490 research outputs found

    Single-bubble and multi-bubble cavitation in water triggered by laser-driven focusing shock waves

    Full text link
    In this study a single laser pulse spatially shaped into a ring is focused into a thin water layer, creating an annular cavitation bubble and cylindrical shock waves: an outer shock that diverges away from the excitation laser ring and an inner shock that focuses towards the center. A few nanoseconds after the converging shock reaches the focus and diverges away from the center, a single bubble nucleates at the center. The inner diverging shock then reaches the surface of the annular laser-induced bubble and reflects at the boundary, initiating nucleation of a tertiary bubble cloud. In the present experiments, we have performed time-resolved imaging of shock propagation and bubble wall motion. Our experimental observations of single-bubble cavitation and collapse and appearance of ring-shaped bubble clouds are consistent with our numerical simulations that solve a one dimensional Euler equation in cylindrical coordinates. The numerical results agree qualitatively with the experimental observations of the appearance and growth of bubble clouds at the smallest laser excitation rings. Our technique of shock-driven bubble cavitation opens novel perspectives for the investigation of shock-induced single-bubble or multi-bubble cavitation phenomena in thin liquids

    The broad-line type Ic SN 2020bvc: signatures of an off-axis gamma-ray burst afterglow

    Full text link
    Long-duration gamma-ray bursts (GRBs) are almost unequivocally associated with very energetic, broad-lined supernovae (SNe) of Type Ic-BL. While the gamma-ray emission is emitted in narrow jets, the SN emits radiation isotropically. Therefore, some SN Ic-BL not associated with GRBs have been hypothesized to arise from events with inner engines such as off-axis GRBs or choked jets. Here we present observations of the nearby (d=120d = 120 Mpc) SN 2020bvc (ASAS-SN 20bs) which support this scenario. \textit{Swift} UVOT observations reveal an early decline (up to two days after explosion) while optical spectra classify it as a SN Ic-BL with very high expansion velocities (\approx 70,000 km/s), similar to that found for the jet-cocoon emission in SN 2017iuk associated with GRB 171205A. Moreover, \textit{Swift} X-Ray Telescope and \textit{CXO} X-ray Observatory detected X-ray emission only three days after the SN and decaying onwards, which can be ascribed to an afterglow component. Cocoon and X-ray emission are both signatures of jet-powered GRBs. In the case of SN 2020bvc, we find that the jet is off axis (by \approx 23 degrees), as also indicated by the lack of early (1\approx 1 day) X-ray emission which explains why no coincident GRB was detected promptly or in archival data. These observations suggest that SN 2020bvc is the first orphan GRB detected through its associated SN emission.Comment: 9 pages, 6 figures, 5 tables. Accepted for publication in A&

    Cohesive properties of alkali halides

    Full text link
    We calculate cohesive properties of LiF, NaF, KF, LiCl, NaCl, and KCl with ab-initio quantum chemical methods. The coupled-cluster approach is used to correct the Hartree-Fock crystal results for correlations and to systematically improve cohesive energies, lattice constants and bulk moduli. After inclusion of correlations, we recover 95-98 % of the total cohesive energies. The lattice constants deviate from experiment by at most 1.1 %, bulk moduli by at most 8 %. We also find good agreement for spectroscopic properties of the corresponding diatomic molecules.Comment: LaTeX, 10 pages, 1 figure, accepted by Phys. Rev.

    Parameterized optimized effective potential for atoms

    Full text link
    The optimized effective potential equations for atoms have been solved by parameterizing the potential. The expansion is tailored to fulfill the known asymptotic behavior of the effective potential at both short and long distances. Both single configuration and multi configuration trial wave functions are implemented. Applications to several atomic systems are presented improving previous works. The results here obtained are very close to those calculated in either the Hartree-Fock and the multi configurational Hartree-Fock framework.Comment: 8 pages, 3 figure

    Deciphering the unusual stellar progenitor of GRB 210704A

    Full text link
    GRB~210704A is a burst of intermediate duration (T9014T_{90} \sim 1-4~s) followed by a fading afterglow and an optical excess that peaked about 7 days after the explosion. Its properties, and in particular those of the excess, do not easily fit into the well established classification scheme of GRBs as being long or short, leaving the nature of its progenitor uncertain. We present multi-wavelength observations of the GRB and its counterpart, observed up to 160 days after the burst. In order to decipher the nature of the progenitor system, we present a detailed analysis of the GRB high-energy properties (duration, spectral lag, and Amati correlation), its environment, and late-time optical excess. We discuss three possible scenarios: a neutron star merger, a collapsing massive star, and an atypical explosion possibly hosted in a cluster of galaxies. We find that traditional kilonova and supernova models do not match well the properties of the optical excess, leaving us with the intriguing suggestion that this event was an exotic high-energy merger.Comment: Revised version submitted to MNRAS after minor comments, 14 pages, 9 figure

