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a b s t r a c t

In this study, an inexact fuzzy-stochastic constraint-softened programming method is developed for
municipal solid waste (MSW) management under uncertainty. The developed method can deal with mul-
tiple uncertainties presented in terms of fuzzy sets, interval values and random variables. Moreover, a
number of violation levels for the system constraints are allowed. This is realized through introduction
of violation variables to soften system constraints, such that the model’s decision space can be expanded
under demanding conditions. This can help generate a range of decision alternatives under various con-
ditions, allowing in-depth analyses of tradeoffs among economic objective, satisfaction degree, and con-
straint-violation risk. The developed method is applied to a case study of planning a MSW management
system. The uncertain and dynamic information can be incorporated within a multi-layer scenario tree;
revised decisions are permitted in each time period based on the realized values of uncertain events.
Solutions associated with different satisfaction degree levels have been generated, corresponding to dif-
ferent constraint-violation risks. They are useful for supporting decisions of waste flow allocation and
system-capacity expansion within a multistage context.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In municipal solid waste (MSW) management, uncertainties ex-
ist in related costs, impact factors and objectives, and are pre-
sented as fuzzy, probability and/or interval formats. Such
uncertainties can affect the related optimization processes and
the generated decision schemes (Huang et al., 1993; Yeomans
et al., 2003). Consequently, various methods dealing with uncer-
tainties have been developed for the planning of MSW manage-
ment systems (Gottinger, 1986; Kirca and Erkip, 1988; Baetz,
1990; Zhu and Revelle, 1993; Jaung et al., 1995; Chanas and Zielin-
ski, 2000; Wilson and Baetz, 2001a,b; Huang et al., 2002; Solano
et al., 2002a,b; Yeomans and Huang, 2003; Zeng and Trauth,
2005; Chang et al., 2005; García et al., 2005; Li and Huang, 2006,
2007; Chang and Davila, 2007, 2008). Most of them can be grouped
into fuzzy, stochastic and interval mathematical programming
methods (abbreviated as FMP, SMP and IMP).

IMP can tackle uncertainties expressed as intervals that exist in
the model’s left- and/or right-hand sides as well as the objective
ll rights reserved.
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function; however, it is incapable of dealing with uncertainties ex-
pressed as possibilistic and probabilistic distributions (Huang et al.,
1993). FMP considers uncertainties as fuzzy sets, and is effective in
reflecting ambiguity and vagueness in resource availabilities.
Combining advantages of FMP and IMP, interval-fuzzy mathemati-
cal programming (IFMP) methods were developed for tackling
uncertainties presented as interval values and fuzzy sets (Huang
et al., 1993, 1995; Chang et al., 1997). However, IFMP could become
infeasible when the constraints were strict under demanding con-
ditions. Recently, Huang et al. (2002) introduced a regret analysis
approach to relax the constraints of IFMP (Burn and Barbara,
1992; Ellis and Bowman, 1994), such that the IFMP model’s decision
space could be expanded through introducing a number of violation
variables for the constraints. However, the constraint-relaxed IFMP
had difficulty in dealing with uncertainties expressed as random
variables; furthermore, it was lack of linkage to economic conse-
quences of violated policies as pre-regulated by authorities since
recourse actions were not considered to correct any infeasibilities.

Stochastic programming with recourse was effective for prob-
lems where an analysis of policy scenarios is desired and coeffi-
cients are random with known probability distributions. In this
method, decision variables were divided into two subsets: those
that had to be determined before the random uncertainties are dis-
closed and those (recourse variables) that could be determined
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after the uncertainties were disclosed. Multistage stochastic pro-
gramming with recourse (MSP) was developed as an extension of
dynamic stochastic optimization approaches (Birge, 1985; Pereira
and Pinto, 1991; Ruszczynski, 1993; Dupačová et al., 2000; Watkins
et al., 2000; Kouwenberg, 2001; Ahmed et al., 2003; Li et al., 2006,
2008). MSP can reflect the dynamic variations of system conditions,
particularly for large-scale problems with sequential structures.
However, MSP requires probabilistic specifications for uncertain
parameters while, in many practical problems, the quality of infor-
mation that can be obtained is mostly not satisfactory enough to be
presented as probabilities (Li et al., 2006). In fact, even if the prob-
ability distributions are available, it can be difficult to reflect many
random parameters in the MSP model. Moreover, few of the previ-
ous studies focused on using MSP methods for addressing uncer-
tainties and dynamics in waste management systems.

Therefore, as an extension to the existing MSP approaches, an
inexact fuzzy-stochastic constraint-softened programming method
will be developed to address the above deficiencies. The developed
method will be able to deal with uncertainties presented in terms
of fuzzy sets, interval values, and random variables. Moreover, a
number of violation levels for the constraints are allowed, such
that the model’s decision space can be expanded. This will help
generate a range of decision alternatives under various conditions,
allowing in-depth analyses of tradeoffs among economic objective,
satisfaction degree, and constraint-violation risk. Then, the devel-
oped method will be applied to the planning of MSW management
in the City of Regina, Canada. It can facilitate dynamic analysis for
decisions of waste flow allocation and capacity expansion planning
within a multistage context under multiple uncertainties.
2. Methodology

Firstly, consider an interval parameter fuzzy linear program-
ming (IFLP) problem (Huang et al., 1993):

Min f� ¼� C�X� ð1aÞ
subject to A�X�K B� ð1bÞ

X� P 0 ð1cÞ

where A� 2 fR�gm�n, B� 2 fR�gm�1, C� 2 fR�g1�n, X� 2 fR�gn�1, fR�g
denote a set of interval numbers, and m and n are real numbers
(m P 1 and n P 1; X� represents a set of decision variables; the
‘�’ and ‘+’ superscripts represent the lower and upper bounds of
parameters/variables, respectively; and symbols ¼

�
and K repre-

sent fuzzy equality and inequality. In fact, a decision in a fuzzy envi-
ronment can be defined as the intersection of membership
functions corresponding to fuzzy objective and constraints (Huang
et al., 1995; Chang et al., 1997). Given a fuzzy goal (G) and a fuzzy
constraint (E) in a space of decision alternatives (X�), a fuzzy deci-
sion set (D) can then be formed in the intersection of G and E. In a
symbolic form, we have D ¼ G \ E, and correspondingly:

lD ¼MinflG;lEg ð2Þ

where lD, lG and lE denote membership functions of fuzzy decision
D, fuzzy goal G, and fuzzy constraint E, respectively (Zimmermann,
1985). Let lEi

