163 research outputs found
Measurement of the inclusive electron neutrino charged current cross section on carbon with the T2K near detector
The T2K off-axis near detector, ND280, is used to make the first differential cross-section measurements of electron neutrino charged current interactions at energies ~1 GeV as a function of electron momentum, electron scattering angle and four-momentum transfer of the interaction. The total flux-averaged charged current cross-section on carbon is measured to be . The differential and total cross-section measurements agree with the predictions of two leading neutrino interaction generators, NEUT and GENIE. The NEUT prediction is and the GENIE prediction is . The total charged current cross-section result is also in agreement with data from the Gargamelle experiment
Sensitivity of the T2K accelerator-based neutrino experiment with an Extended run to 20×1021 POT
Recent measurements at the T2K experiment indicate that CP violation in neutrino mixing may be observed in the future by long-baseline neutrino oscillation experiments. We explore the physics program of an extension to the currently approved T2K running of protons-on-target to protons-on-target,aiming at initial observation of CP violation with 3 or higher significance for the case of maximum CP violation. With accelerator and beam line upgrades, as well as analysis improvements, this program would occur before the next generation of long-baseline neutrino oscillation experiments that are expected to start operation in 2026
Sensitivity of the T2K accelerator-based neutrino experiment with an Extended run to 20×1021 POT
Recent measurements at the T2K experiment indicate that CP violation in neutrino mixing may be observed in the future by long-baseline neutrino oscillation experiments. We explore the physics program of an extension to the currently approved T2K running of protons-on-target to protons-on-target,aiming at initial observation of CP violation with 3 or higher significance for the case of maximum CP violation. With accelerator and beam line upgrades, as well as analysis improvements, this program would occur before the next generation of long-baseline neutrino oscillation experiments that are expected to start operation in 2026
Proposal for an Extended Run of T2K to POT
Recent measurements by the T2K neutrino oscillation experiment indicate that CP violation in neutrino mixing may be observed in the future by long-baseline neutrino oscillation experiments. We propose an extension to the currently approved T2K running from 7.8\times 10^{21}~\mbox{POT} to 20\times 10^{21}~\mbox{POT}, aiming at initial observation of CP violation with 3 or higher significance for the case of maximum CP violation. The program also contains a measurement of mixing parameters, and , with a precision of 1.7 or better and 1%, respectively. With accelerator and beamline upgrades, as well as analysis improvements, this program would occur before the next generation of long-baseline neutrino oscillation experiments that are expected to start operation in 2026
Measurements of neutrino oscillation parameters from the T2K experiment using protons on target
The T2K experiment presents new measurements of neutrino oscillation parameters using protons on target (POT) in (anti-)neutrino mode at the far detector (FD). Compared to the previous analysis, an additional POT neutrino data was collected at the FD. Significant improvements were made to the analysis methodology, with the near-detector analysis introducing new selections and using more than double the data. Additionally, this is the first T2K oscillation analysis to use NA61/SHINE data on a replica of the T2K target to tune the neutrino flux model, and the neutrino interaction model was improved to include new nuclear effects and calculations. Frequentist and Bayesian analyses are presented, including results on and the impact of priors on the measurement. Both analyses prefer the normal mass ordering and upper octant of with a nearly maximally CP-violating phase. Assuming the normal ordering and using the constraint on from reactors, using Feldman--Cousins corrected intervals, and using constant intervals. The CP-violating phase is constrained to using Feldman--Cousins corrected intervals, and is excluded at more than 90\% confidence level. A Jarlskog invariant of zero is excluded at more than credible level using a flat prior in , and just below using a flat prior in . When the external constraint on is removed, , in agreement with measurements from reactor experiments. These results are consistent with previous T2K analyses
Measurements of neutrino oscillation parameters from the T2K experiment using protons on target
The T2K experiment presents new measurements of neutrino oscillation parameters using protons on target (POT) in (anti-)neutrino mode at the far detector (FD). Compared to the previous analysis, an additional POT neutrino data was collected at the FD. Significant improvements were made to the analysis methodology, with the near-detector analysis introducing new selections and using more than double the data. Additionally, this is the first T2K oscillation analysis to use NA61/SHINE data on a replica of the T2K target to tune the neutrino flux model, and the neutrino interaction model was improved to include new nuclear effects and calculations. Frequentist and Bayesian analyses are presented, including results on and the impact of priors on the measurement. Both analyses prefer the normal mass ordering and upper octant of with a nearly maximally CP-violating phase. Assuming the normal ordering and using the constraint on from reactors, using Feldman--Cousins corrected intervals, and using constant intervals. The CP-violating phase is constrained to using Feldman--Cousins corrected intervals, and is excluded at more than 90% confidence level. A Jarlskog invariant of zero is excluded at more than credible level using a flat prior in , and just below using a flat prior in . When the external constraint on is removed, , in agreement with measurements from reactor experiments. These results are consistent with previous T2K analyses
Measurement of neutrino and antineutrino neutral-current quasielasticlike interactions on oxygen by detecting nuclear deexcitation γ rays
Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UA
First hint for CP violation in neutrino oscillations from upcoming superbeam and reactor experiments
We compare the physics potential of the upcoming neutrino oscillation
experiments Daya Bay, Double Chooz, NOvA, RENO, and T2K based on their
anticipated nominal luminosities and schedules. After discussing the
sensitivity to theta_{13} and the leading atmospheric parameters, we
demonstrate that leptonic CP violation will hardly be measurable without
upgrades of the T2K and NOvA proton drivers, even if theta_{13} is large. In
the presence of the proton drivers, the fast track to hints for CP violation
requires communication between the T2K and NOvA collaborations in terms of a
mutual synchronization of their neutrino-antineutrino run plans. Even in that
case, upgrades will only discover CP violation in a relatively small part of
the parameter space at the 3 sigma confidence level, while 90% confidence level
hints will most likely be obtained. Therefore, we conclude that a new facility
will be required if the goal is to obtain a significant result with high
probability.Comment: 27 pages, 12 figure
- …