16 research outputs found

    Functional connectivity modules in recurrent neural networks: function, origin and dynamics

    Full text link
    Understanding the ubiquitous phenomenon of neural synchronization across species and organizational levels is crucial for decoding brain function. Despite its prevalence, the specific functional role, origin, and dynamical implication of modular structures in correlation-based networks remains ambiguous. Using recurrent neural networks trained on systems neuroscience tasks, this study investigates these important characteristics of modularity in correlation networks. We demonstrate that modules are functionally coherent units that contribute to specialized information processing. We show that modules form spontaneously from asymmetries in the sign and weight of projections from the input layer to the recurrent layer. Moreover, we show that modules define connections with similar roles in governing system behavior and dynamics. Collectively, our findings clarify the function, formation, and operational significance of functional connectivity modules, offering insights into cortical function and laying the groundwork for further studies on brain function, development, and dynamics

    How future surgery will benefit from SARS-COV-2-related measures: a SPIGC survey conveying the perspective of Italian surgeons

    Get PDF
    COVID-19 negatively affected surgical activity, but the potential benefits resulting from adopted measures remain unclear. The aim of this study was to evaluate the change in surgical activity and potential benefit from COVID-19 measures in perspective of Italian surgeons on behalf of SPIGC. A nationwide online survey on surgical practice before, during, and after COVID-19 pandemic was conducted in March-April 2022 (NCT:05323851). Effects of COVID-19 hospital-related measures on surgical patients' management and personal professional development across surgical specialties were explored. Data on demographics, pre-operative/peri-operative/post-operative management, and professional development were collected. Outcomes were matched with the corresponding volume. Four hundred and seventy-three respondents were included in final analysis across 14 surgical specialties. Since SARS-CoV-2 pandemic, application of telematic consultations (4.1% vs. 21.6%; p < 0.0001) and diagnostic evaluations (16.4% vs. 42.2%; p < 0.0001) increased. Elective surgical activities significantly reduced and surgeons opted more frequently for conservative management with a possible indication for elective (26.3% vs. 35.7%; p < 0.0001) or urgent (20.4% vs. 38.5%; p < 0.0001) surgery. All new COVID-related measures are perceived to be maintained in the future. Surgeons' personal education online increased from 12.6% (pre-COVID) to 86.6% (post-COVID; p < 0.0001). Online educational activities are considered a beneficial effect from COVID pandemic (56.4%). COVID-19 had a great impact on surgical specialties, with significant reduction of operation volume. However, some forced changes turned out to be benefits. Isolation measures pushed the use of telemedicine and telemetric devices for outpatient practice and favored communication for educational purposes and surgeon-patient/family communication. From the Italian surgeons' perspective, COVID-related measures will continue to influence future surgical clinical practice

    Macroscale coupling between structural and effective connectivity in the mouse brain

    No full text
    Abstract Exploring how the emergent functional connectivity (FC) relates to the underlying anatomy (structural connectivity, SC) is one of the major goals of modern neuroscience. At the macroscale level, no one-to-one correspondence between structural and functional links seems to exist. And we posit that to better understand their coupling, two key aspects should be considered: the directionality of the structural connectome and limitations in explaining networks functions through an undirected measure such as FC. Here, we employed an accurate directed SC of the mouse brain acquired through viral tracers and compared it with single-subject effective connectivity (EC) matrices derived from a dynamic causal model (DCM) applied to whole-brain resting-state fMRI data. We analyzed how SC deviates from EC and quantified their respective couplings by conditioning on the strongest SC links and EC links. We found that when conditioning on the strongest EC links, the obtained coupling follows the unimodal-transmodal functional hierarchy. Whereas the reverse is not true, as there are strong SC links within high-order cortical areas with no corresponding strong EC links. This mismatch is even more clear across networks; only within sensory motor networks did we observe connections that align in terms of both effective and structural strength

    Brain activity elicited by viewing pictures of the own virtually amputated body predicts xenomelia

