39 research outputs found

    Slip on three-dimensional surfactant-contaminated superhydrophobic gratings

    Full text link
    Trace amounts of surfactants have been shown to critically prevent the drag reduction of superhydrophobic surfaces (SHSs), yet predictive models including their effects in realistic geometries are still lacking. We derive theoretical predictions for the velocity and resulting slip of a laminar fluid flow over three-dimensional SHS gratings contaminated with surfactant, which allow for the first direct comparison with experiments. The results are in good agreement with our numerical simulations and with measurements of the slip in microfluidic channels lined with SHSs, which we obtain via confocal microscopy and micro-particle image velocimetry. Our model enables the estimation of a priori unknown parameters of surfactants naturally present in applications, highlighting its relevance for microfluidic technologies.Comment: 6 pages, 3 figures, 11 supplemental pages, 2 supplemental figure

    A theory for the slip and drag of superhydrophobic surfaces with surfactant.

    Get PDF
    Superhydrophobic surfaces (SHSs) have the potential to reduce drag at solid boundaries. However, multiple independent studies have recently shown that small amounts of surfactant, naturally present in the environment, can induce Marangoni forces that increase drag, at least in the laminar regime. To obtain accurate drag predictions, one must solve the mass, momentum, bulk surfactant and interfacial surfactant conservation equations. This requires expensive simulations, thus preventing surfactant from being widely considered in SHS studies. To address this issue, we propose a theory for steady, pressure-driven, laminar, two-dimensional flow in a periodic SHS channel with soluble surfactant. We linearise the coupling between flow and surfactant, under the assumption of small concentration, finding a scaling prediction for the local slip length. To obtain the drag reduction and interfacial shear, we find a series solution for the velocity field by assuming Stokes flow in the bulk and uniform interfacial shear. We find how the slip and drag depend on the nine dimensionless groups that together characterize the surfactant transport near SHSs, the gas fraction and the normalized interface length. Our model agrees with numerical simulations spanning orders of magnitude in each dimensionless group. The simulations also provide the constants in the scaling theory. Our model significantly improves predictions relative to a surfactant-free one, which can otherwise overestimate slip and underestimate drag by several orders of magnitude. Our slip length model can provide the boundary condition in other simulations, thereby accounting for surfactant effects without having to solve the full problem.Raymond and Beverly Sackler Foundation, the European Research Council Grant 247333, Mines ParisTech, the Schlumberger Chair Fund, the California NanoSystems Institute through a Challenge Grant, ARO MURI W911NF-17- 1-0306 and ONR MURI N00014-17-1-267

    A model for slip and drag in turbulent flows over superhydrophobic surfaces with surfactant

    Get PDF
    International audienceSuperhydrophobic surfaces (SHSs) can reduce the friction drag in turbulent flows. In the laminar regime, it has been shown that trace amounts of surfactant can negate this drag reduction, at times rendering these surfaces no better than solid walls (Peaudecerf et al., Proc. Natl. Acad. Sci. USA 114(28), 7254-9, 2017). However, surfactant effects on the drag-reducing properties of SHSs have not yet been studied under turbulent flow conditions, where predicting the effects of surfactant in direct numerical simulations remains expensive by today’s standards. We present a model for turbulent flow inclusive of surfactant, in either a channel or boundary-layer configuration, over long but finite-length streamwise ridges that are periodic in the spanwise direction, with period and gas fraction . We adopt a technique based on a shifted log law to acquire an expression for the drag reduction. The average streamwise and spanwise slip lengths are derived by introducing a local laminar model within the viscous sublayer, whereby the effect of surfactant is modelled by modifying the average streamwise and spanwise slip lengths. Our model agrees with available laboratory experimental data from the literature when conditions are clean (surfactant-free), or when there are low surfactant levels. However, we find an appreciable drag increase for larger background surfactant concentrations that are characteristic of turbulent flows over SHSs for marine applications

    Exogenous-endogenous surfactant interaction yields heterogeneous spreading in complex branching networks

    Full text link
    Experiments have shown that surfactant introduced to a liquid-filled maze can find the solution path. We reveal how the maze-solving dynamics arise from interactions between the added surfactant and endogenous surfactant present at the liquid surface. We simulate the dynamics using a nonlinear model solved with a discrete mimetic scheme on a graph. Endogenous surfactant transforms local spreading into a non-local problem with an omniscient view of the maze geometry, key to the maze-solving dynamics. Our results offer insight into surfactant-driven transport in complex networks such as lung airways.Comment: 5 pages, 4 figure
    corecore