ðX�Þ be membership functions of constraints Ei (i = 1,
2, . . ., m), and lGj

ðX�Þ be those of goals Gj (j = 1, 2, . . ., n). A decision
can then be defined by the following membership function (Huang
et al., 2001):

lDðX
�Þ ¼ lEi

ðX�Þ � lGj
ðX�Þ ð3aÞ

lDðX
�Þ ¼MinfliðX

�Þ i ¼ 1;2; ; . . . ; mþ 1j g ð3bÞ

where ‘‘�” denotes an appropriate and possibly context-dependent
‘‘aggregator”; liðX

�Þ can be interpreted as the degree to which X�
satisfies fuzzy inequality in the objective and constraints. A desired
decision is thus the one with the highest lDðX

�Þ value:

MaxlDðX
�Þ ¼Max Min½liðX

�Þ�; X� P 0 ð4Þ

where liðX
�Þ should be zero if the objective and constraints are vio-

lated, and 1 if they are totally satisfied. Consequently, the IFIP prob-
lem can be converted into an ordinary linear programming model
by introducing a new variable of k ¼ lDðX

�Þ, which corresponds
to the membership function of the fuzzy decision (Zimmermann,
1985; Chang et al., 1997; Huang et al., 2001). Specifically, the flex-
ibility in the constraints and fuzziness in the objective (which are
represented by fuzzy sets and denoted as ‘‘fuzzy constraints” and
‘‘fuzzy goal”, respectively) can be expressed as membership grades
(k) corresponding to the degrees of overall satisfaction for the con-
straints and objective. Thus, model (1) can be converted into:

Max k� ð5aÞ

subject to C�X� 6 fþ � k�ðfþ � f�Þ ð5bÞ

A�X� 6 Bþ � k�ðBþ � B�Þ ð5cÞ

X� P 0 ð5dÞ

0 6 k� 6 1 ð5eÞ

where f� and fþ are the lower and upper bounds of the objective’s
aspiration level, respectively; k� is the control variable correspond-
ing to the degree (membership grade) of satisfaction for the fuzzy
decision. An interactive algorithm is developed to solve the above
problem through analyzing the detailed interrelationships between
the parameters and the variables and between the objective func-
tion and the constraints (Huang et al., 1995).

The IFLP can directly handle uncertainties presented as interval
numbers and/or fuzzy sets. However, it has difficulties in tackling
uncertainties expressed as random variables in a non-fuzzy decision
space and in providing a linkage between the pre-regulated policies
and the associated implications. In many real-world problems,
uncertainties may be expressed as random variables, and the related
study systems are of dynamic feature. Thus the relevant decisions
must be made at each time stage under varying probability levels.
Such a problem can be formulated as a scenario-based multistage
stochastic programming (MSP) model with recourse as follows:

Min f ¼
XT

t¼1

CtXt þ
XT

t¼1

XKt

k¼1

ptkDtkYtk ð6aÞ

subject to ArtXt 6 Brt ; r ¼ 1;2; . . . ;m1; t ¼ 1;2; . . . ; T ð6bÞ

AitXt þ A0itkYtk 6 witk; i ¼ 1;2; . . . ;m2;

t ¼ 1;2; . . . ; T; k ¼ 1;2; . . . ;Kt ð6cÞ
xjt P 0; xjt 2 Xt ; j ¼ 1;2; . . . ; n1;

t ¼ 1;2; . . . ; T ð6dÞ
yjtk P 0; yjtk 2 Ytk; j ¼ 1;2; . . . ;n2;

t ¼ 1;2; . . . ; T; k ¼ 1;2; . . . ;Kt ð6eÞ

where ptk is the probability of occurrence for scenario k in period t,
with ptk 6 0 and

PKt
k¼1ptk ¼ 1; and Kt is the number of scenarios in

period t, with the total number of scenarios being K ¼
PT

t¼1Kt . In
model (6), the decision variables are divided into two subsets: the
first-stage decision variables (xjt) that must be determined before
the random variables are disclosed, and recourse variables (yjtk) that
can be determined after the random variables are disclosed. Obvi-
ously, model (6) can address uncertainties in the right-hand sides
of the constraints to be presented as random variables. Therefore,
one potential approach that can deal with multiple uncertainties
presented in terms of fuzzy sets, interval values, and random vari-
ables is to couple MSP and IFLP into a general framework; this leads



Table 2
Costs and revenues for pre-regulated waste flows.

Planning period

t = 1 t = 2 t = 3

Operation costs of waste management facilities (CAN$/t)
Landfill [9, 17] [6.9, 13.02] [5.83, 11.02]
Composting facility [21, 26] [16.09, 19.92] [13.61, 16.85]
Recycling facility [61.0, 67.8] [46.74, 51.95] [39.54, 43.95]

Collection and transportation costs (CAN$/t)
to Landfill [32, 37] [24.52, 28.35] [20.74, 23.98]
to Composting facility [68.0, 78.2] [52.09, 59.90] [44.06, 50.67]
to Recycling facility [93.0, 108.5] [71.24, 83.11] [60.26, 70.31]

Revenues from waste management facilities (CAN$/t)
Composting facility [5.0, 10.0] [3.83, 7.66] [3.24, 6.48]
Recycling facility [45.0, 55.0] [34.48, 42.14] [29.17, 35.65]

Residue transportation costs (CAN$/t)
Composting facility [1.68, 2.1] [1.287, 1.609] [1.089, 1.36]
Recycling facility [1.47, 1.68] [1.126, 1.287] [0.953, 1.089]
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to an interval-fuzzy multistage linear programming (IFMP) model
as follows:

