71 research outputs found

    Analysis of the Relationship Between Climate and NDVI Variability at Global Scales

    Get PDF
    interannual variability in modeled (CASA) C flux is in part caused by interannual variability in Normalized Difference Vegetation Index (NDVI) Fraction of Photosynthetically Active Radiation (FPAR). This study confirms a mechanism producing variability in modeled NPP: -- NDVI (FPAR) interannual variability is strongly driven by climate; -- The climate driven variability in NDVI (FPAR) can lead to much larger fluctuation in NPP vs. the NPP computed from FPAR climatolog

    Carbon Consequences of Forest Disturbance and Recovery Across the Conterminous United States

    Get PDF
    Forests of North America are thought to constitute a significant long term sink for atmospheric carbon. The United States Forest Service Forest Inventory and Analysis (FIA) program has developed a large data base of stock changes derived from consecutive estimates of growing stock volume in the US. These data reveal a large and relatively stable increase in forest carbon stocks over the last two decades or more. The mechanisms underlying this national increase in forest stocks may include recovery of forests from past disturbances, net increases in forest area, and growth enhancement driven by climate or fertilization by CO2 and Nitrogen. Here we estimate the forest recovery component of the observed stock changes using FIA data on the age structure of US forests and carbon stocks as a function of age. The latter are used to parameterize forest disturbance and recovery processes in a carbon cycle model. We then apply resulting disturbance/recovery dynamics to landscapes and regions based on the forest age distributions. The analysis centers on 28 representative climate settings spread about forested regions of the conterminous US. We estimate carbon fluxes for each region and propagate uncertainties in calibration data through to the predicted fluxes. The largest recovery-driven carbon sinks are found in the South central, Pacific Northwest, and Pacific Southwest regions, with spatially averaged net ecosystem productivity (NEP) of about 100 g C / square m / a driven by forest age structure. Carbon sinks from recovery in the Northeast and Northern Lake States remain moderate to large owing to the legacy of historical clearing and relatively low modern disturbance rates from harvest and fire. At the continental scale, we find a conterminous U.S. forest NEP of only 0.16 Pg C/a from age structure in 2005, or only 0.047 Pg C/a of forest stock change after accounting for fire emissions and harvest transfers. Recent estimates of NEP derived from inventory stock change, harvest, and fire data show twice the NEP sink we derive from forest age distributions. We discuss possible reasons for the discrepancies including modeling errors and the possibility of climate and/or fertilization (CO2 or N) growth enhancements

    An Inversion Analysis of Recent Variability in Natural CO2 Fluxes Using GOSAT and In Situ Observations

    Get PDF
    About one-half of the global CO2 emissions from fossil fuel combustion and deforestation accumulates in the atmosphere, where it contributes to global warming. The rest is taken up by vegetation and the ocean. The precise contribution of the two sinks, and their location and year-to-year variability are, however, not well understood. We use two different approaches, batch Bayesian synthesis inversion and variational data assimilation, to deduce the global spatiotemporal distributions of CO2 fluxes during 2009-2010. One of our objectives is to assess different sources of uncertainties in inferred fluxes, including uncertainties in prior flux estimates and observations, and differences in inversion techniques. For prior constraints, we utilize fluxes and uncertainties from the CASA-GFED model of the terrestrial biosphere and biomass burning driven by satellite observations and interannually varying meteorology. We also use measurement-based ocean flux estimates and two sets of fixed fossil CO2 emissions. Here, our inversions incorporate column CO2 measurements from the GOSAT satellite (ACOS retrieval, filtered and bias-corrected) and in situ observations (individual flask and afternoon-average continuous observations) to estimate fluxes in 108 regions over 8-day intervals for the batch inversion and at 3 x 3.75 weekly for the variational system. Relationships between fluxes and atmospheric concentrations are derived consistently for the two inversion systems using the PCTM atmospheric transport model driven by meteorology from the MERRA reanalysis. We compare the posterior fluxes and uncertainties derived using different data sets and the two inversion approaches, and evaluate the posterior atmospheric concentrations against independent data including aircraft measurements. The optimized fluxes generally resemble those from other studies. For example, the results indicate that the terrestrial biosphere is a net CO2 sink, and a GOSAT-only inversion suggests a shift in the global sink from the tropics south to the north relative to the prior and to an in-situ-only inversion. We also find a smaller terrestrial sink in higher-latitude northern regions in boreal summer of 2010 relative to 2009

