5,360 research outputs found
Recommended from our members
Defective development of gamma/delta T cells in interleukin 7 receptor-deficient mice is due to impaired expression of T cell receptor gamma genes.
Mice lacking the interleukin 7 receptor (IL-7R) generate alpha/beta T cells at a detectable but greatly reduced rate, but gamma/delta T cells are completely absent. The special role of IL-7R signaling in gamma/delta T cell development has remained unclear. IL-7Ralpha(-/-) mice exhibit a paucity of gamma gene rearrangements. This striking observation can be explained by a defect in T cell receptor (TCR)-gamma gene rearrangement, a defect in TCR-gamma gene transcription leading to death of gamma/delta lineage cells, and/or a requirement for IL-7R in commitment of cells to the gamma/delta lineage. To determine the role of IL-7R signaling in gamma/delta T cell development, we examined transcription of a prerearranged TCR-gamma transgene in IL-7Ralpha(-/-) mice, as well as the effects of IL-7 on transcription of endogenous, rearranged TCR-gamma genes in alpha/beta lineage cells. The results demonstrate that IL-7R-mediated signals are necessary for the normal expression of rearranged TCR-gamma genes. Equally significant, the results show that the poor expression of TCR-gamma genes in IL-7Ralpha(-/-) mice is responsible for the selective deficit in gamma/delta cells in these mice, since a high copy TCR-gamma transgene exhibited sufficient residual expression in IL-7Ralpha(-/-) mice to drive gamma/delta cell development. The results indicate that the absence of gamma/delta T cells in IL-7Ralpha(-/-) mice is due to insufficient TCR-gamma gene expression
The time-evolution of bias
We study the evolution of the bias factor b and the mass-galaxy correlation
coefficient r in a simple analytic model for galaxy formation and the
gravitational growth of clustering. The model shows that b and r can be
strongly time-dependent, but tend to approach unity even if galaxy formation
never ends as the gravitational growth of clustering debiases the older
galaxies. The presence of random fluctuations in the sites of galaxy formation
relative to the mass distribution can cause large and rapidly falling bias
values at high redshift.Comment: 4 pages, with 2 figures included. Typos corrected to match published
ApJL version. Color figure and links at http://www.sns.ias.edu/~max/bias.html
or from [email protected]
Getting the Measure of the Flatness Problem
The problem of estimating cosmological parameters such as from noisy
or incomplete data is an example of an inverse problem and, as such, generally
requires a probablistic approach. We adopt the Bayesian interpretation of
probability for such problems and stress the connection between probability and
information which this approach makes explicit.
This connection is important even when information is ``minimal'' or, in
other words, when we need to argue from a state of maximum ignorance. We use
the transformation group method of Jaynes to assign minimally--informative
prior probability measure for cosmological parameters in the simple example of
a dust Friedman model, showing that the usual statements of the cosmological
flatness problem are based on an inappropriate choice of prior. We further
demonstrate that, in the framework of a classical cosmological model, there is
no flatness problem.Comment: 11 pages, submitted to Classical and Quantum Gravity, Tex source
file, no figur
Bias and Hierarchical Clustering
It is now well established that galaxies are biased tracers of the
distribution of matter, although it is still not known what form this bias
takes. In local bias models the propensity for a galaxy to form at a point
depends only on the overall density of matter at that point. Hierarchical
scaling arguments allow one to build a fully-specified model of the underlying
distribution of matter and to explore the effects of local bias in the regime
of strong clustering. Using a generating-function method developed by
Bernardeau & Schaeffer (1992), we show that hierarchical models lead one
directly to the conclusion that a local bias does not alter the shape of the
galaxy correlation function relative to the matter correlation function on
large scales. This provides an elegant extension of a result first obtained by
Coles (1993) for Gaussian underlying fields and confirms the conclusions of
Scherrer & Weinberg (1998) obtained using a different approach. We also argue
that particularly dense regions in a hierarchical density field display a form
of bias that is different from that obtained by selecting such peaks in
Gaussian fields: they are themselves hierarchically distributed with scaling
parameters . This kind of bias is also factorizable, thus in
principle furnishing a simple test of this class of models.Comment: Latex, accepted for publication in ApJL; moderate revision
Testing for Non-Gaussianity in the Wilkinson Microwave Anisotropy Probe Data: Minkowski Functionals and the Length of the Skeleton
The three Minkowski functionals and the recently defined length of the
skeleton are estimated for the co-added first-year Wilkinson Microwave
Anisotropy Probe (WMAP) data and compared with 5000 Monte Carlo simulations,
based on Gaussian fluctuations with the a-priori best-fit running-index power
spectrum and WMAP-like beam and noise properties. Several power
spectrum-dependent quantities, such as the number of stationary points, the
total length of the skeleton, and a spectral parameter, gamma, are also