Max k� ð7aÞ

subject to
XT

t¼1

C�t X�t þ
XT

t¼1

XKt

k¼1

ptkD�tkY�tk 6 fþ � k�ðfþ � f�Þ ð7bÞ

A�rtX
�
t 6 Bþrt � k�ðBþrt � B�rtÞ; r ¼ 1;2; . . . ;m1;

t ¼ 1;2; . . . ; T ð7cÞ
A�it X�t þ ðA

0
itkÞ
�Y�tk 6 wþitk � k�Dw�itk;

i ¼ 1;2; . . . ;m2; t ¼ 1;2; . . . T; k ¼ 1;2; . . . ;Kt ð7dÞ
x�jt P 0; x�jt 2 X�t ; j ¼ 1;2; . . . ;n1;

t ¼ 1;2; . . . ; T ð7eÞ
y�jtk P 0; y�jtk 2 Y�tk; j ¼ 1;2; . . . ;n2;

t ¼ 1;2; . . . ; T; k ¼ 1;2; . . . ;Kt ð7fÞ
0 6 k� 6 1 ð7gÞ

In model (7), a k� level close to 1 would correspond to a high pos-
sibility of satisfying the constraints/objective under advantageous
conditions; conversely, a k� value near 0 would be related to a solu-
tion that has a low possibility of satisfying the constraints/objective
under demanding conditions. Model (7) can then be solved through
a two-step method. The submodel for kþ corresponding to f� can be
formulated in the first step when the system objective is to be min-
imized; the other submodel for k� can then be formulated based on
the solution of the first submodel. However, the second submodel
may often become infeasible due to its strict constraints under
demanding conditions; moreover, the decision makers may desire
more tradeoff information between system satisfaction degree
and constraint-violation risk under uncertainty. One potential alter-
native for dealing with such issues is to reconfigure the model’s
decision space through introduction of a number of violation vari-
ables (i.e., establishing tolerable levels for the constraints under
demanding conditions) into the second submodel (for k�) to soften
its constraints. This leads to a constraint-softened IFMP model. The
detailed solution method for the IFMP and the modeling formula-
tion of the constraint-softened IFMP are presented in Appendix 1
to this paper.

3. Case study

The developed method will be applied to the long-term plan-
ning of municipal solid waste management in the City of Regina,
Canada. Consistent with many communities in western Canada;
the city relies mostly on a sanitary landfill for disposing of its
MSW. Approximately 70,000 tonnes per year of MSW generated
from the residential sector are buried at the landfill. Besides, the
city is operating recycling and composting (backyard) programs
to encourage residents to reduce the amounts of waste that ends
up at the landfill. However, the amount of residential waste di-
verted from landfill is relatively low (i.e., approximately 12% of
the total waste generated by households). In 2000, the Canadian
Council of the Ministers of Environment (CCME) adopted a policy
guidance for MSW diversion and recycling. Therefore, establish-
Table 1
Waste-generation rates and the associated probabilities.

Level of waste-generation t = 1 t = 2

Probability Waste flow (t/wk) Prob

Low (L) 0.125 [1373, 1433] 0.19
Low-medium (Lm) 0.280 [1434, 1494] –
Medium (M) 0.404 [1495, 1577] 0.57
High (H) 0.191 [1578, 1648] 0.23
ment of regulated waste diversion targets and relevant regulations
is currently a growing trend (but not mandatory). Typically, such
regulations focus on mandating recovery of specific materials
(e.g., dry recyclables and yard wastes), and supporting decisions
of appropriate collection systems (e.g., depot, curbside or deposit).
To realize the CCME’s diversion goal, the city is making efforts to
develop an integrated solid waste management (ISWM) strategy
for its waste collection, minimization, diversion and disposal.
Therefore, this study will focus on increasing waste diversion rate
and thus reducing waste flows to the landfill with a minimized sys-
tem cost.

The study time horizon is 15 years, consisting of three, 5-year
periods. Table 1 presents the waste-generation rates and the asso-
ciated probabilities of occurrence in the planning periods. Many
impact factors and their interactions such as population growth
rate, economic development, people living habit, and waste man-
agement policy could lead to uncertain waste-generation rate
(e.g., results of waste characterization study for the city indicate
that the residential sector generates waste at a rate of 1.00–
1.17 kg/cap/day; the city’s population growth rate is in the range
of 0.5–0.7% per year). Consequently, in this study, the waste-gener-
ation rates are presented in interval-random variables and varied
in different periods. There are four levels of waste-generation in
period 1 (i.e., low, low-medium, medium and high), and three lev-
els of waste-generation in periods 2 and 3 (i.e., low, medium and
high). Since the waste-generation amounts are uncertain, a pro-
jected waste flow level is pre-regulated based on the city’s waste
management policy. If this level is not exceeded, it will result in
a regular (normal) cost to the system. However, if it is exceeded,
the surplus waste flow will be disposed of at a premium, resulting
in an excess cost (penalty) to the system (i.e., excess flow = gener-
ated waste – assigned quota). Tables 2 and 3 provide collection and
transportation costs for pre-regulated and excess waste flows from
the city to the three facilities, operating costs of the three facilities,
penalties for surplus flows, and revenues from the composting and
recycling facilities. Costs for waste collection and transportation
t = 3

ability Waste flow (t/wk) Probability Waste flow (t/wk)

3 [1418, 1510] 0.185 [1465, 1555]
– – –

5 [1511, 1605] 0.605 [1556, 1648]
2 [1606, 1702] 0.210 [1649, 1759]
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are estimated based on the existing conditions in the collection
areas: the average container size, collection frequency, collection
mode (automatic and manual), and collection time (per load).
The penalty costs for excess waste flows are expressed in terms
of raised collection, transportation, and operation costs, signifi-
cantly higher than the regular ones.

Table 4 shows the relevant waste diversion goals, as well as the
minimum and maximum pre-regulated waste flows (to the three
facilities). As required by the authorities, 50% diversion of residen-
tial waste landfilled would be achievable within the planning hori-
zon. From a long-term planning point of view, waste-generation
rates in the city will keep increasing due to the population increase
and economic development. The waste management facilities will
face problems of insufficiency in their capacities to meet the city’s
overall waste-disposal demand and waste diversion requirement
in the future (e.g., the city plans to develop a centralized compost-
ing facility to reduce waste flows to the landfill). Table 5 presents
the discounted fixed and variable costs for capacity expansion/
development of the three facilities. These cost and revenue data
are expressed in present values.

