10 research outputs found

    Colloidal ruthenium catalysts for selective quinaldine hydrogenation: Ligand and solvent effects

    No full text
    International audienceColloidal Ru nanoparticles (NP) display interesting catalytic properties for the hydrogenation of (hetero)arenes as they proceed efficiently in mild reaction conditions. In this work, a series of Ru based materials was used in order to selectively hydrogenate quinaldine and assess the impact of the stabilizing agent on their catalytic performances. Ru nanoparticles stabilized with polyvinylpyrrolidone (PVP) and 1‐adamantanecarboxylic acid (AdCOOH) allowed to obtain 5,6,7,8‐tetrahydroquinaldine with a remarkable selectivity in mild reaction conditions by choosing the suitable solvent. The presence of a carboxylate ligand on the surface of the Ru NP led to an increase in the activity when compared to Ru/PVP catalyst. The stabilizing agent had also an impact on the selectivity, as carboxylate ligand modified catalysts promoted the selectivity towards 1,2,3,4‐tetrahydroquinaldine, with bulky carboxylate displaying the highest ones

    In Situ Ruthenium Catalyst Modification for the Conversion of Furfural to 1,2-Pentanediol

    No full text
    International audienceExploiting biomass to synthesise compounds that may replace fossil-based ones is of high interest in order to reduce dependence on non-renewable resources. 1,2-pentanediol and 1,5-pentanediol can be produced from furfural, furfuryl alcohol or tetrahydrofurfuryl alcohol following a metal catalysed hydrogenation/C-O cleavage procedure. Colloidal ruthenium nanoparticles stabilized with polyvinylpyrrolidone in situ modified with different organic compounds are able to produce 1,2-pentanediol directly from furfural in a 36% of selectivity at 125 °C under 20 bar of H2 pressure

    Organometallic preparation of Ni, Pd, and Nipd nanoparticles for the design of supported nanocatalysts

