1,175 research outputs found

    Technical aspects in dark matter investigations

    Full text link
    Some theoretical and experimental aspects regarding the direct dark matter field are mentioned. In particular some arguments, which play a relevant role in the evaluation of model dependent interpretations of experimental results and in comparisons, are shortly addressed.Comment: Proceedings of TAUP 2011 Conferenc

    Hierarchically Porous Gd3+-Doped CeO2 Nanostructures for the Remarkable Enhancement of Optical and Magnetic Properties

    Get PDF
    Rare earth ion-doped CeO2 has attracted more and more attention because of its special electrical, optical, magnetic, or catalytic properties. In this paper, a facile electrochemical deposition route was reported for the direct growth of the porous Gd-doped CeO2. The formation process of Gd-doped CeO2 composites was investigated. The obtained deposits were characterized by SEM, EDS, XRD, and XPS. The porous Gd3+- doped CeO2 (10 at% Gd) displays a typical type I adsorption isotherm and yields a large specific surface area of 135 m2/g. As Gd3+ ions were doped into CeO2 lattice, the absorption spectrum of Gd3+-doped CeO2 nanocrystals exhibited a red shift compared with porous CeO2 nanocrystals and bulk CeO2, and the luminescence of Gd3+-doped CeO2 deposits was remarkably enhanced due to the presence of more oxygen vacancies. In addition, the strong magnetic properties of Gd-doped CeO2 (10 at% Gd) were observed, which may be caused by Gd3+ ions or more oxygen defects in deposits. In addition, the catalytic activity of porous Gd-doped CeO2 toward CO oxidation was studied

    Inexact fuzzy-stochastic constraint-softened programming - A case study for waste management

    Get PDF
    In this study, an inexact fuzzy-stochastic constraint-softened programming method is developed for municipal solid waste (MSW) management under uncertainty, The developed method can deal with multiple uncertainties presented in terms of fuzzy sets, interval values and random variables. Moreover, a number of violation levels for the system constraints are allowed. This is realized through introduction of violation variables to soften system constraints, such that the model's decision space can be expanded under demanding conditions. This can help generate a range of decision alternatives under various conditions, allowing in-depth analyses of tradeoffs among economic objective, satisfaction degree, and constraint-violation risk. The developed method is applied to a case study of planning a MSW management system. The uncertain and dynamic information can be incorporated within a multi-layer scenario tree; revised decisions are permitted in each time period based on the realized values of uncertain events. Solutions associated with different satisfaction degree levels have been generated, corresponding to different constraint-violation risks. They are useful for supporting decisions of waste flow allocation and system-capacity expansion within a multistage context. (C) 2008 Elsevier Ltd. All rights reserved

    Nitrogen forms affect root structure and water uptake in the hybrid poplar

    Get PDF
    The study analyses the effects of two different forms of nitrogen fertilisation (nitrate and ammonium) on root structure and water uptake of two hybrid poplar (Populus maximowiczii x P. balsamifera) clones in a field experiment. Water uptake was studied using sap flow gauges on individual proximal roots and coarse root structure was examined by excavating 18 whole-root systems. Finer roots were scanned and analyzed for architecture. Nitrogen forms did not affect coarse-root system development, but had a significant effect on fine-root development. Nitrate-treated trees presented higher fine:coarse root ratios and higher specific root lengths than control or ammonium treated trees. These allocation differences affected the water uptake capacity of the plants as reflected by the higher sapflow rate in the nitrate treatment. The diameter of proximal roots at the tree base predicted well the total root biomass and length. The diameter of smaller lateral roots also predicted the lateral root mass, length, surface area and the number of tips. The effect of nitrogen fertilisation on the fine root structure translated into an effect on the functioning of the fine roots forming a link between form (architecture) and function (water uptake)

    Unusual low-temperature thermopower in the one-dimensional Hubbard model

    Full text link
    The low-temperature thermoelectric power of the repulsive-interaction one-dimensional Hubbard model is calculated using an asymptotic Bethe ansatz for holons and spinons. The competition between the entropy carried by the holons and that carried by the backflow of the spinons gives rise to an unusual temperature and doping dependence of the thermopower which is qualitatively similar to that observed in the normal state of high-TcT_{c} superconductors.Comment: 11 pages, REVTEX 3.

    An estimate of the total catch in the Spanish Mediterranean Sea and Gulf of Cadiz regions (1950-2010)

    Get PDF
    The underestimation of fisheries removals is a global issue that spans countries from different continents and different socio-economic situations. Underestimation of catches is especially important in countries where fishing fleets are highly diversified, the enforcement of fishing management is low, data availability is poor, and there is high demand for fish products in local markets. This is the case for Mediterranean countries. Here, we estimated total removals of marine resources by Spain from 1950 to 2010 for the Spanish Mediterranean Sea and Gulf of Cadiz regions following a catch-reconstruction approach. We first collected information from scientific publications, grey literature and secondary sources of information (i.e., personal communications, interviews with managers and fishers) to complement officially reported catch data, which are publicly available from FAO databases and from national and regional statistics. A literature search and fishers interviews provided assessments of missing catch sectors that are time-point estimates. These were used as anchor points of reliable data upon which we then estimated total catch using interpolation to fill in the periods for which quantitative data were missing. Overall, the reconstructed catch was 70% larger than the nationally reported data for the same time period. Results illustrated that unreported removals and discards represent important portions of total removals in the study area. Unreported landings and discards accounted for, on average, 42% of total removals between 1950s and 2010, and were composed of black market sales, subsistence fishing, artisanal fishing, recreational fishing and illegal catch, in addition to discarding. By the late 2000s, recreational fishing was the most important sector for unreported landings (~36%), followed by black market sales (~32%), subsistence fishing (~17%), unreported artisanal fishing (~12%) and illegal catch (~2%). While FAO landings data showed an increase of landings from 1950 to the mid-1960s and a decline from the mid-1970s to 2010, a different trend emerged after accounting for all fisheries removals. Reconstructed total catches revealed an earlier maximum of total removals in the late 1950s, a plateau being reached during the 1960s and 1970s, and a decline from the early 1980s to 2010. Our estimates of total fisheries catches represent an improvement over official catch data, and suggest a different historical trend of marine resource use