Complexities exist in such a study system, including the collec-
tion techniques to be used, the service levels to be offered, and the
facilities to be adopted; many related processes and/or factors are
complex with multi-period, multi-layer and multi-uncertainty fea-
tures. Information for many components in waste management
systems is not known with certainty. The study problem can thus
be formulated as an interval multistage stochastic integer pro-
gramming (IMSIP) model. In IMSIP, integer programming tech-
nique will be used for planning capacity expansion/development
of waste management facilities, and fixed-charge cost functions
will be employed for reflecting the economies of scale in the
expansion/development cost. Thus, we have:
Table 3
Costs and revenues for excess waste flows.

Planning period

t = 1 t = 2 t = 3

Operation costs of waste management facilities (CAN$/t)
Landfill [18, 34] [13.79, 26.05] [11.67, 22.04]
Composting facility [34, 42] [26.05, 32.18] [22.04, 27.23]
Recycling facility [104.0, 115.3] [79.69, 88.34] [67.41, 74.74]

Collection and transportation costs (CAN$/t)
to Landfill [48.0, 55.5] [36.77, 42.52] [31.11, 35.98]
to Composting facility [102.5, 118.0] [78.52, 90.39] [66.42, 76.46]
to Recycling facility [141.0, 162.5] [108.01, 124.48] [91.37, 105.3]

Revenues from waste management facilities (CAN$/t)
Composting facility [5.0, 10.0] [3.83, 7.66] [3.24, 6.48]
Recycling facility [45.0, 55.0] [34.48, 42.14] [29.17, 35.65]

Residue transportation costs (CAN$/t)
Composting facility [2.52, 3.15] [1.93, 2.41] [1.63, 2.04]
Recycling facility [2.21, 2.52] [1.69, 1.93] [1.43, 1.63]

Table 4
Pre-regulated waste flow levels and diversion rates.

Planning period

t = 1 t = 2 t = 3

Waste diversion rate
to Landfill (%) 75 63 50

Minimum pre-regulated waste flow (t/wk)
to Landfill 700 600 500
to Composting facility 100 250 300
to Recycling facility 200 300 350

Maximum pre-regulated waste flow (t/wk)
to Landfill 950 850 750
to Composting facility 200 300 400
to Recycling facility 300 400 450
Objective function:

Min f� ¼
XT

t¼1

LtT1t TR�1t þ OP�1t

� �

þ
X3

i¼2

XT

t¼1

LtTit TR�it þ OP�it þ FE�i ðFT�it þ OP�1tÞ � RE�it
� �

þ
XT

t¼1

XKt

k¼1

LtptkM�
1tk DR�1t þ DP�1t

� �

þ
X3

i¼2

XT

t¼1

XKt

k¼1

LtptkM�
itk DR�it þ DP�it
�

þ FE�i DT�it þ DP�1t

� �
� RM�

it

�
þ
XT

t¼1

XKt

k¼1

ptk FLC�1tY
�
1tk þ VLC�1tX

�
1tk

� �

þ
X3

i¼2

XT

t¼1

XKt

k¼1

ptk FTC�it Y�itk þ VTC�it X�itk
� �

ð8aÞ

Constraints:

Xt0

t¼1

Lt T1t þM�
1tk

� �
þ
X3

i¼2

FE�i Tit þM�
itk

� �" #
6 LC� þ

Xt0

t¼1

X�1tk;

t0 ¼ 1;2; . . . ; T; k ¼ 1;2; . . . ;Kt ð8bÞ

Tit þM�
itk 6 TC�i þ

Xt0

t¼1

X�itk; t0 ¼ 1;2; . . . ; T;

i ¼ 2;3; k ¼ 1;2; . . . ;Kt ð8cÞ
X3

i¼1

Tit þM�
itk

� �
¼WG�tk; 8t; k ¼ 1;2; . . . ;Kt ð8dÞ

T1t þM�
1tk 6 DG�1tWG�tk; 8t; k ¼ 1;2; . . . ;Kt ð8eÞ

Tit min 6 Tit 6 Tit max; 8i; t ð8fÞ

0 6 M�
itk 6 Tit ; 8i; t; k ¼ 1;2; . . . ;Kt ð8gÞ

Y�itk
¼ 1; if capacity expansion is undertaken

¼ 0; if otherwise

(
;

8i; t; k ¼ 1;2; . . . ;Kt ð8hÞ

0 6 X�itk 6 NitkY�itk; 8i; t; k ¼ 1;2; . . . ;Kt ð8iÞ

Xt0

t¼1

Y�1tk 6 1; t0 ¼ 1;2; . . . ; T; k ¼ 1;2; . . . ;Kt ð8jÞ

The detailed nomenclatures for the variables and parameters are
provided in Appendix 2. The objective is to minimize the system
cost with desired plans for facility expansion/development and
waste flow allocation over the entire planning horizon, which cov-
ers (i) expense for handling pre-regulated and probabilistic excess
Table 5
Costs for capacity expansion of waste management facilities.

Planning period

t = 1 t = 2 t = 3

Cost for landfill expansion
Fixed cost (CAN$106) [4.04, 4.85] [3.66, 4.39] [3.09, 3.72]
Variable cost (CAN$/t) [2.47, 3.20] [2.24, 2.90] [1.89, 2.45]

Cost for composting facility development/expansion
Fixed cost (CAN$106) [2.10, 2.52] [1.90, 2.28] [1.61, 1.93]
Variable cost (CAN$/t) [2.00, 2.58] [1.81, 2.33] [1.53, 1.98]

Cost for recycling facility expansion
Fixed cost (CAN$106) [2.78, 30.8] [2.52, 2.79] [2.13, 2.36]
Variable cost (CAN$/t) [6.35, 7.69] [5.75, 6.96] [4.86, 5.89]
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flows, (ii) revenue from composting and recycling facilities, and (iii)
probabilistic expansion/development cost for the three facilities.
The constraints define the interrelationships among the decision
variables and the waste-generation/management conditions.
Among them, constraints (8b) and (8c) denote that the total waste
flows to the landfill, composting and recycling facilities must not
exceed their existing and expanded capacities; constraint (8d) de-
notes that, under each scenario, the waste flows handled by the
waste management facilities should equal the total waste-genera-
tion amount, and this is based on an assumption that there would
no mass loss in transportation processes; constraint (8e) denotes
that the waste flows disposed of by the landfill should meet the
waste diversion goal as pre-regulated by the city’s authority; con-
straint (8f) regulates that each pre-regulated waste flow must be-
tween the minimum and maximum pre-regulated levels;
constraint (8g) denotes that the excess waste flow to each facility
should not exceed the pre-regulated flow level; constraint (8h) de-
fines whether a facility expansion action needs to be undertaken in
period t under scenario k; constraint (8i) identifies the amount
developed and/or expanded for waste management facilities; and
constraint (8j) denotes that the landfill can only be expanded once
within the entire planning horizon.

