578 research outputs found

    INVESTIGATING THE EFFECTS OF SHORT- AND LONG-TERM CLIMATIC VARIATION ON THE WATER USE OF THREE NORTHERN HARDWOOD TREE SPECIES

    Get PDF
    Many tree species are expected to decline in the northern Midwestern United States due to climate change increasing annual temperature 3-5º C by 2100. Sugar maple (Acer saccharum), an economically important timber and syrup species, is not expected to be sustainable in its current range under projected future climate, while trembling aspen (Populus tremuloides) and red maple (Acer rubrum) are expected to react more favorably to climate change. The success of individual tree species is dependent on how climate change will alter a species environment in regards to water use. Climate change could potentially reduce available soil moisture, reducing potential transpiration within a forest. This dissertation had three objectives; 1) to investigate the effects of experimental soil warming and irrigation on transpiration rates of sugar maple over three growing seasons, 2) to investigate the effects of environmental drivers on water use of trembling aspen and red maple, and to 3) investigate the effects of wounding on the accuracy of sap flux estimates in heat dissipation sensors. Overall, we found that drought effects due to climate change could potentially decrease sugar maple productivity on drier sites within its current range. Further, trembling aspen had higher rates of transpiration, growth and water use efficiency than red maple indicating that trembling aspen may not react as unfavorably to climate change as expected. Finally, we found wounding effects caused an underestimation in sap flux data in sugar maple and trembling aspen when probes remained in trees for two years

    ARAS: an automated radioactivity aliquoting system for dispensing solutions containing positron-emitting radioisotopes.

    Get PDF
    BackgroundAutomated protocols for measuring and dispensing solutions containing radioisotopes are essential not only for providing a safe environment for radiation workers but also to ensure accuracy of dispensed radioactivity and an efficient workflow. For this purpose, we have designed ARAS, an automated radioactivity aliquoting system for dispensing solutions containing positron-emitting radioisotopes with particular focus on fluorine-18 ((18)F).MethodsThe key to the system is the combination of a radiation detector measuring radioactivity concentration, in line with a peristaltic pump dispensing known volumes.ResultsThe combined system demonstrates volume variation to be within 5 % for dispensing volumes of 20 Î¼L or greater. When considering volumes of 20 Î¼L or greater, the delivered radioactivity is in agreement with the requested amount as measured independently with a dose calibrator to within 2 % on average.ConclusionsThe integration of the detector and pump in an in-line system leads to a flexible and compact approach that can accurately dispense solutions containing radioactivity concentrations ranging from the high values typical of [(18)F]fluoride directly produced from a cyclotron (~0.1-1 mCi Î¼L(-1)) to the low values typical of batches of [(18)F]fluoride-labeled radiotracers intended for preclinical mouse scans (~1-10 Î¼Ci Î¼L(-1))

    The Geographic Distribution of Bowhead Whales, Balaena mysticetus, in the Bering, Chukchi, and Beaufort Seas: Evidence from Whaleship Records, 1849–1914

    Get PDF
    We have extracted, digitized, and analyzed information about bowhead whales, Balaena mysticetus, contained in records of whaling cruises that were undertaken in the Bering, Chukchi, and Beaufort Seas from 1849 to 1914. Our database consists of 65,000 days of observations which provide insights into whether this bowhead stock may comprise more than one population

    Flatworm-specific transcriptional regulators promote the specification of tegumental progenitors in Schistosoma mansoni

    Get PDF
    Schistosomes infect more than 200 million people. These parasitic flatworms rely on a syncytial outer coat called the tegument to survive within the vasculature of their host. Although the tegument is pivotal for their survival, little is known about maintenance of this tissue during the decades schistosomes survive in the bloodstream. Here, we demonstrate that the tegument relies on stem cells (neoblasts) to specify fusogenic progenitors that replace tegumental cells lost to turnover. Molecular characterization of neoblasts and tegumental progenitors led to the discovery of two flatworm-specific zinc finger proteins that are essential for tegumental cell specification. These proteins are homologous to a protein essential for neoblast-driven epidermal maintenance in free-living flatworms. Therefore, we speculate that related parasites (i.e., tapeworms and flukes) employ similar strategies to control tegumental maintenance. Since parasitic flatworms infect every vertebrate species, understanding neoblast-driven tegumental maintenance could identify broad-spectrum therapeutics to fight diseases caused by these parasites

    Comparative Study of Human and Mouse Postsynaptic Proteomes Finds High Compositional Conservation and Abundance Differences for Key Synaptic Proteins

    Get PDF
    Direct comparison of protein components from human and mouse excitatory synapses is important for determining the suitability of mice as models of human brain disease and to understand the evolution of the mammalian brain. The postsynaptic density is a highly complex set of proteins organized into molecular networks that play a central role in behavior and disease. We report the first direct comparison of the proteome of triplicate isolates of mouse and human cortical postsynaptic densities. The mouse postsynaptic density comprised 1556 proteins and the human one 1461. A large compositional overlap was observed; more than 70% of human postsynaptic density proteins were also observed in the mouse postsynaptic density. Quantitative analysis of postsynaptic density components in both species indicates a broadly similar profile of abundance but also shows that there is higher abundance variation between species than within species. Well known components of this synaptic structure are generally more abundant in the mouse postsynaptic density. Significant inter-species abundance differences exist in some families of key postsynaptic density proteins including glutamatergic neurotransmitter receptors and adaptor proteins. Furthermore, we have identified a closely interacting set of molecules enriched in the human postsynaptic density that could be involved in dendrite and spine structural plasticity. Understanding synapse proteome diversity within and between species will be important to further our understanding of brain complexity and disease
    • …
    corecore