85 research outputs found

    Comparison of human mammary epithelial cells immortalized by simian virus 40 T-Antigen or by the telomerase catalytic subunit

    Get PDF
    We directly compared two methods of immortalizing human mammary epithelial cells (HMECs). Cells were transfected with an expression plasmid either for hTERT, the catalytic subunit of telomerase, or for the simian virus 40 (SV40) early region genes. Under standard culture conditions, HMECs were not immortalized by hTERT unless they had spontaneously ceased expression of the p16(INK4a) tumor suppressor gene. Untransfected HMECs had low levels of telomerase expression, and immortalization by both methods was associated with an increase in telomerase activity and prevention of telomere shortening. SV40-induced immortalization was accompanied by aberrant differentiation, loss of DNA damage response, karyotypic instability and, in some cases, tumorigenicity. hTERT-immortalized cells had fewer karyotypic changes, but had intact DNA damage responses, and features of normal differentiation. Although SV40-immortalized cells are useful for studies of carcinogenesis, hTERT-immortalized cells retain more properties of normal cells.NHMR

    Quantification of Alternative Splicing Variants of Human Telomerase Reverse Transcriptase and Correlations with Telomerase Activity in Lung Cancer

    Get PDF
    Telomerase plays important roles in the development and progression of malignant tumors, and its activity is primarily determined by transcriptional regulation of human telomerase reverse transcriptase (hTERT). Several mRNA alternative splicing variants (ASVs) for hTERT have been identified, but it remains unclear whether telomerase activity is directly associated with hTERT splicing transcripts. In this study, we developed novel real-time PCR protocols using molecular beacons and applied to lung carcinoma cell lines and cancerous tissues for quantification of telomerase activity and three essential hTERT deletion transcripts respectively. The results showed that lung carcinoma cell lines consistently demonstrated telomerase activity (14.22–31.43 TPG units per 100 cells) and various hTERT alternative splicing transcripts. For 165 lung cancer cases, telomerase activity showed significant correlation with tumor differentiation (poorly->moderately->well-differentiated, P<0.01) and with histotypes (combined small cell and squamous cell carcinoma>squamous cell carcinoma>adenosquamous carcinoma>adenocarcinoma, P<0.05). Although the overall hTERT transcripts were detected in all the samples, they were not associated with telomerase activity (r = 0.092, P = 0.24). Telomerase activity was significantly correlated with the transcriptional constituent ratio of α-deletion (r = -0.267, P = 0.026), β-deletion (r = -0.693, P = 0.0001) and γ-deletion (r = –0.614, P = 0.001). The positive rate and average constituent ratio of β-deletion transcripts (92.12%, 0.23) were higher than those of α-deletion (41.82%, 0.12) or γ-deletion (16.36%, 0.18) transcripts. The combined small-cell and squamous cell carcinomas expressed less deletion transcripts, especially β-deletion, than other histotypes, which might explain their higher telomerase activity. In conclusion, the molecular beacon-based real-time PCR protocols are rapid, sensitive and specific methods to quantify telomerase activity and hTERT ASVs. Telomerase activity may serve as a reliable and effective molecular marker to assist the evaluation of histological subtype and differentiation of lung carcinomas. Further studies on hTERT deletion splicing transcripts, rather than the overall hTERT transcripts, may improve our understanding of telomerase regulation

    Quantitative relationship between functionally active telomerase and major telomerase components (hTERT and hTR) in acute leukaemia cells

    Get PDF
    Functionally active telomerase is affected at various steps including transcriptional and post-transcriptional levels of major telomerase components (hTR and human telomerase reverse transcriptase (hTERT)). We therefore developed a rapid and sensitive method to quantify hTERT and its splicing variants as well as the hTR by a Taqman real-time reverse transcriptase–polymerase chain reaction to determine whether their altered expression may contribute to telomere attrition in vivo or not. Fresh leukaemia cells obtained from 38 consecutive patients were used in this study. The enzymatic level of telomerase activity measured by TRAP assay was generally associated with the copy numbers of full-length hTERT+α+β mRNA (P=0.0024), but did not correlate with hTR expression (P=0.6753). In spite of high copy numbers of full-length hTERT mRNA, telomerase activity was low in some cases correlating with low copy numbers of hTR, raising the possibility that alteration of the hTR : hTERT ratio may affect functionally active telomerase activity in vivo. The spliced nonactive hTERT mRNA tends to be lower in patients with high telomerase activity, suggesting that this epiphenomenon may play some role in telomerase regulation. An understanding of the complexities of telomerase gene regulation in biologically heterogeneous leukaemia cells may offer new therapeutic approaches to the treatment of acute leukaemia

