5,997 research outputs found

    On the size of the Fe II emitting region in the AGN Akn 120

    Full text link
    We present a reverberation analysis of the strong, variable optical Fe II emission bands in the spectrum of Akn 120, a low-redshift AGN which is one of the best candidates for such a study. On time scales of several years the Fe II line strengths follow the variations in the continuum strength. However, we are unable to measure a clear reverberation lag time for these Fe II lines on any time scale. This is due to the very broad and flat-topped nature of the Fe II cross correlation functions, as compared to the H-beta response which is much more sharply localized in time. Although there is some suggestion in the light curve of a 300-day response time, our statistical analysis does not pick up such a feature. We conclude that the optical Fe II emission does not come from a photoionization-powered region similar in size to the H-beta emitting region, but we cannot say for sure where it does come from. Our results are generally consistent either with emission from a photoionized region several times larger than the H-beta zone, or with emission from gas heated by some other means, perhaps responding only indirectly to the continuum variations.Comment: Accepted for publication in the Ap

    The structure and radiation spectra of illuminated accretion discs in AGN. I. Moderate illumination

    Get PDF
    We present detailed computations of the vertical structure of an accretion disc illuminated by hard X-ray radiation with the code {\sc titan-noar} suitable for Compton thick media. The energy generated via accretion is dissipated partially in the cold disc as well as in the X-ray source. We study the differences between the case where the X-ray source is in the form of a lamp post above the accretion disc and the case of a heavy corona. We consider radiative heating via Comptonization together with heating via photo-absorption on numerous heavy elements as carbon, oxygen, silicon, iron. The transfer in lines is precisely calculated. A better description of the heating/cooling through the inclusion of line transfer, a correct description of the temperature in the deeper layers, a correct description of the entire disc vertical structure, as well as the study of the possible coronal pressure effect, constitute an improvement in comparison to previous works. We show that exact calculations of hydrostatic equilibrium and determination of the disc thickness has a crucial impact on the optical depth of the hot illuminated zone. We assume a moderate illumination where the viscous flux equals the X-ray radiation flux. A highly ionized skin is created in the lamp post model, with the outgoing spectrum containing many emission lines and ionization edges in emission or absorption in the soft X-ray domain, as well as an iron line at ∼7\sim 7 keV consisting of a blend of low ionization line from the deepest layers and hydrogen and helium like resonance line from the upper layers, and almost no absorption edge, contrary to the case of a slab of constant density.A full heavy corona completely suppresses the highly ionized zone on the top of the accretion disc and in such case the spectrum is featureless.Comment: 16 pages, 20 figures, corrected two sentences, accepted by MNRA

    Obscuration model of Variability in AGN

    Full text link
    There are strong suggestions that the disk-like accretion flow onto massive black hole in AGN is disrupted in its innermost part (10-100 Rg), possibly due to the radiation pressure instability. It may form a hot optically thin quasi spherical (ADAF) flow surrounded by or containing denser clouds due to the disruption of the disk. Such clouds might be optically thick, with a Thompson depth of order of 10 or more. Within the frame of this cloud scenario (Collin-Souffrin et al. 1996, Czerny & Dumont 1998), obscuration events are expected and the effect would be seen as a variability. We consider expected random variability due to statistical dispersion in location of clouds along the line of sight for a constant covering factor. We discuss a simple analytical toy model which provides us with the estimates of the mean spectral properties and variability amplitude of AGN, and we support them with radiative transfer computations done with the use of TITAN code of Dumont, Abrassart & Collin (1999) and NOAR code of Abrassart (1999).Comment: to appear in Proc. of 5th Compton Symposium on Gamma-Ray Astronomy and Astrophysic

    Strongly Enhanced Spin Squeezing via Quantum Control

    Full text link
    We describe a new approach to spin squeezing based on a double-pass Faraday interaction between an optical probe and an optically dense atomic sample. A quantum eraser is used to remove residual spin-probe entanglement, thereby realizing a single-axis twisting unitary map on the collective spin. This interaction can be phase-matched, resulting in exponential enhancement of squeezing. In practice the scaling and peak squeezing depends on decoherence, technical loss, and noise. A simplified model indicates ~10 dB of squeezing should be achievable with current laboratory parameters.Comment: 4 pages, 2 figures

    The Gut Microbiome in Neuromyelitis Optica.

