1,591 research outputs found

    Analytical computation of the epidemic threshold on temporal networks

    Full text link
    The time variation of contacts in a networked system may fundamentally alter the properties of spreading processes and affect the condition for large-scale propagation, as encoded in the epidemic threshold. Despite the great interest in the problem for the physics, applied mathematics, computer science and epidemiology communities, a full theoretical understanding is still missing and currently limited to the cases where the time-scale separation holds between spreading and network dynamics or to specific temporal network models. We consider a Markov chain description of the Susceptible-Infectious-Susceptible process on an arbitrary temporal network. By adopting a multilayer perspective, we develop a general analytical derivation of the epidemic threshold in terms of the spectral radius of a matrix that encodes both network structure and disease dynamics. The accuracy of the approach is confirmed on a set of temporal models and empirical networks and against numerical results. In addition, we explore how the threshold changes when varying the overall time of observation of the temporal network, so as to provide insights on the optimal time window for data collection of empirical temporal networked systems. Our framework is both of fundamental and practical interest, as it offers novel understanding of the interplay between temporal networks and spreading dynamics.Comment: 22 pages, 6 figure

    Rich-club and page-club coefficients for directed graphs

    Full text link
    Rich-club and page-club coefficients and their null models are introduced for directed graphs. Null models allow for a quantitative discussion of the rich-club and page-club phenomena. These coefficients are computed for four directed real-world networks: Arxiv High Energy Physics paper citation network, Web network (released from Google), Citation network among US Patents, and Email network from a EU research institution. The results show a high correlation between rich-club and page-club ordering. For journal paper citation network, we identify both rich-club and page-club ordering, showing that {}"elite" papers are cited by other {}"elite" papers. Google web network shows partial rich-club and page-club ordering up to some point and then a narrow declining of the corresponding normalized coefficients, indicating the lack of rich-club ordering and the lack of page-club ordering, i.e. high in-degree (PageRank) pages purposely avoid sharing links with other high in-degree (PageRank) pages. For UC patents citation network, we identify page-club and rich-club ordering providing a conclusion that {}"elite" patents are cited by other {}"elite" patents. Finally, for e-mail communication network we show lack of both rich-club and page-club ordering. We construct an example of synthetic network showing page-club ordering and the lack of rich-club ordering.Comment: 18 pages, 6 figure

    Epidemic Threshold in Continuous-Time Evolving Networks

    Get PDF
    Current understanding of the critical outbreak condition on temporal networks relies on approximations (time scale separation, discretization) that may bias the results. We propose a theoretical framework to compute the epidemic threshold in continuous time through the infection propagator approach. We introduce the {\em weak commutation} condition allowing the interpretation of annealed networks, activity-driven networks, and time scale separation into one formalism. Our work provides a coherent connection between discrete and continuous time representations applicable to realistic scenarios.Comment: 13 pages, 2 figure

    Characterising two-pathogen competition in spatially structured environments

    Full text link
    Different pathogens spreading in the same host population often generate complex co-circulation dynamics because of the many possible interactions between the pathogens and the host immune system, the host life cycle, and the space structure of the population. Here we focus on the competition between two acute infections and we address the role of host mobility and cross-immunity in shaping possible dominance/co-dominance regimes. Host mobility is modelled as a network of traveling flows connecting nodes of a metapopulation, and the two-pathogen dynamics is simulated with a stochastic mechanistic approach. Results depict a complex scenario where, according to the relation among the epidemiological parameters of the two pathogens, mobility can either be non-influential for the competition dynamics or play a critical role in selecting the dominant pathogen. The characterisation of the parameter space can be explained in terms of the trade-off between pathogen's spreading velocity and its ability to diffuse in a sparse environment. Variations in the cross-immunity level induce a transition between presence and absence of competition. The present study disentangles the role of the relevant biological and ecological factors in the competition dynamics, and provides relevant insights into the spatial ecology of infectious diseases.Comment: 30 pages, 6 figures, 1 table. Final version accepted for publication in Scientific Report

    Prominence and Control: The Weighted Rich-Club Effect

    Get PDF
    Published in Physical Review Letters PRL 101, 168702 (2008)http://link.aps.org/doi/10.1103/PhysRevLett.101.168702. Copyright American Physical Society (APS).Publisher's note: Erratum in Phys Rev Lett. 2008 Oct 31;101(18):189903 http://link.aps.org/doi/10.1103/PhysRevLett.101.18990

    Human mobility networks and persistence of rapidly mutating pathogens

    Get PDF
    Rapidly mutating pathogens may be able to persist in the population and reach an endemic equilibrium by escaping hosts' acquired immunity. For such diseases, multiple biological, environmental and population-level mechanisms determine the dynamics of the outbreak, including pathogen's epidemiological traits (e.g. transmissibility, infectious period and duration of immunity), seasonality, interaction with other circulating strains and hosts' mixing and spatial fragmentation. Here, we study a susceptible-infected-recovered-susceptible model on a metapopulation where individuals are distributed in subpopulations connected via a network of mobility flows. Through extensive numerical simulations, we explore the phase space of pathogen's persistence and map the dynamical regimes of the pathogen following emergence. Our results show that spatial fragmentation and mobility play a key role in the persistence of the disease whose maximum is reached at intermediate mobility values. We describe the occurrence of different phenomena including local extinction and emergence of epidemic waves, and assess the conditions for large scale spreading. Findings are highlighted in reference to previous works and to real scenarios. Our work uncovers the crucial role of hosts' mobility on the ecological dynamics of rapidly mutating pathogens, opening the path for further studies on disease ecology in the presence of a complex and heterogeneous environment.Comment: 29 pages, 7 figures. Submitted for publicatio