Obviously, the IMSIP model can deal with uncertainties ex-
pressed as probability distributions and interval values, and can re-
flect dynamics in terms of decisions for waste flow allocation and
facility capacity expansion, through transactions at discrete points
of a complete scenario set over a multistage context. Moreover, it
can reflect the effects of economies of scale in expansion costs
through introduction of the fixed-charge cost functions. However,
the main limitation of the IMSIP model remains in its over-simpli-
fication of fuzzy membership information into intervals, resulting
in the deficiency of more in-depth analyses for system cost and sat-
isfaction degree.

Therefore, to reflect uncertainties under fuzzy goal and con-
straints, based on the formulation provided in model (7), the above
problem can be reformulated as an interval-fuzzy multistage sto-
chastic integer linear programming (IFMIP) model as follows:
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The constraints for facility capacity expansion are the same as those
in model (8) [i.e., constraints (8h) to (8j)]. The f�1opt and fþ1opt are the
lower and upper bounds of objective function value obtained from
model (8). Obviously, IFMIP can deal with multiple uncertainties
presented in terms of probability distributions, interval numbers,
and fuzzy sets. More importantly, it can produce solutions for not
only the decision variables and the objective function but also the
satisfaction degree for system objective and constraints under
uncertainty. Higher k± levels correspond to less strict system con-
straints, which represent a higher satisfaction degree for the objec-
tive/constraints under advantageous conditions; meanwhile, a
higher k± level is associated with a lower system cost. Conversely,
a lower k± level (a lower satisfaction degree) corresponds to more
strict constraints under demanding conditions, resulting in a higher
system cost. Therefore, a number of violation variables (under fuzzy
goal and constraints) can be introduced into model (9) for obtaining
alternatives under various risk levels of constraint-violation. A con-
straint-softened IFMIP model can then be formulated as follows:
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Fig. 1. Solution for waste flow allo
Xt0

t¼1

Yþ1tk 6 1; t0 ¼ 1;2; . . . ; T; k ¼ 1;2; . . . ;Kt ð10jÞ

Xþitk 6 NitkYþitk; 8i; t; k ¼ 1;2; . . . ;Kt ð10kÞ
0 6 k� 6 1 ð10lÞ
M�

itkopt 6 Mþ
itk 6 Tit; 8i; t; k ¼ 1;2; . . . ;Kt ð10mÞ

Xþitk P X�itkopt; 8i; t; k ¼ 1;2; . . . ;Kt ð10nÞ
Yþitk P Y�itkopt; 8i; t; k ¼ 1;2; . . . ;Kt ð10oÞ

The detailed nomenclatures for the variables and parameters are
provided in Appendix 2. For example, WG�tk and WGþtk denote the
lower and upper bounds of waste-generation rate (G�tk) in period t
under scenario k (tonne/week), respectively. The M�

itkopt, X�itkopt and
Y�itkopt are solutions for waste flow allocation and capacity expansion
from the submodel [of model (9)] corresponding to kþ . TV denotes
the total violation level. When TV = 0, the goal and constraints will
not be violated. However, when TV > 0, the corresponding con-
straint is allowed to be relaxed, associated with a given risk level
of constraint-violation. Thus, the solutions from model (10) can
cation from the IMSIP model.



Fig. 2. Waste flow allocation pattern from the IFMIP model.

Fig. 3. Expansion schemes for the landfill.
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help quantify relationships among the system cost, satisfaction de-
gree, and constraint-violation risk under various conditions. This is
meaningful for supporting further in-depth analyses of tradeoffs be-
tween environmental and economic objectives as well as those be-
tween system optimality and reliability.

4. Result analysis

Fig. 1 provides the solutions for waste flow allocation patterns
obtained from the IMSIP model [i.e., model (8)]; they include
pre-regulated and excess flows from the city to the landfilling,
composting and recycling facilities over the planning horizon. A
multi-layer scenario tree was constructed for reflecting uncertain-
ties, resulting in a total of 52 scenarios. Scenario 1 denotes a low
waste-generation rate in period 1 with a probability of 12.5%; sce-
nario 52 corresponds to high waste-generation rates in the three
periods with a joint probability of 0.93%. The waste flow-allocation
patterns would vary under different scenarios, due to the temporal
and spatial variations of waste-generation and management condi-
tions. For example, when waste-generation rates are medium in all
of the three periods (with a joint probability of 14.1%), waste flows
allocated to the landfill would be [1095, 1177], [943.0, 1016.9] and
[813.2, 824.0] t/wk in periods 1, 2 and 3, respectively; waste flows



Fig. 4. Expansion schemes for the composting facility.
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to the composting facility would be 200 [268.0, 288.1], and [392.8,
474.0] t/wk in periods 1, 2 and 3, respectively; and waste flows to
the recycling facility would be 200, 300 and 350 t/wk in periods 1,
2 and 3, respectively. The waste flows to the landfill would be
decreasing along with time, while those to the composting and
recycling facilities would keep increasing, to satisfy the required
diversion goal. Fig. 2 presents the solutions of IFMIP [i.e., model
(9)] regarding waste flow allocation; they are different from those
obtained from the IMSIP model. For example, when waste-genera-
tion rates are medium in all of the three periods, waste flows allo-
cated to the landfill would be [1034.5, 1069.7], [943.0, 1034.2] and
[813.9, 827.9] t/wk in periods 1, 2 and 3, respectively.