    No full text
    FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQThe preparation of bimetallic nanoparticles with controlled size, shape, and composition remains a difficult task, and reproducible methods are highly desired. Here, we report the codecomposition of Ni(cod)2 and Pd 2(dba)3 organometallic precursors in the presence of hexadecylamine (HDA) and hydrogen as an efficient approach to get size-controlled bimetallic nickel-palladium nanoparticles. Presynthesized nickel-palladium nanoparticles of different Ni/Pd ratios were further used for the preparation of supported catalysts by the sol-immobilization method onto a magnetic silica. The obtained supported catalysts were investigated in the hydrogenation of cyclohexene and compared to Ni and Pd monometallic catalysts. The catalysts prepared with a 1:9 Ni/Pd molar ratio achieved the highest initial turnover frequency > 50000 h-1, providing higher activity than the pure Pd monometallic counterpart. This represents an important saving of noble metal. Moreover, the magnetic separation allows excellent separation of the catalyst from the liquid products without metal leaching and exposure to air, leading to an efficient recycling. © 2014 American Chemical Society.The preparation of bimetallic nanoparticles with controlled size, shape, and composition remains a difficult task, and reproducible methods are highly desired. Here, we report the codecomposition of Ni(cod)2 and Pd 2(dba)3 organometallic precursors in the presence of hexadecylamine (HDA) and hydrogen as an efficient approach to get size-controlled bimetallic nickel-palladium nanoparticles. Presynthesized nickel-palladium nanoparticles of different Ni/Pd ratios were further used for the preparation of supported catalysts by the sol-immobilization method onto a magnetic silica. The obtained supported catalysts were investigated in the hydrogenation of cyclohexene and compared to Ni and Pd monometallic catalysts. The catalysts prepared with a 1:9 Ni/Pd molar ratio achieved the highest initial turnover frequency > 50000 h-1, providing higher activity than the pure Pd monometallic counterpart. This represents an important saving of noble metal. Moreover, the magnetic separation allows excellent separation of the catalyst from the liquid products without metal leaching and exposure to air, leading to an efficient recycling.4617351742FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQSem informação695/10Sem informaçãoRichards, R., Koodali, R., Klabunde, K., Erickson, L., (2011) Nanoscale Materials in Chemistry: Environmental Application, , ACS Publications: Washington DCSchmid, G., (2012) Nanoparticles: From Theory to Application, , 2 nd ed. Wiley-VCH: WeinheimYamamoto, T.A., Kageyama, S., Seino, S., Nitani, H., Nakagawa, T., Horioka, R., Honda, Y., Daimon, H., (2011) Appl. Catal., A, 396, pp. 68-75Wei, Y.-C., Liu, C.-W., Chang, W.-J., Wang, K.-W., (2011) J. Alloys Compd., 509, pp. 535-541Somorjai, G.A., Frei, H., Park, J.Y., (2009) J. Am. Chem. Soc., 131, pp. 16589-16605Philippot, K., Serp, P., (2013) Concepts in Nanocatalysis, , Wiley-VCH: WeinheimLiu, M., Zhang, J., Liu, J., Yu, W.W., (2011) J. Catal., 278, pp. 1-7Jeon, T.-Y., Lee, K.-S., Yoo, S.J., Cho, Y.-H., Kang, S.H., Sung, Y.-E., (2010) Langmuir, 26, pp. 9123-9129Chen, T.-Y., Lin, T.-L., Luo, T.-J.M., Choi, Y., Lee, J.-F., (2010) ChemPhysChem, 11, pp. 2383-2392Chen, C.-H., Sarma, L.S., Wang, D.-Y., Lai, F.-J., Al Andra, C.-C., Chang, S.-H., Liu, D.-G., Hwang, B.