    Modeling the Worldwide Spread of Pandemic Influenza: Baseline Case and Containment Interventions

    Get PDF
    We present a study of the worldwide spread of a pandemic influenza and its possible containment at a global level taking into account all available information on air travel. We studied a metapopulation stochastic epidemic model on a global scale that considers airline travel flow data among urban areas. We provided a temporal and spatial evolution of the pandemic with a sensitivity analysis of different levels of infectiousness of the virus and initial outbreak conditions (both geographical and seasonal). For each spreading scenario we provided the timeline and the geographical impact of the pandemic in 3,100 urban areas, located in 220 different countries. We compared the baseline cases with different containment strategies, including travel restrictions and the therapeutic use of antiviral (AV) drugs. We show that the inclusion of air transportation is crucial in the assessment of the occurrence probability of global outbreaks. The large-scale therapeutic usage of AV drugs in all hit countries would be able to mitigate a pandemic effect with a reproductive rate as high as 1.9 during the first year; with AV supply use sufficient to treat approximately 2% to 6% of the population, in conjunction with efficient case detection and timely drug distribution. For highly contagious viruses (i.e., a reproductive rate as high as 2.3), even the unrealistic use of supplies corresponding to the treatment of approximately 20% of the population leaves 30%-50% of the population infected. In the case of limited AV supplies and pandemics with a reproductive rate as high as 1.9, we demonstrate that the more cooperative the strategy, the more effective are the containment results in all regions of the world, including those countries that made part of their resources available for global use.Comment: 16 page

    Optimizing surveillance for livestock disease spreading through animal movements

    Full text link
    The spatial propagation of many livestock infectious diseases critically depends on the animal movements among premises; so the knowledge of movement data may help us to detect, manage and control an outbreak. The identification of robust spreading features of the system is however hampered by the temporal dimension characterizing population interactions through movements. Traditional centrality measures do not provide relevant information as results strongly fluctuate in time and outbreak properties heavily depend on geotemporal initial conditions. By focusing on the case study of cattle displacements in Italy, we aim at characterizing livestock epidemics in terms of robust features useful for planning and control, to deal with temporal fluctuations, sensitivity to initial conditions and missing information during an outbreak. Through spatial disease simulations, we detect spreading paths that are stable across different initial conditions, allowing the clustering of the seeds and reducing the epidemic variability. Paths also allow us to identify premises, called sentinels, having a large probability of being infected and providing critical information on the outbreak origin, as encoded in the clusters. This novel procedure provides a general framework that can be applied to specific diseases, for aiding risk assessment analysis and informing the design of optimal surveillance systems.Comment: Supplementary Information at https://sites.google.com/site/paolobajardi/Home/archive/optimizing_surveillance_ESM_l.pdf?attredirects=

    Spread of Infectious Diseases with a Latent Period

    Full text link
    Infectious diseases spread through human networks. Susceptible-Infected-Removed (SIR) model is one of the epidemic models to describe infection dynamics on a complex network connecting individuals. In the metapopulation SIR model, each node represents a population (group) which has many individuals. In this paper, we propose a modified metapopulation SIR model in which a latent period is taken into account. We call it SIIR model. We divide the infection period into two stages: an infected stage, which is the same as the previous model, and a seriously ill stage, in which individuals are infected and cannot move to the other populations. The two infectious stages in our modified metapopulation SIR model produce a discontinuous final size distribution. Individuals in the infected stage spread the disease like individuals in the seriously ill stage and never recover directly, which makes an effective recovery rate smaller than the given recovery rate.Comment: 6 pages, 3 figure

    Prediction and predictability of global epidemics: the role of the airline transportation network

    Get PDF
    The systematic study of large-scale networks has unveiled the ubiquitous presence of connectivity patterns characterized by large scale heterogeneities and unbounded statistical fluctuations. These features affect dramatically the behavior of the diffusion processes occurring on networks, determining the ensuing statistical properties of their evolution pattern and dynamics. In this paper, we investigate the role of the large scale properties of the airline transportation network in determining the global evolution of emerging disease. We present a stochastic computational framework for the forecast of global epidemics that considers the complete world-wide air travel infrastructure complemented with census population data. We address two basic issues in global epidemic modeling: i) We study the role of the large scale properties of the airline transportation network in determining the global diffusion pattern of emerging diseases; ii) We evaluate the reliability of forecasts and outbreak scenarios with respect to the intrinsic stochasticity of disease transmission and traffic flows. In order to address these issues we define a set of novel quantitative measures able to characterize the level of heterogeneity and predictability of the epidemic pattern. These measures may be used for the analysis of containment policies and epidemic risk assessment.Comment: 20 pages, 5 figure
    corecore