Fig. 3 shows the solutions for landfill-capacity expansion
schemes through IMSIP and IFMIP models. The results (from both
IMSIP and IFMIP) indicate that the landfill would be expanded at
the start of period 2, and no expansion would be undertaken in
periods 1 and 3. However, the expanded capacities (from IMSIP
and IFMIP) are different from each other. For example, when
waste-generation rates are low over the planning horizon, the ex-
panded capacity would be [340.7, 432.4] � 103 tonne (from IMSIP)
and [381.7, 391.5] � 103 tonne (from IFMIP). Moreover, varying
waste-generation rates would lead to different incremental
requirements for the landfill expansion. For instance, when
waste-generation rates are high in all of the three periods, the ex-
panded capacities would be [414.6, 508.8] � 103 tonne (from IM-
SIP) and [455.6, 467.7] � 103 tonne (from IFMIP).

The results of IMSIP and IFMIP regarding the expansion
schemes for the composting facility are shown in Fig. 4. The com-
posting facility would be expanded under most of the scenarios
over the planning horizon. The expansion plans from IMSIP and IF-
MIP would also be different from each other. For example, when
waste-generation rates are medium in period 1 and high in periods
Fig. 5. Relationship between total violation and k� levels.
2 and 3, the results of IMSIP indicate that the composting facility
would be developed with a capacity of 250 t/wk in period 1 fol-
lowed with two expansions of [0, 29.0] t/wk in period 2 and
[144.5, 205.5] t/wk in period 3; this facility would thus be devel-
oped once and expended twice and the total increment of capacity
would be [394.5, 484.5] t/wk. In comparison, the results of IFMIP
indicate that, under this waste-generation scenario, the compost-
ing facility would be developed once (in period 1) and expanded
once (in period 3), and the total increment of capacity would be
[398.6, 479.4] t/wk. The results of IMSIP and IFMIP indicate that
there would be one expansion option for the recycling facility over
the planning horizon; this facility would be expanded at the start
of period 1 with increments of [168, 189] t/wk under IMSIP and
188.8 t/wk under IFMIP.

The expected system cost obtained from the IMSIP model would
be f�opt = CAN$[69.96, 96.89] � 106; the system cost from IFMIP
would be CAN$[70.20, 96.33] million associated with a satisfaction
degree (k�) of [0.02, 0.99]. In comparison, IFMIP can lead to a nar-
rower interval for system cost than IMSIP. Besides, IFMIP can more
effectively specify the variety of uncertainties through provision of
additional k� information. The k± level represents the possibility of
satisfying the objective and constraints. It corresponds to the deci-
sion makers’ preference regarding environmental and economic
tradeoffs. In detail, k- corresponds to a higher system cost (f +) un-
der demanding conditions (i.e., with a higher waste-generation
rate and a lower facility capacity); k+ is related to f� under advan-
tageous conditions associated with a lower waste-generation rate.
Consequently, planning with a higher system cost would guarantee
that the waste management requirements and environmental reg-
ulations be met. However, the lower bound of k± (i.e., k� corre-
sponding to f+) is merely 0.02, indicating a relatively low
possibility of satisfying the objective and constraints.
Fig. 6. Relationship between Dk� and DTV.



Fig. 7. Relationship between system cost and total violation level.

Fig. 8. Relationship between reduced system cost and DTV. Fig. 10. Reduced system cost under different Dk� levels.

Fig. 9. System costs under different k� levels.
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In model (10), a number of violation variables were introduced
to soften the system constraints under demanding conditions. A to-
tal of 26 conditions corresponding to different violation levels were
analyzed to obtain insight into the variations of system cost (f +)
and satisfaction degree (k�) under different risk levels of violating
constraints. Violation analyses could help investigate the risks of
violating the system constraints and generate a range of decision
alternatives. Through solving the constraint-softened IFMIP model
under various levels of allowable violations for system constraints,
relationships between k� and constraint-violation levels can be ob-
tained, as shown in Fig. 5. An increased total violation level would
lead to a raised k� level. When TV = 0.38, the k� level would in-
crease to 0.61; however, this increase also corresponds to a raised
constraint-violation risk. Fig. 6 presents the relationship between
the increment of k� value (Dk�) and variation of total violation le-
vel (DTV), where condition 1 (k� = 0.06 and TV = 0.01) is used as the
reference one. The results indicate that, when DTV is greater than
0.37, k� value would not increase (i.e., Dk� = 0). This implies that
the system would achieve its highest satisfaction degree
(k� = 0.61) when TV = 0.38.

Fig. 7 presents the results for system cost under various viola-
tion levels. An increased violation level (i.e., softened system con-
straint) would lead to a decreased system cost. The relationship
between the cost reduction and violation-level variation is shown
in Fig. 8. The results indicate that, when DTV is greater than 0.37,
system cost would not decrease (i.e., Df� = 0). Correspondingly,
the lowest system cost (CAN$91.87 million) would be achieved
when TV = 0.38. Therefore, the results indicate that the system
would achieve both the highest satisfaction degree and the lowest
cost under TV = 0.38. Generally, the system cost would decrease
and the satisfaction degree would increase as the violation level
is raised; however, when the total violation level for the con-
straints increases to a limit, the system cost would not decrease
and the satisfaction degree would also not increase.

A number of violation analyses were conducted to obtain in-
sight into the variations of the cost reduction under different k�

levels. Fig. 9 presents the relationship between the system cost
and k� level. The relationship between the reduced cost and Dk�

level is also depicted in Fig. 10. Generally, the system cost would
decrease as the k� level increases; an increased k� level means
an increased satisfaction degree for the objective and constraints.
Therefore, a decision at a lower k� level would lead to a lower sat-
isfaction degree, but with a higher system cost; in comparison,
decisions at higher k� levels would result in lower system costs
but, at the same time, higher risk levels of violating the constraints.

Different violation levels correspond to varied k� levels. Varied
k� levels would lead to varying relationships between waste-gen-
eration rates and waste-treatment capacities, and thus result in
different waste flow allocation patterns. Fig. 11 presents the solu-
tions of waste flows (the sum of pre-regulated and excess flows) to
the landfilling and composting facilities under several k� levels. For
example, when waste-generation rates are high in all of the three



Fig. 11. Waste flows to the landfill and composting facility under different k� levels.
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periods, the waste flows allocated to the landfilling and compost-
ing facilities would be (i) 826.7 � 103 and 266.6 � 103 tonnes when
k� = 0.10, (ii) 813.8 � 103 and 262.1 � 103 tonnes when k� = 0.39,
and (iii) 804.5 � 103 and 256.2 � 103 tonnes when k� = 0.61,
respectively. In comparison, the waste to the recycling facility
would have insignificant variation with k� level. This is because
Fig. 12. Expansion schemes for the landfill under different k� levels.