    Full text link
    BACKGROUND: Xenomelia is a rare condition characterized by the persistent desire for the amputation of physically healthy limbs. Prior studies highlighted the importance of superior and inferior parietal lobuli (SPL/IPL) and other sensorimotor regions as key brain structures associated with xenomelia. We expected activity differences in these areas in response to pictures showing the desired body state, i.e. that of an amputee in xenomelia. METHODS: Functional magnetic resonance images were acquired in 12 xenomelia individuals and 11 controls while they viewed pictures of their own real and virtually amputated body. Pictures were rated on several dimensions. Multivariate statistics using machine learning was performed on imaging data. RESULTS: Brain activity when viewing pictures of one's own virtually amputated body predicted group membership accurately with a balanced accuracy of 82.58% (p = 0.002), sensitivity of 83.33% (p = 0.018), specificity of 81.82% (p = 0.015) and an area under the ROC curve of 0.77. Among the highest predictive brain regions were bilateral SPL, IPL, and caudate nucleus, other limb representing areas, but also occipital regions. Pleasantness and attractiveness ratings were higher for amputated bodies in xenomelia. CONCLUSIONS: Findings show that neuronal processing in response to pictures of one's own desired body state is different in xenomelia compared with controls and might represent a neuronal substrate of the xenomelia complaints that become behaviourally relevant, at least when rating the pleasantness and attractiveness of one's own body. Our findings converge with structural peculiarities reported in xenomelia and partially overlap in task and results with that of anorexia and transgender research

    Modular subgraphs in large-scale connectomes underpin spontaneous co-fluctuation events in mouse and human brains

    No full text
    Abstract Previous studies have adopted an edge-centric framework to study fine-scale network dynamics in human fMRI. To date, however, no studies have applied this framework to data collected from model organisms. Here, we analyze structural and functional imaging data from lightly anesthetized mice through an edge-centric lens. We find evidence of “bursty” dynamics and events - brief periods of high-amplitude network connectivity. Further, we show that on a per-frame basis events best explain static FC and can be divided into a series of hierarchically-related clusters. The co-fluctuation patterns associated with each cluster centroid link distinct anatomical areas and largely adhere to the boundaries of algorithmically detected functional brain systems. We then investigate the anatomical connectivity undergirding high-amplitude co-fluctuation patterns. We find that events induce modular bipartitions of the anatomical network of inter-areal axonal projections. Finally, we replicate these same findings in a human imaging dataset. In summary, this report recapitulates in a model organism many of the same phenomena observed in previously edge-centric analyses of human imaging data. However, unlike human subjects, the murine nervous system is amenable to invasive experimental perturbations. Thus, this study sets the stage for future investigation into the causal origins of fine-scale brain dynamics and high-amplitude co-fluctuations. Moreover, the cross-species consistency of the reported findings enhances the likelihood of future translation

    Phospholipid scramblase Xkr8 is required for developmental axon pruning via phosphatidylserine exposure

    No full text
    The mature mammalian brain connectome emerges during development via the extension and pruning of neuronal connections. Glial cells have been identified as key players in the phagocytic elimination of neuronal synapses and projections. Recently, phosphatidylserine has been identified as neuronal “eat-me” signal that guides elimination of unnecessary input sources, but the associated transduction systems involved in such pruning are yet to be described. Here, we identified Xk-related protein 8 (Xkr8), a phospholipid scramblase, as a key factor for the pruning of axons in the developing mammalian brain. We found that mouse Xkr8 is highly expressed immediately after birth and required for phosphatidylserine exposure in the hippocampus. Mice lacking Xkr8 showed excess excitatory nerve terminals, increased density of cortico-cortical and cortico-spinal projections, aberrant electrophysiological profiles of hippocampal neurons, and global brain hyperconnectivity. These data identify phospholipid scrambling by Xkr8 as a central process in the labeling and discrimination of developing neuronal projections for pruning in the mammalian brain

    Common functional networks in the mouse brain revealed by multi-centre resting-state fMRI analysis

    No full text
    Preclinical applications of resting-state functional magnetic resonance imaging (rsfMRI) offer the possibility to non-invasively probe whole-brain network dynamics and to investigate the determinants of altered network signatures observed in human studies. Mouse rsfMRI has been increasingly adopted by numerous laboratories worldwide. Here we describe a multi-centre comparison of 17 mouse rsfMRI datasets via a common image processing and analysis pipeline. Despite prominent cross-laboratory differences in equipment and imaging procedures, we report the reproducible identification of several large-scale resting-state networks (RSN), including a mouse default-mode network, in the majority of datasets. A combination of factors was associated with enhanced reproducibility in functional connectivity parameter estimation, including animal handling procedures and equipment performance. RSN spatial specificity was enhanced in datasets acquired at higher field strength, with cryoprobes, in ventilated animals, and under medetomidine-isoflurane combination sedation. Our work describes a set of representative RSNs in the mouse brain and highlights key experimental parameters that can critically guide the design and analysis of future rodent rsfMRI investigations
    corecore