    Continental-Scale Partitioning of Fire Emissions During the 1997 to 2001 El Niño/La Niña Period

    Get PDF
    During the 1997 to 1998 El Niño, drought conditions triggered widespread increases in fire activity, releasing CH_4 and CO_2 to the atmosphere. We evaluated the contribution of fires from different continents to variability in these greenhouse gases from 1997 to 2001, using satellite-based estimates of fire activity, biogeochemical modeling, and an inverse analysis of atmospheric CO anomalies. During the 1997 to 1998 El Niño, the fire emissions anomaly was 2.1 ± 0.8 petagrams of carbon, or 66 ± 24% of the CO_2 growth rate anomaly. The main contributors were Southeast Asia (60%), Central and South America (30%), and boreal regions of Eurasia and North America (10%)

    Investigation of North American vegetation variability under recent climate: a study using the SSiB4/TRIFFID biophysical/dynamic vegetation model

    Get PDF
    PublishedJournal ArticleThis is the final version of the article. Available from AGU via the DOI in this record.Recent studies have shown that current dynamic vegetation models have serious weaknesses in reproducing the observed vegetation dynamics and contribute to bias in climate simulations. This study intends to identify the major factors that underlie the connections between vegetation dynamics and climate variability and investigates vegetation spatial distribution and temporal variability at seasonal to decadal scales over North America (NA) to assess a 2-D biophysical model/dynamic vegetation model's (Simplified Simple Biosphere Model version 4, coupled with the Top-down Representation of Interactive Foliage and Flora Including Dynamics Model (SSiB4/TRIFFID)) ability to simulate these characteristics for the past 60-years (1948 through 2008). Satellite data are employed as constraints for the study and to compare the relationships between vegetation and climate from the observational and the simulation data sets. Trends in NA vegetation over this period are examined. The optimum temperature for photosynthesis, leaf drop threshold temperatures, and competition coefficients in the Lotka-Volterra equation, which describes the population dynamics of species competing for some common resource, have been identified as having major impacts on vegetation spatial distribution and obtaining proper initial vegetation conditions in SSiB4/TRIFFID. The finding that vegetation competition coefficients significantly affect vegetation distribution suggests the importance of including biotic effects in dynamical vegetation modeling. The improved SSiB4/TRIFFID can reproduce the main features of the NA distributions of dominant vegetation types, the vegetation fraction, and leaf area index (LAI), including its seasonal, interannual, and decadal variabilities. The simulated NA LAI also shows a general increasing trend after the 1970s in responding to warming. Both simulation and satellite observations reveal that LAI increased substantially in the southeastern U.S. starting from the 1980s. The effects of the severe drought during 1987-1992 and the last decade in the southwestern U.S. on vegetation are also evident from decreases in the simulated and satellite-derived LAIs. Both simulated and satellite-derived LAIs have the strongest correlations with air temperature at northern middle to high latitudes in spring reflecting the effect of these climatic variables on photosynthesis and phenological processes. Meanwhile, in southwestern dry lands, negative correlations appear due to the heat and moisture stress there during the summer. Furthermore, there are also positive correlations between soil wetness and LAI, which increases from spring to summer. The present study shows both the current improvements and remaining weaknesses in dynamical vegetation models. It also highlights large continental-scale variations that have occurred in NA vegetation over the past six decades and their potential relations to climate. With more observational data availability, more studies with different models and focusing on different regions will be possible and are necessary to achieve comprehensive understanding of the vegetation dynamics and climate interactions. Key Points Climate forcing and spatial and temporal variability of North American ecosystem Evaluate a 2-D biophysical model/dynamic vegetation using satellite data Mechanisms affecting vegetation/climate interactio

    Impacts of disturbance history on forest carbon stocks and fluxes: Merging satellite disturbance mapping with forest inventory data in a carbon cycle model framework

