323 research outputs found
Extensional tectonics and collapse structures in the Suez Rift (Egypt)
The Suez Rift is a 300 km long and 50 to 80 km wide basin which cuts a granitic and metamorphic shield of Precambrian age, covered by sediments of Paleozoic to Paleogene age. The rift structure is dominated by tilted blocks bounded by NW-SE normal faults. The reconstruction of the paleostresses indicates a N 050 extension during the whole stage of rifting. Rifting began 24 My ago with dikes intrusions; main faulting and subsidence occurred during Early Miocene producing a 80 km wide basin (Clysmic Gulf). During Pliocene and Quaternary times, faulting is still active but subsidence is restricted to a narrower area (Present Gulf). On the Eastern margin of the gulf, two sets of fault trends are predominant: (1) N 140 to 150 E faults parallel to the gulf trend with pure dip-slip displacement; and (2) cross faults, oriented NOO to N 30 E that have a strike-slip component consistent with the N 050 E distensive stress regime. The mean dip cross fault is steeper (70 to 80 deg) than the dip of the faults parallel to the Gulf (30 to 70 deg). These two sets of fault define diamond shaped tilted block. The difference of mechanical behavior between the basement rocks and the overlying sedimentary cover caused structural disharmony and distinct fault geometries
Atomic and Electronic Structure of a Rashba - Junction at the BiTeI Surface
The non-centrosymmetric semiconductor BiTeI exhibits two distinct surface
terminations that support spin-split Rashba surface states. Their ambipolarity
can be exploited for creating spin-polarized - junctions at the
boundaries between domains with different surface terminations. We use scanning
tunneling microscopy/spectroscopy (STM/STS) to locate such junctions and
investigate their atomic and electronic properties. The Te- and I-terminated
surfaces are identified owing to their distinct chemical reactivity, and an
apparent height mismatch of electronic origin. The Rashba surface states are
revealed in the STS spectra by the onset of a van Hove singularity at the band
edge. Eventually, an electronic depletion is found on interfacial Te atoms,
consistent with the formation of a space charge area in typical -
junctions.Comment: 5 pages, 4 figure
Giant alkali-metal-induced lattice relaxation as the driving force of the insulating phase of alkali-metal/Si(111):B
Ab initio density-functional theory calculations, photoemission spectroscopy (PES), scanning tunneling microscopy, and spectroscopy (STM, STS) have been used to solve the 2√3 x 2√3R30 surface reconstruction observed previously by LEED on 0.5 ML K/Si:B. A large K-induced vertical lattice relaxation occurring only for 3/4 of Si adatoms is shown to quantitatively explain both the chemical shift of 1.14 eV and the ratio 1/3 measured on the two distinct B 1s core levels. A gap is observed between valence and conduction surface bands by ARPES and STS which is shown to have mainly a Si-B character. Finally, the calculated STM images agree with our experimental results. This work solves the controversy about the origin of the insulating ground state of alkali-metal/Si(111):B semiconducting interfaces which were believed previously to be related to many-body effectsThis work has received the financial support of the French ANR SURMOTT program (ANR-09-BLAN- 0210-01) and the Spanish MICIIN under Project No. FIS2010-1604
- …