    Speed Controls the Amplitude and Timing of the Hippocampal Gamma Rhythm

    Get PDF
    Cortical and hippocampal gamma oscillations have been implicated in many behavioral tasks. The hippocampus is required for spatial navigation where animals run at varying speeds. Hence we tested the hypothesis that the gamma rhythm could encode the running speed of mice. We found that the amplitude of slow (20–45 Hz) and fast (45–120 Hz) gamma rhythms in the hippocampal local field potential (LFP) increased with running speed. The speed-dependence of gamma amplitude was restricted to a narrow range of theta phases where gamma amplitude was maximal, called the preferred theta phase of gamma. The preferred phase of slow gamma precessed to lower values with increasing running speed. While maximal fast and slow gamma occurred at coincident phases of theta at low speeds, they became progressively more theta-phase separated with increasing speed. These results demonstrate a novel influence of speed on the amplitude and timing of the hippocampal gamma rhythm which could contribute to learning of temporal sequences and navigation

    Alternative splicing and nonsense-mediated decay regulate telomerase reverse transcriptase (TERT) expression during virus-induced lymphomagenesis in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Telomerase activation, a critical step in cell immortalization and oncogenesis, is partly regulated by alternative splicing. In this study, we aimed to use the Marek's disease virus (MDV) T-cell lymphoma model to evaluate TERT regulation by splicing during lymphomagenesis <it>in vivo</it>, from the start point to tumor establishment.</p> <p>Results</p> <p>We first screened cDNA libraries from the chicken MDV lymphoma-derived MSB-1 T- cell line, which we compared with B (DT40) and hepatocyte (LMH) cell lines. The chTERT splicing pattern was cell line-specific, despite similar high levels of telomerase activity. We identified 27 alternative transcripts of chicken TERT (chTERT). Five were in-frame alternative transcripts without <it>in vitro </it>telomerase activity in the presence of viral or chicken telomerase RNA (vTR or chTR), unlike the full-length transcript. Nineteen of the 22 transcripts with a premature termination codon (PTC) harbored a PTC more than 50 nucleotides upstream from the 3' splice junction, and were therefore predicted targets for nonsense-mediated decay (NMD). The major PTC-containing alternatively spliced form identified in MSB1 (ie10) was targeted to the NMD pathway, as demonstrated by UPF1 silencing. We then studied three splicing events separately, and the balance between in-frame alternative splice variants (d5f and d10f) plus the NMD target i10ec and constitutively spliced chTERT transcripts during lymphomagenesis induced by MDV indicated that basal telomerase activity in normal T cells was associated with a high proportion of in-frame non functional isoforms and a low proportion of constitutively spliced chTERT. Telomerase upregulation depended on an increase in active constitutively spliced chTERT levels and coincided with a switch in alternative splicing from an in-frame variant to NMD-targeted variants.</p> <p>Conclusions</p> <p>TERT regulation by splicing plays a key role in telomerase upregulation during lymphomagenesis, through the sophisticated control of constitutive and alternative splicing. Using the MDV T-cell lymphoma model, we identified a chTERT splice variant as a new NMD target.</p

    Correlated Evolution of Nearby Residues in Drosophilid Proteins

    Get PDF
    Here we investigate the correlations between coding sequence substitutions as a function of their separation along the protein sequence. We consider both substitutions between the reference genomes of several Drosophilids as well as polymorphisms in a population sample of Zimbabwean Drosophila melanogaster. We find that amino acid substitutions are “clustered” along the protein sequence, that is, the frequency of additional substitutions is strongly enhanced within ≈10 residues of a first such substitution. No such clustering is observed for synonymous substitutions, supporting a “correlation length” associated with selection on proteins as the causative mechanism. Clustering is stronger between substitutions that arose in the same lineage than it is between substitutions that arose in different lineages. We consider several possible origins of clustering, concluding that epistasis (interactions between amino acids within a protein that affect function) and positional heterogeneity in the strength of purifying selection are primarily responsible. The role of epistasis is directly supported by the tendency of nearby substitutions that arose on the same lineage to preserve the total charge of the residues within the correlation length and by the preferential cosegregation of neighboring derived alleles in our population sample. We interpret the observed length scale of clustering as a statistical reflection of the functional locality (or modularity) of proteins: amino acids that are near each other on the protein backbone are more likely to contribute to, and collaborate toward, a common subfunction