    Get PDF
    Neuromyelitis optica (NMO) is a rare, disabling, sometimes fatal central nervous system inflammatory demyelinating disease that is associated with antibodies ("NMO IgG") that target the water channel protein aquaporin-4 (AQP4) expressed on astrocytes. There is considerable interest in identifying environmental triggers that may elicit production of NMO IgG by AQP4-reactive B cells. Although NMO is considered principally a humoral autoimmune disease, antibodies of NMO IgG are IgG1, a T-cell-dependent immunoglobulin subclass, indicating that AQP4-reactive T cells have a pivotal role in NMO pathogenesis. When AQP4-specific proliferative T cells were first identified in patients with NMO it was discovered that T cells recognizing the dominant AQP4 T-cell epitope exhibited a T helper 17 (Th17) phenotype and displayed cross-reactivity to a homologous peptide sequence within a protein of Clostridium perfringens, a commensal bacterium found in human gut flora. The initial analysis of gut microbiota in NMO demonstrated that, in comparison to healthy controls (HC) and patients with multiple sclerosis, the microbiome of NMO is distinct. Remarkably, C. perfringens was the second most significantly enriched taxon in NMO, and among bacteria identified at the species level, C. perfringens was the one most highly associated with NMO. Those discoveries, along with evidence that certain Clostridia in the gut can regulate the balance between regulatory T cells and Th17 cells, indicate that gut microbiota, and possibly C. perfringens itself, could participate in NMO pathogenesis. Collectively, the evidence linking microbiota to humoral and cellular immunity in NMO underscores the importance for further investigating this relationship

    Evidence for Supermassive Black Holes in Active Galactic Nuclei from Emission-Line Reverberation

    Get PDF
    Emission-line variability data for Seyfert 1 galaxies provide strong evidence for the existence of supermassive black holes in the nuclei of these galaxies, and that the line-emitting gas is moving in the gravitational potential of that black hole. The time-delayed response of the emission lines to continuum variations is used to infer the size of the line-emitting region, which is then combined with measurements of the Doppler widths of the variable line components to estimate a virial mass. In the case of the best-studied galaxy, NGC 5548, various emission lines spanning an order of magnitude in distance from the central source show the expected velocity proportional to inverse square root of the distance correlation between distance and line width, and are thus consistent with a single value for the mass. Two other Seyfert galaxies, NGC 7469 and 3C 390.3, show a similar relationship. We compute the ratio of luminosity to mass for these three objects and the narrow-line Seyfert 1 galaxy NGC 4051 and find that that the gravitational force on the line-emitting gas is much stronger than radiation pressure. These results strongly support the paradigm of gravitationally bound broad emission-line region clouds.Comment: 10 pages, 2 figures, Accepted for publication in Astrophysical Journal Letter

    From academic communities to managed organisations: the implications for academic careers in UK and German universities

    Get PDF
    This paper examines the implications for academic careers of the apparent global trend towards marketisation and managerialism in higher education with reference to the UK and Germany. It discusses how university employers might exercise greater control over their employees, privileging research and international publication, and fragmenting the traditional unity of the academic role. The effect is to challenge the values of academic communities, subject individuals to greater uncertainty, competition and insecurity, and influence the shape and direction of academic careers. The paper notes how todays academic careers could be understood in terms of Kanters three forms of career as well as the boundaryless and protean career. However, it argues that these approaches do not address the key issue in both the UK and German cases: the changed locus and exercise of power within the employment relationship. It concludes that, to understand how careers are changing, this power relationship and the context of career in general have to be taken into account
    • …
    corecore