2,436 research outputs found
NooLib - A web application for Research
NooLib is a web application which enables to host and promote your own algorithms for Research. With NooLib, you can easily deposit your programs written in C/C++/Js/Java/Php or Python and transform them into an useful application. Interact smartly with others applications and share your results with people
Asymmetric trehalose analogues to probe disaccharide processing pathways in mycobacteria
The uptake and metabolism of the disaccharide trehalose by Mycobacterium tuberculosis is essential for the virulence of this pathogen. Here we describe the chemoenzymatic synthesis of new azido-functionalised asymmetric trehalose probes that resist degradation by mycobacterial enzymes and are used to probe trehalose processing pathways in mycobacteria
Modeling and interpretation of the bioelectrical impedance signal for the determination of the local arterial stiffness
Purpose: Stiffness of the large arteries (e.g., aorta) plays an important role in the pathogenesis of cardiovascular diseases. To date, the reference method for the determination of regional arterial stiffness is the measurement of the carotid-femoral pulse wave velocity (PWV) by tonometric techniques. However, this method suffers from several drawbacks and it remains limited in clinical routine.Methods: In the present study, the authors propose a new method based on the analysis of bioelectrical impedance (BI) signals for the determination of the local arterial stiffness. They show, from a theoretical model, a novel interpretation of the BI signals and they establish the relationship between the variations in the BI signal and the kinetic energy of the blood flow in large arteries. From this model, BI signals are simulated in the thigh and compared to experimental BI data. Finally, from the model, they propose a new index ( Ira ) related to the properties of the large artery for the determination of the local arterial stiffness. Results: The results show a good correlation between the simulated and the experimental BI signals. The same variations for both of them with different characteristics for rigid and elasticarteries can be observed. The measurement of the Ira index on 20 subjects at rest (mean age of 44 ± 16 yr ) for the determination of the local aortic stiffness presents a significant correlation with the PWV reference method ( R 2 = 0.77 ; P < 0.0001 with the Spearman correlation coefficient and Ira = 4.25 * PWV + 23.54 ). Conclusions: All the results suggest that the theoretical model and the new index could give a reliable estimate of local arterial stiffness
Colorful Strips
Given a planar point set and an integer , we wish to color the points with
colors so that any axis-aligned strip containing enough points contains all
colors. The goal is to bound the necessary size of such a strip, as a function
of . We show that if the strip size is at least , such a coloring
can always be found. We prove that the size of the strip is also bounded in any
fixed number of dimensions. In contrast to the planar case, we show that
deciding whether a 3D point set can be 2-colored so that any strip containing
at least three points contains both colors is NP-complete.
We also consider the problem of coloring a given set of axis-aligned strips,
so that any sufficiently covered point in the plane is covered by colors.
We show that in dimensions the required coverage is at most .
Lower bounds are given for the two problems. This complements recent
impossibility results on decomposition of strip coverings with arbitrary
orientations. Finally, we study a variant where strips are replaced by wedges
Time and Spatial Invariance of Impedance Signals in Limbs of Healthy Subjects by Time–Frequency Analysis
The bioelectric impedance technique is a non-invasive method that provides the analysis of blood volume changes in the arteries. This is made possible by an interpretation of the impedance signal variations. In this paper, time and spatial variations of such impedance signals are studied on recordings made on limbs of 15 healthy subjects at rest. For that purpose, the scalogram of each signal has been computed and quantitative measures based on energies were determined. The results show that the signals are statistically time invariant on three anatomical segments of the limbs: pelvis, thigh and calf. p Value varies between 0.20 and 0.52 for the absolute energies computed on scalograms of signals recorded at 5 min intervals. Moreover, the analysis made on the two legs of each subject shows that the signals are spatial invariant on the three anatomical segments. p Value varies between 0.0785 and 1.000 for the absolute energies computed on the scalograms of signals recorded simultaneously on the two legs. These conclusions will therefore help the clinicians in studying the temporal variations of physiological parameters on limbs with the impedance technique. Moreover, the results on the spatial invariance make possible the comparisons of these parameters with those given by other acquisition techniques
Sost and its paralog Sostdc1 coordinate digit number in a Gli3-dependent manner.
WNT signaling is critical in most aspects of skeletal development and homeostasis, and antagonists of WNT signaling are emerging as key regulatory proteins with great promise as therapeutic agents for bone disorders. Here we show that Sost and its paralog Sostdc1 emerged through ancestral genome duplication and their expression patterns have diverged to delineate non-overlapping domains in most organ systems including musculoskeletal, cardiovascular, nervous, digestive, reproductive and respiratory. In the developing limb, Sost and Sostdc1 display dynamic expression patterns with Sost being restricted to the distal ectoderm and Sostdc1 to the proximal ectoderm and the mesenchyme. While Sostdc1(-/-) mice lack any obvious limb or skeletal defects, Sost(-/-) mice recapitulate the hand defects described for Sclerosteosis patients. However, elevated WNT signaling in Sost(-/-); Sostdc1(-/-) mice causes misregulation of SHH signaling, ectopic activation of Sox9 in the digit 1 field and preaxial polydactyly in a Gli1- and Gli3-dependent manner. In addition, we show that the syndactyly documented in Sclerosteosis is present in both Sost(-/-) and Sost(-/-); Sostdc1(-/-) mice, and is driven by misregulation of Fgf8 in the AER, a region lacking Sost and Sostdc1 expression. This study highlights the complexity of WNT signaling in skeletal biology and disease and emphasizes how redundant mechanism and non-cell autonomous effects can synergize to unveil new intricate phenotypes caused by elevated WNT signaling
Carotid-femoral pulse wave velocity estimated by an ultrasound system
To date, regional aortic stiffness can be evaluated by the reference tonometric technique via the pulse wave velocity (PWV) measured in two points: the carotid and the femoral arteries. Based on a similar intersecting tangent algorithm, we have developed a new method for the determination of carotid-femoral PWV using a high-resolution echo tracking ultrasound system. Herein, PWV can be computed from the measurement of the transit time between the foot of the carotid diameter waveform and the foot of the femoral diameter waveform.
The study was carried out on 50 consecutive patients at rest (29 men, mean age 30 ± 18 yrs) recruited on the occasion of a vascular screening for atherosclerosis. Carotid-femoral PWV was determined by a trained operator using a tonometric technique, (PWVpp, PulsePen, Italy), and an echotracking ultrasound system, (PWVus, e-tracking Alpha 10, Aloka, Japan). Relationship between PWVpp and PWVus was evaluated by linear regression.
A Pearson’s correlation coefficient of r=0.95 was found between both variables (95% confidence interval 0.90-0.99; P<0.0001; PWVus= 0,91*PWVpp+0.44). The Bland–Altman plot comparing PWVpp and PWVus showed a systematic offset of -0.07 m.s-1 with a limit of agreement from -1,33 to 1,19 m.s-1.
Our results show an excellent and significant correlation between both techniques which confirms that ultrasound system can provide a reliable estimate of the regional aortic stiffness like the tonometric technique does. Additional studies are now needed to show the simplicity of the measurement using ultrasound system while maintaining reliability even in overweight patients
Alzheimer' Disease as a Disconnection Syndrome?
This paper reviews the growing amount of evidence supporting the hypothesis that Alzheimer's disease includes a disconnection syndrome. This evidence came mainly from neuropathological, electrophysiological, and neuroimaging studies. Moreover, a few recent neuropsychological studies have also explored the effects of a disconnection between cerebral areas on cognitive functioning. Finally, and more generally, the contribution of this interpretation to the understanding of Alzheimer's disease cognitive deficits is considere
- …