    Physically-based Assessment of Hurricane Surge Threat under Climate Change

    Get PDF
    Storm surges are responsible for much of the damage and loss of life associated with landfalling hurricanes. Understanding how global warming will affect hurricane surges thus holds great interest. As general circulation models (GCMs) cannot simulate hurricane surges directly, we couple a GCM-driven hurricane model with hydrodynamic models to simulate large numbers of synthetic surge events under projected climates and assess surge threat, as an example, for New York City (NYC). Struck by many intense hurricanes in recorded history and prehistory, NYC is highly vulnerable to storm surges. We show that the change of storm climatology will probably increase the surge risk for NYC; results based on two GCMs show the distribution of surge levels shifting to higher values by a magnitude comparable to the projected sea-level rise (SLR). The combined effects of storm climatology change and a 1 m SLR may cause the present NYC 100-yr surge flooding to occur every 3–20 yr and the present 500-yr flooding to occur every 25–240 yr by the end of the century.United States. National Oceanic and Atmospheric Administration (Postdoctoral Fellowship Program)National Science Foundation (U.S.

    Understanding the Nature of the Optical Emission in Gamma-Ray Bursts: Analysis from TAROT, COATLI, and RATIR Observations

    Full text link
    We collected the optical light curve data of 227 gamma-ray bursts (GRBs) observed with the TAROT, COATLI, and RATIR telescopes. These consist of 133 detections and 94 upper limits. We constructed average light curves in the observer and rest frames in both X-rays (from {\itshape Swift}/XRT) and in the optical. Our analysis focused on investigating the observational and intrinsic properties of GRBs. Specifically, we examined observational properties, such as the optical brightness function of the GRBs at T=1000T=1000 seconds after the trigger, as well as the temporal slope of the afterglow. We also estimated the redshift distribution for the GRBs within our sample. Of the 227 GRBs analysed, we found that 116 had a measured redshift. Based on these data, we calculated a local rate of ρ0=0.2\rho_0=0.2 Gpc3^{-3} yr1^{-1} for these events with z<1z<1. To explore the intrinsic properties of GRBs, we examined the average X-ray and optical light curves in the rest frame. We use the {\scshape afterglowpy} library to generate synthetic curves to constrain the parameters typical of the bright GRB jet, such as energy (E01053.6{\langle} {E_{0}}{\rangle}\sim 10^{53.6}~erg), opening angle (θcore0.2{\langle}\theta_\mathrm{core}{\rangle}\sim 0.2~rad), and density (n0102.1{\langle}n_\mathrm{0}{\rangle}\sim10^{-2.1} cm3^{-3}). Furthermore, we analyse microphysical parameters, including the fraction of thermal energy in accelerated electrons (ϵe101.37{\langle}\epsilon_e{\rangle}\sim 10^{-1.37}) and in the magnetic field (ϵB102.26{\langle}\epsilon_B{\rangle}\sim10^{-2.26}), and the power-law index of the population of non-thermal electrons (p2.2{\langle}p{\rangle}\sim 2.2).Comment: Resubmitted to MNRAS after minor revision, 13 pages and 9 figure

    Modeling the high-energy emission in GRB 110721A and implications on the early multiwavelength and polarimetric observations

    Get PDF
    GRB 110721A was detected by the Gamma-ray Burst Monitor and the Large Area Telescope (LAT) onboard the Fermi satellite and the Gamma-ray Burst Polarimeter onboard the IKAROS solar mission. Previous analysis done of this burst showed: i) a linear polarization signal with position angle stable (ϕp=160±11\phi_p= 160^\circ\pm11) and high degree of Π=8428+16\Pi=84^{+16}_{-28}, ii) an extreme peak energy of a record-breaking at 15±\pm2 MeV, and iii) a subdominant prompt thermal component observed right after the onset of this burst. In this paper, the LAT data around the reported position of GRB 110721A are analysed with the most recent software and then, the LAT light curve above 100 MeV was obtained. The LAT light curve is modelled in terms of adiabatic early-afterglow external shocks when the outflow propagates into a stellar wind. Additionally, we discuss the possible origins and also study the implications of the early-afterglow external shocks on the extreme peak energy observed at 15±\pm2 MeV, the polarization observations and the subdominant prompt thermal component.Comment: 9 pages and one figure. Accepted for publication in Ap

    Menus for Feeding Black Holes

    Full text link
    Black holes are the ultimate prisons of the Universe, regions of spacetime where the enormous gravity prohibits matter or even light to escape to infinity. Yet, matter falling toward the black holes may shine spectacularly, generating the strongest source of radiation. These sources provide us with astrophysical laboratories of extreme physical conditions that cannot be realized on Earth. This chapter offers a review of the basic menus for feeding matter onto black holes and discusses their observational implications.Comment: 27 pages. Accepted for publication in Space Science Reviews. Also to appear in hard cover in the Space Sciences Series of ISSI "The Physics of Accretion onto Black Holes" (Springer Publisher
    corecore