-J., (2010) ChemCatChem., 2, pp. 159-166Murthy, A., Manthiram, A., (2011) Electrochem. Commun., 13, pp. 310-313Wang, D., Li, Y., (2011) Adv. Mater., 23, pp. 1044-1060Li, C., Shao, Z., Pang, M., Williams, C.T., Zhang, X., Liang, C., (2012) Ind. Eng. Chem. Res., 51, pp. 4934-4941Dehm, N.A., Zhang, X., Buriak, J.M., (2010) Inorg. Chem., 49, pp. 2706-2714Arakawa, T., Seki, H., Ohshima, M.-A., Kurokawa, H., Miura, H., (2009) Bull. Chem. Soc. Jpn., 82, pp. 627-629Astruc, D., (2008) Nanoparticles and Catalysis, , Wiley-VCH: WeinheimRoucoux, A., Schulz, J., Patin, H., (2002) Chem. Rev., 102, pp. 3757-3778Sanchez-Dominguez, M., Pemartin, K., Boutonnet, M., (2012) Curr. Opin. Colloid Interface Sci., 17, pp. 297-305Liu, X.W., Wang, D.S., Li, Y.D., (2012) Nano Today, 7, pp. 448-466Kalidindi, S.B., Sanyal, U., Jagirdar, B.R., (2011) ChemSusChem, 4, pp. 317-324Phillipot, K., Chaudret, B., (2007) Comprehensive Organometallic Chemistry III, p. 71. , Crabtree, R. H. Mingos, M. P. Elsevier: AmsterdamLara, P., Philippot, K., Chaudret, B., (2013) ChemCatChem., 5, pp. 28-45Kinayyigit, S., Lara, P., Lecante, P., Philippot, K., Chaudret, B., (2014) Nanoscale, 6, pp. 539-546Matsura, V., Guari, Y., Reye, C., Corriu, R.J.P., Tristany, M., Jansat, S., Philippot, K., Chaudret, B., (2009) Adv. Funct. Mater., 19, pp. 3781-3787Garcia-Suarez, E.J., Tristany, M., Garcia, A.B., Colliere, V., Philippot, K., (2012) Microporous Mesoporous Mater., 153, pp. 155-162Chaudret, B., Philippot, K., (2007) Oil Gas Sci. Technol., 62, pp. 799-817Castillejos, E., Debouttiere, P.-J., Roiban, L., Solhy, A., Martinez, V., Kihn, Y., Ersen, O., Serp, P., (2009) Angew. Chem., Int. Ed., 48, pp. 2529-2533Gates, B.C., (1995) Chem. Rev., 95, pp. 511-522Davis, S.E., Ide, M.S., Davis, R.J., (2013) Green Chem., 15, pp. 17-45Campelo, J.M., Luna, D., Luque, R., Marinas, J.M., Romero, A.A., (2009) ChemSusChem, 2, pp. 18-45Garcia-Suarez, E.J., Balu, A.M., Tristany, M., Garcia, A.B., Philippot, K., Luque, R., (2012) Green Chem., 14, pp. 1434-1439Costa, N.J.S., Jardim, R.F., Masunaga, S.H., Zanchet, D., Landers, R., Rossi, L.M., (2012) ACS Catal., 2, pp. 925-929Guerrero, M., Costa, N.J.S., Vono, L.L.R., Rossi, L.M., Gusevskaya, E.V., Philippot, K., (2013) J. Mater. Chem. A, 1, pp. 1441-1449Jacinto, M.J., Kiyohara, P.K., Masunaga, S.H., Jardim, R.F., Rossi, L.M., (2008) Appl. Catal. A-Gen., 338, pp. 52-57Cordente, N., Respaud, M., Senocq, F., Casanove, M.J., Amiens, C., Chaudret, B., (2001) Nano Lett., 1, pp. 565-568Ramirez, E., Jansat, S., Philippot, K., Lecante, P., Gomez, M., Masdeu-Bulto, A.M., Chaudret, B., (2004) J. Organomet. Chem., 689, pp. 4601-4610Shylesh, S., Schuenemann, V., Thiel, W.R., (2010) Angew. Chem., Int. Ed., 49, pp. 3428-3459Rossi, L.M., Garcia, M.A.S., Vono, L.L.R., (2012) J. Brazil. Chem. Soc., 23, pp. 1959-1971Polshettiwar, V., Luque, R., Fihri, A., Zhu, H., Bouhrara, M., Bassett, J.-M., (2011) Chem. Rev., 111, pp. 3036-3075Jacinto, M.J., Silva, F.P., Kiyohara, P.K., Landers, R., Rossi, L.M., (2012) ChemCatChem., 4, pp. 698-703Oliveira, R.L., Zanchet, D., Kiyohara, P.K., Rossi, L.M., (2011) Chem. - Eur. J., 17, pp. 4626-4631Neves, A.C.B., Calvete, M.J.F., Pinho Melo, E.T.M.V.D., Pereira, M.M., (2012) Eur. J. Org. Chem., 2012, pp. 6309-6320Collis, A.E.C., Horvath, I.T., (2011) Catal. Sci. Technol., 1, pp. 912-919Costa, N.J.S., Rossi, L.M., (2012) Nanoscale, 4, pp. 5826-5834Chen, Y., Peng, D.