estimated. While the area and length Minkowski functionals and the length of
the skeleton show no evidence for departures from the Gaussian hypothesis, the
northern hemisphere genus has a chi^2 that is large at the 95% level for all
scales. For the particular smoothing scale of 3.40 degrees FWHM it is larger
than that found in 99.5% of the simulations. In addition, the WMAP genus for
negative thresholds in the northern hemisphere has an amplitude that is larger
than in the simulations with a significance of more than 3 sigma. On the
smallest angular scales considered, the number of extrema in the WMAP data is
high at the 3 sigma level. However, this can probably be attributed to the
effect of point sources. Finally, the spectral parameter gamma is high at the
99% level in the northern Galactic hemisphere, while perfectly acceptable in
the southern hemisphere. The results provide strong evidence for the presence
of both non-Gaussian behavior and an unexpected power asymmetry between the
northern and southern hemispheres in the WMAP data.Comment: 17 pages, 10 figures, accepted for publication in Ap
Nonlinear stochastic biasing from the formation epoch distribution of dark halos
We propose a physical model for nonlinear stochastic biasing of one-point
statistics resulting from the formation epoch distribution of dark halos. In
contrast to previous works on the basis of extensive numerical simulations, our
model provides for the first time an analytic expression for the joint
probability function. Specifically we derive the joint probability function of
halo and mass density contrasts from the extended Press-Schechter theory. Since
this function is derived in the framework of the standard gravitational
instability theory assuming the random-Gaussianity of the primordial density
field alone, we expect that the basic features of the nonlinear and stochastic
biasing predicted from our model are fairly generic. As representative
examples, we compute the various biasing parameters in cold dark matter models
as a function of a redshift and a smoothing length. Our major findings are (1)
the biasing of the variance evolves strongly as redshift while its
scale-dependence is generally weak and a simple linear biasing model provides a
reasonable approximation roughly at R\simgt 2(1+z)\himpc, and (2) the
stochasticity exhibits moderate scale-dependence especially on R\simlt
20\himpc, but is almost independent of . Comparison with the previous
numerical simulations shows good agreement with the above behavior, indicating
that the nonlinear and stochastic nature of the halo biasing is essentially
understood by taking account of the distribution of the halo mass and the
formation epoch.Comment: 34 pages, 11 figures, ApJ (2000) in pres
A Counts-in-Cells Analysis of Lyman-break Galaxies at z~3
We have measured the counts-in-cells fluctuations of 268 Lyman-break galaxies
with spectroscopic redshifts in six 9 arcmin by 9 arcmin fields at z~3. The
variance of galaxy counts in cubes of comoving side length 7.7, 11.9, 11.4
h^{-1} Mpc is \sigma_{gal}^2 ~ 1.3\pm0.4 for \Omega_M=1, 0.2 open, 0.3 flat,
implying a bias on these scales of \sigma_{gal} / \sigma_{mass} = 6.0\pm1.1,
1.9\pm0.4, 4.0\pm0.7. The bias and abundance of Lyman-break galaxies are
surprisingly consistent with a simple model of structure formation which
assumes only that galaxies form within dark matter halos, that Lyman-break
galaxies' rest-UV luminosities are tightly correlated with their dark masses,
and that matter fluctuations are Gaussian and have a linear power-spectrum
shape at z~3 similar to that determined locally (\Gamma~0.2). This conclusion
is largely independent of cosmology or spectral normalization \sigma_8. A
measurement of the masses of Lyman-break galaxies would in principle
distinguish between different cosmological scenarios.Comment: Accepted for publication in ApJ, 16 pages including 4 figure
Testing Gaussian random hypothesis with the cosmic microwave background temperature anisotropies in the three-year WMAP data
We test the hypothesis that the temperature of the cosmic microwave
background is consistent with a Gaussian random field defined on the celestial
sphere, using de-biased internal linear combination (DILC) map produced from
the 3-year WMAP data. We test the phases for spherical harmonic modes with l <=
10 (which should be the cleanest) for their uniformity, randomness, and
correlation with those of the foreground templates. The phases themselves are
consistent with a uniform distribution, but not for l <= 5, and the differences
between phases are not consistent with uniformity. For l=3 and l=6, the phases
of the CMB maps cross-correlate with the foregrounds, suggestion the presence
of residual contamination in the DLC map even on these large scales. We also
use a one-dimensional Fourier representation to assemble a_lm into the \Delta
T_l(\phi) for each l mode, and test the positions of the resulting maxima and
minima for consistency with uniformity randomness on the unit circle. The
results show significant departures at the 0.5% level, with the one-dimensional
peaks being concentrated around \phi=180 degs. This strongly significant
alignment with the Galactic meridian, together with the cross-correlation of
DILC phases with the foreground maps, strongly suggests that even the lowest
spherical harmonic modes in the map are significantly contaminated with
foreground radiation.Comment: submitted to ApJL, one paragraph is added in Section 3 and some more
in the Referenc
- âŠ