    Tomonaga-Luttinger parameters for quantum wires

    Full text link
    The low-energy properties of a homogeneous one-dimensional electron system are completely specified by two Tomonaga-Luttinger parameters KρK_{\rho} and vσv_{\sigma}. In this paper we discuss microscopic estimates of the values of these parameters in semiconductor quantum wires that exploit their relationship to thermodynamic properties. Motivated by the recognized similarity between correlations in the ground state of a one-dimensional electron liquid and correlations in a Wigner crystal, we evaluate these thermodynamic quantities in a self-consistent Hartree-Fock approximation. According to our calculations, the Hartree-Fock approximation ground state is a Wigner crystal at all electron densities and has antiferromagnetic order that gradually evolves from spin-density-wave to localized in character as the density is lowered. Our results for KρK_{\rho} are in good agreement with weak-coupling perturbative estimates KρpertK_{\rho}^{pert} at high densities, but deviate strongly at low densities, especially when the electron-electron interaction is screened at long distances. Kρpertn1/2K_{\rho}^{pert}\sim n^{1/2} vanishes at small carrier density nn whereas we conjecture that Kρ1/2K_{\rho}\to 1/2 when n0n\to 0, implying that KρK_{\rho} should pass through a minimum at an intermediate density. Observation of such a non-monotonic dependence on particle density would allow to measure the range of the microscopic interaction. In the spin sector we find that the spin velocity decreases with increasing interaction strength or decreasing nn. Strong correlation effects make it difficult to obtain fully consistent estimates of vσv_{\sigma} from Hartree-Fock calculations. We conjecture that v_{\sigma}/\vf\propto n/V_0 in the limit n0n\to 0 where V0V_0 is the interaction strength.Comment: RevTeX, 23 pages, 8 figures include

    Interval-Parameter Robust Minimax-regret Programming and Its Application to Energy and Environmental Systems Planning

    Get PDF
    In this study, an interval-parameter robust minimax-regret programming method is developed and applied to the planning of energy and environmental systems. Methods of robust programming, interval-parameter programming, and minimax-regret analysis are incorporated within a general optimization framework to enhance the robustness of the optimization effort. The interval-parameter robust minimax-regret programming can deal with uncertainties expressed as discrete intervals, fuzzy sets, and random variables. It can also be used for analyzing multiple scenarios associated with different system costs and risk levels. In its solution process, the fuzzy decision space is delimited into a more robust one through dimensional enlargement of the original fuzzy constraints; moreover, an interval-element cost matrix can be transformed into an interval-element regret matrix, such that the decision makers can identify desired alternatives based on the inexact minimax regret criterion. The developed method has been applied to a case study of energy and environmental systems planning under uncertainty. The results indicate that reasonable solutions have been generated

    Multistage scenario-based interval-stochastic programming for planning water resources allocation

    Get PDF
    In this study, a multistage scenario-based interval-stochastic programming (MSISP) method is developed for water-resources allocation under uncertainty. MSISP improves upon the existing multistage optimization methods with advantages in uncertainty reflection, dynamics facilitation, and risk analysis. It can directly handle uncertainties presented as both interval numbers and probability distributions, and can support the assessment of the reliability of satisfying (or the risk of violating) system constraints within a multistage context. It can also reflect the dynamics of system uncertainties and decision processes under a representative set of scenarios. The developed MSISP method is then applied to a case of water resources management planning within a multi-reservoir system associated with joint probabilities. A range of violation levels for capacity and environment constraints are analyzed under uncertainty. Solutions associated different risk levels of constraint violation have been obtained. They can be used for generating decision alternatives and thus help water managers to identify desired policies under various economic, environmental and system-reliability conditions. Besides, sensitivity analyses demonstrate that the violation of the environmental constraint has a significant effect on the system benefit

    Deriving the mass of particles from Extended Theories of Gravity in LHC era

    Full text link
    We derive a geometrical approach to produce the mass of particles that could be suitably tested at LHC. Starting from a 5D unification scheme, we show that all the known interactions could be suitably deduced as an induced symmetry breaking of the non-unitary GL(4)-group of diffeomorphisms. The deformations inducing such a breaking act as vector bosons that, depending on the gravitational mass states, can assume the role of interaction bosons like gluons, electroweak bosons or photon. The further gravitational degrees of freedom, emerging from the reduction mechanism in 4D, eliminate the hierarchy problem since generate a cut-off comparable with electroweak one at TeV scales. In this "economic" scheme, gravity should induce the other interactions in a non-perturbative way.Comment: 30 pages, 1 figur
    corecore