Simulation of atomic resolution image formation in scanning transmission
electron microscopy can require significant computation times using traditional
methods. A recently developed method, termed plane-wave reciprocal-space
interpolated scattering matrix (PRISM), demonstrates potential for significant
acceleration of such simulations with negligible loss of accuracy. Here we
present a software package called Prismatic for parallelized simulation of
image formation in scanning transmission electron microscopy (STEM) using both
the PRISM and multislice methods. By distributing the workload between multiple
CUDA-enabled GPUs and multicore processors, accelerations as high as 1000x for
PRISM and 30x for multislice are achieved relative to traditional multislice
implementations using a single 4-GPU machine. We demonstrate a potentially
important application of Prismatic, using it to compute images for atomic
electron tomography at sufficient speeds to include in the reconstruction
pipeline. Prismatic is freely available both as an open-source CUDA/C++ package
with a graphical user interface and as a Python package, PyPrismatic