that the ruthenium complexes covalently bound the nucleotide slowly, with 33% bound in 24 hours. However, the results of this study suggest that the cytotoxicity of the dinuclear ruthenium complexes is a combination of covalent and reversible binding with DNA. © the Partner Organisations 2014

    Psychosocial Contexts of Diabetes and Older Adulthood: Reciprocal Effects

    Full text link
    The present study was conducted to assess the reciprocal effects between the psychosocial contexts of diabetes and older adulthood. Data were collected from 191 community-dwelling adults over the age of 60 with non-insulin-dependent diabetes mellitus. Results indicate that older adults with diabetes reported higher rates of selected chronic illnesses, lower self-rated physical health, and higher levels of depression than did comparison samples of older adults without diabetes. Compared with younger adults with NIDDM, the present sample of older adults perceived fewer impacts of diabetes, including fewer symptoms of poor metabolic control, less emotional impact, fewer barriers to adherence, and less complex regimens. Overall levels of social support and regimen adherence were high. Older adults in this sample reported wanting minimal help from their family and friends with self-management activities and receiving more help than desired with following a meal plan and taking medications. Implications of the unique context of older adulthood for diabetes self-management are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69058/2/10.1177_014572179101700507.pd

    Cross entropy as a measure of musical contrast

    Get PDF
    We present a preliminary study of using the information theoretic concept of cross-entropy to measure musical contrast in a symbolic context, with a focus on melody. We measure cross-entropy using the Information Dynamics Of Music (IDyOM) framework. Whilst our long term aim is to understand the use of contrast in Sonata form, in this paper we take a more general perspective and look at a broad spread of Western art music of the common practice era. Our results suggest that cross-entropy has a useful role as an objective measure of contrast, but that a fuller picture will require more work

    8-hydroxy-2'-deoxyguanosine, a major mutagenic oxidative DNA lesion, and DNA strand breaks in nasal respiratory epithelium of children exposed to urban pollution.

    Get PDF
    Southwest metropolitan Mexico City children are repeatedly exposed to high levels of a complex mixture of air pollutants, including ozone, particulate matter, aldehydes, metals, and nitrogen oxides. We explored nasal cell 8-hydroxy-2'-deoxyguanosine (8-OHdG), a major mutagenic lesion producing G-->T transversion mutations, using an immunohistochemical method, and DNA single strand breaks (ssb) using the single cell gel electrophoresis assay as biomarkers of oxidant exposure. Nasal biopsies from the posterior inferior turbinate were examined in children in grades one through five, including 12 controls from a low-polluted coastal town and 87 Mexico City children. Each biopsy was divided for the 8-OHdG and DNA ssb assays. There was an age-dependent increase in the percentage of nasal cells with DNA tails > 10 microm in Mexico City children: 19 +/- 9% for control cells, and 43 +/- 4, 50 +/- 16, 56 +/- 17, 60 +/- 17 and 73 +/- 14%, respectively, for first through fifth graders (p < 0.05). Nasal ssb were significantly higher in fifth graders than in first graders (p < 0.05). Higher levels (2.3- to 3-fold) of specific nuclear staining for 8-OHdG were observed in exposed children as compared to controls (p < 0.05). These results suggest that DNA damage is present in nasal epithelial cells in Mexico City children. Persistent oxidative DNA damage may ultimately result in a selective growth of pr eneoplastic nasal initiated cells in this population and the potential for nasal neoplasms may increase with age. The combination of 8-OHdG and DNA ssb should be useful for monitoring oxidative damage in people exposed to polluted atmospheres

    High-throughput, quantitative analyses of genetic interactions in E. coli.

    Get PDF
    Large-scale genetic interaction studies provide the basis for defining gene function and pathway architecture. Recent advances in the ability to generate double mutants en masse in Saccharomyces cerevisiae have dramatically accelerated the acquisition of genetic interaction information and the biological inferences that follow. Here we describe a method based on F factor-driven conjugation, which allows for high-throughput generation of double mutants in Escherichia coli. This method, termed genetic interaction analysis technology for E. coli (GIANT-coli), permits us to systematically generate and array double-mutant cells on solid media in high-density arrays. We show that colony size provides a robust and quantitative output of cellular fitness and that GIANT-coli can recapitulate known synthetic interactions and identify previously unidentified negative (synthetic sickness or lethality) and positive (suppressive or epistatic) relationships. Finally, we describe a complementary strategy for genome-wide suppressor-mutant identification. Together, these methods permit rapid, large-scale genetic interaction studies in E. coli

    Feeding spectra and activity of the freshwater crab Trichodactylus kensleyi (Decapoda: Brachyura: Trichodactylidae) at La Plata basin

    Get PDF
    Background: In inland water systems, it is important to characterize the trophic links in order to identify the ‘trophic species’ and, from the studies of functional diversity, understand the dynamics of matter and energy in these environments. The aim of this study is to analyze the natural diet of Trichodactylus kensleyi of subtropical rainforest streams and corroborate the temporal variation in the trophic activity during day hours. Results: A total of 15 major taxonomic groups were recognized in gut contents. The index of relative importance identified the following main prey items in decreasing order of importance: vegetal remains, oligochaetes, chironomid larvae, and algae. A significant difference was found in the amount of full stomachs during day hours showing a less trophic activity at midday and afternoon. The index of relative importance values evidenced the consumption of different prey according to day moments. Results of the gut content indicate that T. kensleyi is an omnivorous crab like other trichodactylid species. Opportunistic behavior is revealed by the ingestion of organisms abundant in streams such as oligochaetes and chironomid larvae. The consumption of allochthonous plant debris shows the importance of this crab as shredder in subtropical streams. However, the effective assimilation of plant matter is yet unknown in trichodactylid crabs. Conclusions: This research provides knowledge that complements previous studies about trophic relationships of trichodactylid crabs and supported the importance of T. kensleyi in the transference of energy and matter from benthic community and riparian sources to superior trophic levels using both macro- and microfauna.Fil: Williner, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; Argentina. Universidad Nacional del Litoral. Facultad de Humanidades y Ciencias; ArgentinaFil: de Azevedo Carvalho, Debora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; ArgentinaFil: Collins, Pablo Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentin
    corecore