-L., Lin, D., Luo, X., (2007) Nanotechnology, 18, p. 505703Cullity, B.D., Graham, C.D., (2009) Introduction to Magnetic Materials, , 2 nd ed, John Wiley & Son: Hoboken, NJFischer, G., Herr, A., Meyer, A.J.P., (1968) J. Appl. Phys., 39, pp. 545-546Chouteau, G., Fourneau, R., Gobrecht, K., Tournier, R., (1968) Phys. Rev. Lett., 20, pp. 193-195Crangle, J., Scott, W.R., (1965) J. Appl. Phys., 36, pp. 921-927Moulder, J.F., Stickle, W.F., Sobol, P.E., Bomben, K.D., (1979) Handbook of X-ray Photoelectron Spectroscopy Physical Electronics, p. 80. , Perkin-Elmer Corporation Physical Electronics Division: Eden Prairie, Minnesota, p, 110Damyanova, S., Pawelec, B., Arishtirova, K., Fierro, J.L.G., (2011) Int. J. Hydrogen Energy, 36, pp. 10635-10647Li, R., Wei, Z., Huang, T., Yu, A., (2011) Electrochim. Acta, 56, pp. 6860-6865Wang, L.G., Zunger, A., (2003) Phys. Rev. B, 67, p. 092103Watzky, M.A., Finke, R.G., (1997) J. Am. Chem. Soc., 119, pp. 10382-10400Besson, C., Finney, E.E., Finke, R.G., (2005) J. Am. Chem. Soc., 127, pp. 8179-8184Besson, C., Finney, E.E., Finke, R.G., (2005) Chem. Mater., 17, pp. 4925-4938Moulijn, J.A., Van Leeuwn, P.W.N.M., Van Santen, R.A., (1993) Catalysis: An Integrated Approach to Homogeneous, Heterogeneous and Industrial Catalysis, , Elsevier: AmsterdamBatirev, I.G., Leiro, J.A., (1995) J. Electron Spectrosc., 71, pp. 79-86Hermann, P., Tardy, B., Simon, D., Guigner, J.M., Bigot, B., Bertolini, J.C., (1994) Surf. Sci., 307, pp. 422-427Hermann, P., Simon, D., Sautet, P., Bigot, B., (1997) J. Catal., 167, pp. 33-42Hermann, P., Guigner, J.M., Tardy, B., Jugnet, Y., Simon, D., Bertolini, J.C., (1996) J. Catal., 163, pp. 169-175Bertolini, J.C., Miegge, P., Hermann, P., Rousset, J.L., Tardy, B., (1995) Surf. Sci., 331, pp. 651-658Filhol, J.S., Simon, D., Sautet, P., (2001) Surf. Sci., 472, pp. L139-L144Filhol, J.S., Saint-Lager, M.C., De Santis, M., Dolle, P., Simon, D., Baudoing-Savois, R., Bertolini, J.C., Sautet, P., (2002) Phys. Rev. Lett., 89, p. 146106Knecht, M.R., Pacardo, D.B., (2010) Anal. Bioanal. Chem., 397, pp. 1137-1155Nunomura, N., Hori, H., Teranishi, T., Miyake, M., Yamada, S., (1998) Phys. Lett. A, 249, pp. 524-530Carazzolle, M.F., Maluf, S.S., De Siervo, A., Nascente, P.A.P., Landers, R., Kleiman, G.G., (2007) J. Electron Spectrosc., 156, pp. 405-408Massard, R., Uzio, D., Thomazeau, C., Pichon, C., Rousset, J.L., Bertolini, J.C., (2007) J. Catal., 245, pp. 133-143The authors would like to thank the Brazilian agencies FAPESP, CAPES, and CNPq for their financial support. The support received from the International Cooperation Program CAPES-COFECUB (grant 695/10) and CNRS is also appreciated. Additionally, LNNano-CNPEM (Campinas, Brazil) and TEMSCAN-UPS (Toulouse, France) are acknowledged for the use of their TEM/HRTEM facilities. The authors would like to thank Dr., Renato F. Jardim and Dr. Sueli H. Masunaga (Instituto de Fisica-Universidade de Sao Paulo) for discussions on magnetic measurement data

    Nursing values as social practice: a qualitative meta-synthesis

    No full text
    OBJECTIVE: to identify values which structure and guide nursing as social practice. METHOD: qualitative meta-synthesis. RESULTS: three concepts were identified: The tension between technique, organization and ethics in the nurse's practice; Historical carry-overs of the values which run through nursing practice; Attention to ethics, to reform of the health system, and to the humanization of care. These led to the synthesis of the principal variables 'planning' and 'care', which represent, respectively, guiding values of the technical-operative and ethical-moral elements of the social practice of nursing. CONCLUSION: these values are articulated through the prism of ordering so as to care well. Their recognition contributed to a better understanding of the process of health care and nursing care
    corecore