Fig. 13. Expansion schemes for the compo
the recycling facility has the highest operating cost for waste flows
and the highest capital cost for capacity expansion, so that the
majority of waste flows would be firstly allocated to the landfill
and/or composting facility.

Figs. 12 and 13 present the expansion plans for the landfill and
composting facility under different k� levels. The results demon-
strate that a raised k� level would lead to a reduced capacity
expansion plan. For example, when waste-generation rates are
high over the planning horizon, the expanded capacities for the
landfill would be 467.3 � 103 tonne when k� = 0.10, 465.7 � 103

tonne when k� = 0.39, and 464.6 � 103 tonne when k� = 0.61; the
total expanded capacities for the composting facility would be
475.3, 460.4 and 441.5 t/wk when k� = 0.10, 0.39, and 0.61, respec-
tively. An increased k� level corresponds to a reduced waste-dis-
posal amount and a raised waste-treatment capacity; lower
waste-disposal amount and higher waste-treatment capacity could
both result in a lower capacity expansion plan and a lower capital
cost for facility expansion. However, an increased k- level is also
associated with a raised risk of violating the constraints.
sting facility under different k� levels.
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5. Conclusions

In this study, an inexact fuzzy-stochastic constraint-softened
programming method has been developed for violation analyses of
solid waste management systems under uncertainty. The developed
method can handle uncertainties presented in terms of fuzzy sets,
random variables, and interval numbers, and can reflect dynamics
of the uncertainties and the relevant decisions within a multistage
context. Moreover, in the modeling formulation, recourse actions
against any infeasibilities arising due to particular realizations of
the uncertainties have been taken into account to minimize the eco-
nomic penalties due to improper policies. Furthermore, a number of
violation variables for the constraints have been introduced; this can
help generate a range of decision alternatives under various condi-
tions, allowing in-depth analyses of tradeoffs among economic
objective, satisfaction degree, and constraint-violation risk.

The developed method has been applied to supporting long-
term planning of a municipal solid waste management system.
Integer programming technique has been introduced into the mod-
eling formulation to facilitate dynamic analysis for decisions of
timing, sizing and siting in planning capacity expansion/develop-
ment for waste management facilities. The results indicate that
potentially useful information has been obtained through the
developed method. They can help to identify desired capacity
expansion/development and waste flow-allocation plans and to
analyze the tradeoffs among the system cost, satisfaction degree,
and constraint-violation risk. Generally, a decision at a lower k� le-
vel would lead to an increased system reliability but with a higher
system cost; conversely, decisions at higher k� levels would result
in lower system costs but higher risks of violating the constraints.
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Appendix 1. Solution method

A two-step method is proposed for solving the IFMP model. The
submodel for kþ corresponding to f� can be formulated in the first
step when the system objective is to be minimized; the other sub-
model (corresponding to fþ) can then be formulated based on the
solution of the first submodel. Thus, the first submodel is formu-
lated (assume that B± > 0 and f± > 0) as follows:

Max kþ ð11aÞ

subject to
XT
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Xj1

j¼1
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8i; t; k ¼ 1;2; . . . ;Kt ð11dÞ
x�jt P 0; 8t; j ¼ 1;2; � � � ; j1 ð11eÞ
xþjt P 0; 8t; j ¼ j1 þ 1; j1 þ 2; . . . ;n1 ð11fÞ

y�jtk P 0; 8t; j ¼ 1;2; . . . ; j2; k ¼ 1;2; . . . ;Kt ð11gÞ
yþjtk P 0; 8t; j ¼ j2 þ 1; j2 þ 2; . . . ; n2; k ¼ 1;2; . . . ;Kt

ð11hÞ
0 6 kþ 6 1 ð11iÞ

where x�jt (j = 1, 2, . . ., j1) are the first-stage decision variables with
positive coefficients in the objective function, and x�jt (j = j1 + 1,
j1 + 2, . . ., n1) with negative coefficients; y�jtk (k = 1, 2, . . . , Kt and
j = 1, 2, . . . , j2) are the second-stage decision variables with positive
coefficients in the objective function, and y�jtk (k = 1, 2, . . . , Kt and
j = j2 + 1, j2 + 2, . . . , n2) with negative coefficients. Solutions of
x�jtopt (j = 1, 2, . . . , j1), xþjtopt (j = j1 + 1, j1 + 2, . . . , n1), y�jtkopt (j = 1,
2, . . . , j2 and k = 1, 2, . . . , Kt), yþjtkopt (j = j2 + 1, j2 + 2, . . . , n2 and
k = 1, 2, . . . , Kt) and kþopt can be obtained from submodel (11). Based
on the above solutions, the second submodel for k� (corresponding
to fþ) can be formulated as follows:
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Solutions of xþjtopt (j = 1, 2, . . . , j1), x�jtopt (j = j1 + 1, j1 + 2, . . . , n1), yþjtkopt
(j = 1, 2, . . . , j2 and k = 1, 2, . . . , Kt), y�jhopt (j = j2 + 1, j2 + 2, . . . , n2 and
k = 1, 2, . . . , Kt) and k�opt can be obtained through solving submodel
(12). Therefore, combining solutions of submodels (11) and (12), we
have solution for the IFMP model as follows:
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x�jtopt ¼ x�jtopt; x
þ
jtopt

h i
; 8j; t ð13aÞ

y�jtkopt ¼ y�jtkopty
þ
jtkopt

h i
; 8j; t; k ¼ 1;2; . . . ;Kt ð13bÞ

k�opt ¼ k�opt; k
þ
opt

h i
ð13cÞ

f�opt ¼ f�opt; f
þ
opt

h i
ð13dÞ

However, the second submodel may often become infeasible due to
its strict constraints under demanding conditions. One potential
alternative for dealing with such issues is to reconfigure the model’s
decision space through introduction of a number of violation vari-
ables (i.e., establishing tolerable levels for the constraints under
demanding conditions) into the second submodel to soften its con-
straints. This leads to a constraint-softened IFMP model (for k�) as
follows:

Max k� ð14aÞ

subject to
XT

t¼1

Xj1

j¼1

cþjt xþjt þ
Xn1

j¼j1þ1

cþjt x�jt

 !