    Human telomerase activity regulation

    Get PDF
    Telomerase has been recognized as a relevant factor distinguishing cancer cells from normal cells. Thus, it has become a very promising target for anticancer therapy. The cell proliferative potential can be limited by replication end problem, due to telomeres shortening, which is overcome in cancer cells by telomerase activity or by alternative telomeres lengthening (ALT) mechanism. However, this multisubunit enzymatic complex can be regulated at various levels, including expression control but also other factors contributing to the enzyme phosphorylation status, assembling or complex subunits transport. Thus, we show that the telomerase expression targeting cannot be the only possibility to shorten telomeres and induce cell apoptosis. It is important especially since the transcription expression is not always correlated with the enzyme activity which might result in transcription modulation failure or a possibility for the gene therapy to be overcome. This review summarizes the current state of knowledge of numerous telomerase regulation mechanisms that take place after telomerase subunits coding genes transcription. Thus we show the possible mechanisms of telomerase activity regulation which might become attractive anticancer therapy targets

    At clinically relevant concentrations the anaesthetic/amnesic thiopental but not the anticonvulsant phenobarbital interferes with hippocampal sharp wave-ripple complexes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many sedative agents, including anesthetics, produce explicit memory impairment by largely unknown mechanisms. Sharp-wave ripple (SPW-R) complexes are network activity thought to represent the neuronal substrate for information transfer from the hippocampal to neocortical circuits, contributing to the explicit memory consolidation. In this study we examined and compared the actions of two barbiturates with distinct amnesic actions, the general anesthetic thiopental and the anticonvulsant phenobarbital, on in vitro SPW-R activity.</p> <p>Results</p> <p>Using an in vitro model of SPW-R activity we found that thiopental (50–200 μM) significantly and concentration-dependently reduced the incidence of SPW-R events (it increased the inter-event period by 70–430 %). At the concentration of 25 μM, which clinically produces mild sedation and explicit memory impairment, thiopental significantly reduced the quantity of ripple oscillation (it reduced the number of ripples and the duration of ripple episodes by 20 ± 5%, n = 12, <it>P </it>< 0.01), and suppressed the rhythmicity of SPWs by 43 ± 15% (n = 6, <it>P </it>< 0.05). The drug disrupted the synchrony of SPWs within the CA1 region at 50 μM (by 19 ± 12%; n = 5, <it>P </it>< 0.05). Similar effects of thiopental were observed at higher concentrations. Thiopental did not affect the frequency of ripple oscillation at any of the concentrations tested (10–200 μM). Furthermore, the drug significantly prolonged single SPWs at concentrations ≥50 μM (it increased the half-width and the duration of SPWs by 35–90 %). Thiopental did not affect evoked excitatory synaptic potentials and its results on SPW-R complexes were also observed under blockade of NMDA receptors. Phenobarbital significantly accelerated SPWs at 50 and 100 μM whereas it reduced their rate at 200 and 400 μM. Furthermore, it significantly prolonged SPWs, reduced their synchrony and reduced the quantity of ripples only at the clinically very high concentration of 400 μM, reported to affect memory.</p> <p>Conclusion</p> <p>We hypothesize that thiopental, by interfering with SPW-R activity, through enhancement of the GABA<sub>A </sub>receptor-mediated transmission, affects memory processes which involve hippocampal circuit activation. The quantity but not the frequency of ripple oscillation was affected by the drug.</p

    Imatinib mesylate (Gleevec) downregulates telomerase activity and inhibits proliferation in telomerase-expressing cell lines

    Get PDF
    Imatinib mesylate (IM) is a tyrosine kinase inhibitor, which inhibits phosphorylation of downstream proteins involved in BCR-ABL signal transduction. It has proved beneficial in treating patients with chronic myeloid leukaemia (CML). In addition, IM demonstrates activity against malignant cells expressing c-kit and platelet-derived growth factor receptor (PDGF-R). The activity of IM in the blastic crisis of CML and against various myeloma cell lines suggests that this drug may also target other cellular components. In the light of the important role of telomerase in malignant transformation, we evaluated the effect of IM on telomerase activity (TA) and regulation in various malignant cell lines. Imatinib mesylate caused a dose-dependent inhibition of TA (up to 90% at a concentration of 15 μM IM) in c-kit-expressing SK-N-MC (Ewing sarcoma), SK-MEL-28 (melanoma), RPMI 8226 (myeloma), MCF-7 (breast cancer) and HSC 536/N (Fanconi anaemia) cells as well as in ba/F3 (murine pro-B cells), which do not express c-kit, BCR-ABL or PDGF-R. Imatinib mesylate did not affect the activity of other DNA polymerases. Inhibition of TA was associated with 50% inhibition of proliferation. The inhibition of proliferation was associated with a decrease in the S-phase of the cell cycle and an accumulation of cells in the G2/M phase. No apoptosis was observed. Inhibition of TA was caused mainly by post-translational modifications: dephosphorylation of AKT and, to a smaller extent, by early downregulation of hTERT (the catalytic subunit of the enzyme) transcription. Other steps of telomerase regulation were not affected by IM. This study demonstrates an additional cellular target of IM, not necessarily mediated via known tyrosine kinases, that causes inhibition of TA and cell proliferation
    corecore