    Get PDF
    Forest carbon stocks and fluxes are highly dynamic following stand-clearing disturbances from severe fire and harvest and this presents a significant challenge for continental carbon budget assessments. In this work we use forest inventory data to parameterize a carbon cycle model to represent post-disturbance carbon trajectories of carbon pools and fluxes for specific forest types growing in high and low site productivity class settings. We then apply these trajectories to landscapes and regions based on forest age distributions derived from either the FIA data or from Landsat time series stacks (1985–2006) for 54 representative scenes throughout most of the conterminous United States.Weestimate the net carbon uptake in forests caused by post-disturbance growth and decomposition (“regrowth sink”) for forested regions across the country. At the landscape scale, the prevailing condition of positive net ecosystem productivity (NEP) is in stark contrast to local patcheswith large sources, particularly in the west where fires and clear cuts create contiguous disturbed patches. At the continental scale, regional differences in disturbance rates reflect management patterns of high disturbance rates in the Southeastern and South Central states, and lower disturbance rates in the Northeast andNorthern Lakes States. Despite low contemporary disturbance rates in the Northeast and Northern Lakes States (0.61 and 0.74% y−1), the regrowth sink there remains of moderate to large strength (88 and 57 g C m−2 y−1) owing to the continued legacy from historical clearing. Large regrowth sinks are also found in the Southeast, South Central, and Pacific Southwest regions (85, 86, and 95 g C m−2 y−1) where disturbance rates also tend to be higher (1.59, 1.38, and 0.93% y−1). Overall, the Landsat-derived disturbance rates are elevated relative to FIA-derived rates (1.19 versus 0.93% y−1) particularly for western regions. The differences only modestly adjust regional- and continental-scale carbon budgets, reducing NEP from forest regrowth by about 8%

    Interannual variability of photosynthesis across Africa and its attribution

    Get PDF
    Africa is thought to be a large source of interannual variability in the global carbon cycle, only vaguely attributed to climate fluctuations. This study uses a biophysical model, Simple Biosphere, to examine in detail what specific factors, physiological (acute stress from low soil water, temperature, or low humidity) and biophysical (low vegetation radiation use), are responsible for spatiotemporal patterns of photosynthesis across the African continent during the period 1982-2003. Acute soil water stress emerges as the primary factor driving interannual variability of photosynthesis for most of Africa. Southern savannas and woodlands are a particular hot spot of interannual variability in photosynthesis, owing to high rainfall variability and photosynthetic potential but intermediate annual rainfall. Surprisingly low interannual variability of photosynthesis in much of the Sudano-Sahelian zone derives from relatively low vegetation cover, pronounced humidity stress, and somewhat lower rainfall variability, whereas perennially wet conditions diminish interannual variability in photosynthesis across much of the Congo Basin and coastal West Africa. Though not of focus here, the coefficient of variation in photosynthesis is notably high in drylands and desert margins (i.e., Sahel, Greater Horn, Namib, and Kalahari) having implications for supply of food and fiber. These findings emphasize that when considering impacts of climate change and land surface feedbacks to the atmosphere, it is important to recognize how vegetation, climate, and soil characteristics may conspire to filter or dampen ecosystem responses to hydroclimatic variability. Copyright 2008 by the American Geophysical Union

    GCM Studies on the Interactions Between Photosynthesis and Climate at Diurnal to Decadal Time Scales

    Get PDF
    Transpiration, a major component of total evaporation from vegetated surfaces, is an unavoidable consequence of photosynthetic carbon fixation. Because of limiting soil moisture and competition for solar radiation plants invest most of their fixed carbon into structural and hydraulic functions (roots and stems) and solar radiation absorption (leaves). These investments permit individuals to overshadow competitors and provide for transport of water from the soil to the leaves where photosynthesis and transpiration occur. Often low soil moisture or high evaporative demand limit the supply of water to leaves reducing photosynthesis and thus transpiration. The absorption of solar radiation for photosynthesis and dissipation of this energy via radiation, heat, mass and momentum fluxes represents the link between photosynthesis and climate. Recognition of these relationships has led to the development of hydro/energy balance models that are based on the physiological ecology of photosynthesis. We discuss an approach to study vegetation-climate interactions using photosynthesis-centric models embedded in a GCM. The rate at which a vegetated area transpires and photosynthesizes is determined by the physiological state of the vegetation, its amount and its type. The latter two are specified from global satellite data collected since 1982. Climate simulations have been carried out to study how this simulated climate system responds to changes in radiative forcing, physiological capacity, atmospheric CO2, vegetation type and variable vegetation cover observed from satellites during the 1980's. Results from these studies reveal significant feedbacks between the vegetation activity and climate. For example, vegetation cover and physiological activity increases cause the total latent heat flux and precipitation to increase while mean and maximum air temperatures decrease. The reverse occurs if cover or activity'decreases. In general climate response of a particular region was dominated by local processes but we also find evidence that plausible climate-vegetation scenarios lead to changes in global atmospheric circulation and strong non-local influences in some cases