þ
XT

t¼1

XKt

k¼1

ptk

Xj2

j¼1

dþjtkyþjtk þ
Xn2

j¼j2þ1

dþjtky�jtk

 !

� Vf 6 fþ � k�ðfþ � f�Þ ð14bÞ

Xj1

j¼1

jarjtj�Signða�rjtÞxþjt þ
Xn1

j¼j1þ1

jarjtjþSignðaþrjtÞx�jt

� Vrt 6 bþrt � k�ðbþrt � b�rtÞ; 8r; t ð14cÞ

Xj1

j¼1

j aijtj�Signða�ijtÞxþjt þ
Xn1

j¼j1þ1

j aijtjþSignðaþijtÞx�jt

þ
Xj2

j¼1

j a0ijtkj
�Signða0�ijtkÞyþjtk þ

Xn2

j¼j2þ1

j a0ijtkj
þSignða0þijtkÞy�jtk

� Vitk 6 wþitk � k�ðwþitk �w�itkÞ;

8i; t; k ¼ 1;2; . . . ;Kt ð14dÞ

Vf þ
Xm1

r¼1

XT

t¼1

Vrt þ
Xm2

i¼1

XT

t¼1

XKt

k¼1

Vitk 6 TV ð14eÞ

xþjt P x�jtopt; 8t; j ¼ 1;2; . . . ; j1 ð14fÞ

0 6 x�jt 6 xþjtopt; 8t; j ¼ j1 þ 1; j1 þ 2; . . . ; n1 ð14gÞ

yþjtk P y�jtkopt; 8t; j ¼ 1;2; . . . ; j2; k ¼ 1;2; � � � ;Kt ð14hÞ

0 6 y�jtk 6 yþjtkopt; 8t; j ¼ j2 þ 1; j2 þ 2; . . . ;n2;

k ¼ 1;2; . . . ;Kt ð14iÞ

0 6 k� 6 1 ð14jÞ

where Vf is a violation variable for the objective function; Vrt and
Vitk are two sets of violation variables for the constraints; and TV
is the total tolerable violation limit. When TV = 0, model (14) is
the second submodel of IFMP, where the goal and constraints will
not be violated. However, when TV > 0, the corresponding con-
straint of model (8) is allowed to be relaxed, associated with a given
risk level of constraint-violation. Therefore, the model’s decision
space can be expanded through introduction of a number of viola-
tion variables. With varied violation levels, a variety of solutions
associated with different k� values will be generated, corresponding
to different constraint-violation risks. They will be useful for ana-
lyzing tradeoffs among the system cost, satisfaction degree, and
constraint-violation risk.
Appendix 2. Nomenclatures for variables and parameters

f� expected system cost for waste management (CAN$)
i type of waste management facility, with i = 1 for landfill,

i = 2 for composting facility, and i = 3 for recycling facility
t time period, t = 1, 2, . . . , T
Lt length of time period t (week)
DP�it operating cost of facility i for excess waste flow during per-

iod t (CAN$/tonne)
DR�it collection and transportation cost for excess waste flow

from the city to facility i during period t (CAN$/tonne)
DT�it transportation cost for excess waste residue from facility i

to the landfill during period t (CAN$/tonne), i = 2, 3
FE�i residue flow rate from facility i to the landfill (where the

composting and recycling facilities generate residues of
[7,8]% and [8,10]% on their mass bases of the incoming
waste streams, respectively), i = 2, 3

FT�it transportation cost for residue flow from facility i to the
landfill during period t (CAN$/tonne), i = 2, 3

FLC�1t fixed-charge cost for landfill expansion in period t
(CAN$106)

FTC�it fixed-charge cost for the development and/or expansion of
composting and recycling facilities in period t (CAN$106)

LC� existing landfill capacity (tonne)
M�itk amount by which the pre-regulated waste flow level (T�it )

is exceeded when the waste-generation rate is WG�tk with
probability ptk under scenario k (tonne/week) (recourse
decision variables)

N�itk variable upper bound for the expanded capacity in period t
under scenario k (m3 or tonne/week)

OP�it operating cost of facility i for pre-regulated waste flow
during period t (CAN$/tonne)

ptk probability of occurrence for waste-generation in period t
under scenario k

Kt number of waste-generation scenarios in district j in peri-
od t

RE�it revenue from composting and recycling facilities during
period t (CAN$/tonne), i = 2, 3

RM�it revenue from composting and recycling facilities because
of excess flow during period t (CAN$/tonne), i = 2, 3

TC�i existing capacity of composting and recycling facilities
(tonne/week), i = 2, 3

TR�it collection and transportation cost for pre-regulated waste
flow from the city to facility i during period t (CAN$/tonne)

Tit pre-regulated waste flow to facility i during period t
(tonne/week) (first-stage decision variables)

Tijtmin minimum pre-regulated waste flow to facility i during per-
iod t (tonne/week)

TijtMax maximum pre-regulated waste flow to facility i during per-
iod t (tonne/week)

VLC violation level for the constraint of landfill capacity under
different scenarios (%)

VTC2 violation level for the constraint of composting facility
capacity (%)

VTC3 violation level for the constraint of recycling facility capac-
ity (%)

VWG violation level for the constraint of waste-disposal demand
under different scenarios (%)

VDG violation level for the constraint of waste diversion
requirement (%)

VLC�1t variable cost for landfill expansion in period t (CAN$/tonne)
VTC�it variable cost for the development and/or expansion of

composting and recycling facilities in period t (CAN$/tonne)
WG�tk amount of waste generated in the city in period t under

scenario k (tonne/week)
X�itk decision variables for capacity expansion/development of

facility i in period t under scenario k (tonne or tonne/week)
Y�itk binary variables for identifying whether facility i needs to

be developed and/or expanded in period t under scenario k
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