218 research outputs found

    A Streaming Multi-GPU Implementation of Image Simulation Algorithms for Scanning Transmission Electron Microscopy

    Full text link
    Simulation of atomic resolution image formation in scanning transmission electron microscopy can require significant computation times using traditional methods. A recently developed method, termed plane-wave reciprocal-space interpolated scattering matrix (PRISM), demonstrates potential for significant acceleration of such simulations with negligible loss of accuracy. Here we present a software package called Prismatic for parallelized simulation of image formation in scanning transmission electron microscopy (STEM) using both the PRISM and multislice methods. By distributing the workload between multiple CUDA-enabled GPUs and multicore processors, accelerations as high as 1000x for PRISM and 30x for multislice are achieved relative to traditional multislice implementations using a single 4-GPU machine. We demonstrate a potentially important application of Prismatic, using it to compute images for atomic electron tomography at sufficient speeds to include in the reconstruction pipeline. Prismatic is freely available both as an open-source CUDA/C++ package with a graphical user interface and as a Python package, PyPrismatic

    A method for crystallographic mapping of an alpha-beta titanium alloy with nanometre resolution using scanning precession electron diffraction and open-source software libraries

    Full text link
    An approach for the crystallographic mapping of two-phase alloys on the nanoscale using a combination of scanned precession electron diffraction and open source python libraries is introduced in this paper. This method is demonstrated using the example of a two-phase alpha / beta titanium alloy. The data was recorded using a direct electron detector to collect the patterns, and recently developed algorithms to then perform automated indexing and to analyse the crystallography from the results. Very high-quality mapping is achieved at a 3nm step size. The results show the expected Burgers orientation relationships between the alpha laths and beta matrix, as well as the expected misorientations between alpha laths. It is found that 180{\deg} ambiguities in indexing occur due to acquisition having been performed too close to a high symmetry zone axis of the beta with 2-fold projection symmetry (not present in 3D) in the Zero Order Laue Zone for some patterns and that this should be avoided in data acquisition in the future. Nevertheless, this study demonstrates a good workflow for the analysis of nanocrystalline two-phase or multiphase materials, which will be of widespread use in analysing two-phase titanium and other systems and how they evolve as a function of thermomechanical treatments.Comment: Submitted to Journal of Microscop

    Structure retrieval at atomic resolution in the presence of multiple scattering of the electron probe

    Get PDF
    The projected electrostatic potential of a thick crystal is reconstructed at atomic-resolution from experimental scanning transmission electron microscopy data recorded using a new generation fast- readout electron camera. This practical and deterministic inversion of the equations encapsulating multiple scattering that were written down by Bethe in 1928 removes the restriction of established methods to ultrathin (≲50\lesssim 50 {\AA}) samples. Instruments already coming on-line can overcome the remaining resolution-limiting effects in this method due to finite probe-forming aperture size, spatial incoherence and residual lens aberrations.Comment: 6 pages, 3 figure

    Patterned probes for high precision 4D-STEM bragg measurements.

    Get PDF
    Nanoscale strain mapping by four-dimensional scanning transmission electron microscopy (4D-STEM) relies on determining the precise locations of Bragg-scattered electrons in a sequence of diffraction patterns, a task which is complicated by dynamical scattering, inelastic scattering, and shot noise. These features hinder accurate automated computational detection and position measurement of the diffracted disks, limiting the precision of measurements of local deformation. Here, we investigate the use of patterned probes to improve the precision of strain mapping. We imprint a "bullseye" pattern onto the probe, by using a binary mask in the probe-forming aperture, to improve the robustness of the peak finding algorithm to intensity modulations inside the diffracted disks. We show that this imprinting leads to substantially improved strain-mapping precision at the expense of a slight decrease in spatial resolution. In experiments on an unstrained silicon reference sample, we observe an improvement in strain measurement precision from 2.7% of the reciprocal lattice vectors with standard probes to 0.3% using bullseye probes for a thin sample, and an improvement from 4.7% to 0.8% for a thick sample. We also use multislice simulations to explore how sample thickness and electron dose limit the attainable accuracy and precision for 4D-STEM strain measurements

    Probing Light Atoms at Sub-nanometer Resolution: Realization of Scanning Transmission Electron Microscope Holography

    Full text link
    Atomic resolution imaging in transmission electron microscopy (TEM) and scanning TEM (STEM) of light elements in electron-transparent materials has long been a challenge. Biomolecular materials, for example, are rapidly altered when illuminated with electrons. These issues have driven the development of TEM and STEM techniques that enable the structural analysis of electron beam-sensitive and weakly scattering nano-materials. Here, we demonstrate such a technique, STEM holography, capable of absolute phase and amplitude object wave measurement with respect to a vacuum reference wave. We use an amplitude-dividing nanofabricated grating to prepare multiple spatially separated electron diffraction probe beams focused at the sample plane, such that one beam transmits through the specimen while the others pass through vacuum. We raster-scan the diffracted probes over the region of interest. We configure the post specimen imaging system of the microscope to diffraction mode, overlapping the probes to form an interference pattern at the detector. Using a fast-readout, direct electron detector, we record and analyze the interference fringes at each position in a 2D raster scan to reconstruct the complex transfer function of the specimen, t(x). We apply this technique to image a standard target specimen consisting of gold nanoparticles on a thin amorphous carbon substrate, and demonstrate 2.4 angstrom resolution phase images. We find that STEM holography offers higher phase-contrast of the amorphous material while maintaining Au atomic lattice resolution when compared with high angle annular dark field STEM.Comment: 9 pages, 5 figures in main text, 1 supplemental figure in the appendi
    • …
    corecore