    A Regional CO2 Observing System Simulation Experiment Using ASCENDS Observations and WRF-STILT Footprints

    Get PDF
    Knowledge of the spatiotemporal variations in emissions and uptake of CO2 is hampered by sparse measurements. The recent advent of satellite measurements of CO2 concentrations is increasing the density of measurements, and the future mission ASCENDS (Active Sensing of CO2 Emissions over Nights, Days and Seasons) will provide even greater coverage and precision. Lagrangian atmospheric transport models run backward in time can quantify surface influences ("footprints") of diverse measurement platforms and are particularly well suited for inverse estimation of regional surface CO2 fluxes at high resolution based on satellite observations. We utilize the STILT Lagrangian particle dispersion model, driven by WRF meteorological fields at 40-km resolution, in a Bayesian synthesis inversion approach to quantify the ability of ASCENDS column CO2 observations to constrain fluxes at high resolution. This study focuses on land-based biospheric fluxes, whose uncertainties are especially large, in a domain encompassing North America. We present results based on realistic input fields for 2007. Pseudo-observation random errors are estimated from backscatter and optical depth measured by the CALIPSO satellite. We estimate a priori flux uncertainties based on output from the CASA-GFED (v.3) biosphere model and make simple assumptions about spatial and temporal error correlations. WRF-STILT footprints are convolved with candidate vertical weighting functions for ASCENDS. We find that at a horizontal flux resolution of 1 degree x 1 degree, ASCENDS observations are potentially able to reduce average weekly flux uncertainties by 0-8% in July, and 0-0.5% in January (assuming an error of 0.5 ppm at the Railroad Valley reference site). Aggregated to coarser resolutions, e.g. 5 degrees x 5 degrees, the uncertainty reductions are larger and more similar to those estimated in previous satellite data observing system simulation experiments

    Carbon Monitoring System Flux Estimation and Attribution: Impact of ACOS-GOSAT X(CO2) Sampling on the Inference of Terrestrial Biospheric Sources and Sinks

    Get PDF
    Using an Observing System Simulation Experiment (OSSE), we investigate the impact of JAXA Greenhouse gases Observing SATellite 'IBUKI' (GOSAT) sampling on the estimation of terrestrial biospheric flux with the NASA Carbon Monitoring System Flux (CMS-Flux) estimation and attribution strategy. The simulated observations in the OSSE use the actual column carbon dioxide (X(CO2)) b2.9 retrieval sensitivity and quality control for the year 2010 processed through the Atmospheric CO2 Observations from Space algorithm. CMS-Flux is a variational inversion system that uses the GEOS-Chem forward and adjoint model forced by a suite of observationally constrained fluxes from ocean, land and anthropogenic models. We investigate the impact of GOSAT sampling on flux estimation in two aspects: 1) random error uncertainty reduction and 2) the global and regional bias in posterior flux resulted from the spatiotemporally biased GOSAT sampling. Based on Monte Carlo calculations, we find that global average flux uncertainty reduction ranges from 25% in September to 60% in July. When aggregated to the 11 land regions designated by the phase 3 of the Atmospheric Tracer Transport Model Intercomparison Project, the annual mean uncertainty reduction ranges from 10% over North American boreal to 38% over South American temperate, which is driven by observational coverage and the magnitude of prior flux uncertainty. The uncertainty reduction over the South American tropical region is 30%, even with sparse observation coverage. We show that this reduction results from the large prior flux uncertainty and the impact of non-local observations. Given the assumed prior error statistics, the degree of freedom for signal is approx.1132 for 1-yr of the 74 055 GOSAT X(CO2) observations, which indicates that GOSAT provides approx.1132 independent pieces of information about surface fluxes. We quantify the impact of GOSAT's spatiotemporally sampling on the posterior flux, and find that a 0.7 gigatons of carbon bias in the global annual posterior flux resulted from the seasonally and diurnally biased sampling when using a diagonal prior flux error covariance
    corecore