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Summary

The problem of estimating cosmological parameters such as 
 from

noisy or incomplete data is an example of an inverse problem and, as

such, generally requires a probablistic approach. We adopt the Bayesian

interpretation of probability for such problems and stress the connection

between probability and information which this approach makes explicit.

This connection is important even when information is \minimal" or, in

other words, when we need to argue from a state of maximum ignorance.

We use the transformation group method of Jaynes to assign minimally{

informative prior probability measure for cosmological parameters in the
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simple example of a dust Friedman model, showing that the usual state-

ments of the cosmological atness problem are based on an inappropriate

choice of prior. We further demonstrate that, in the framework of a clas-

sical cosmological model, there is no atness problem.

In the physical sciences, the word \model" is usually used to denote a theo-

retical description of a system that contains one or more \free parameters" whose

values can not be determined a priori but which have to be estimated by empirical

means. Such estimation problems generally go under the name of \inverse prob-

lems" and, because available data are often incomplete or noisy, they generally

require probabilistic reasoning.

Modern `Big Bang' cosmology rests on a mathematical framework supplied

by the simplest relativistic cosmological models compatible with the Cosmological

Principle, i.e. the Friedman models. These models have two free parameters, the

Hubble parameter, H0, and the deceleration parameter q0 (or, equivalently for these

models, the deceleration parameter q0 = 
0=2; the su�x \0" indicates that the pa-

rameter in question is measured at the present epoch, i.e. when the cosmological

proper time is t0.) As is the case for physical models in general, these parameters

are not predicted by the Big Bang theory itself, but need to be inferred from obser-

vational data. Because the values of H and 
 at any time can be determined from

the present values H0 and 
0 if the model is speci�ed, it is in principle possible

to learn about conditions very near the Big Bang singularity from estimates of the

cosmological parameters made at the present time.
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The problem with 
 is that its value is not known with any precision: it

probably lies in the range 0:10 < 
0 < 1:5, but the relevant evidence is often

contradictory1. However, 
 evolves strongly with cosmic time t in such a way that


 = 1 is an unstable �xed point. To get a value of 
 anywhere near unity at the

present time (even a factor of a few either way) consequently requires a value at very

early times extremely close to unity (say 
 = 1 � 10�60 at the Planck time). The

cosmological atness problem arises from the judgement that this \�ne{tuning"

is somehow unlikely on the basis of standard Friedman models; it is is usually

\resolved" by appealing to some transient mechanism (e.g. ination2) which can

make 
 evolve towards unity for some time, rather than away from it.

But do we have any right to claim that some values of 
 are more likely than

others? Can one make any inferences at all from the uncertain parameter estimates

we have in cosmology? And what precisely does it mean to say that 
 is \close to

unity" anyway?

To answer these questions we need to understand the role of probability in the

solution of inverse problems generally3. We adopt the objective Bayesian interpre-

tation of probability which, we believe, is the only way to formulate this type of

reasoning in a fully self{ consistent way. In this interpretation, probability rep-

resents a generalisation of the notions of \true" and \false" to intermediate cases

where there is insu�cient information to decide with logical certainty between these

two alternatives4. Unlike the opposing \frequentist" view, the Bayesian lends itself

naturally to the interpretation of unique events, of which the Big Bang is the most

obvious relevant example5.
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The central principle involved in Bayesian inference is Bayes' theorem6. Sup-

pose Hi represents one of a set of hypotheses (or models), D is some data and I

is whatever relevant prior information we may have (or which we assume to be the

case) before obtaining the data D. Bayes' theorem states that

P (HijDI) =
P (HijI)P (DjHiI)P
i P (HijI)P (DjHiI)

; (1)

where P (HijI) is called the prior probability of Hi given our prior information,

P (DjHiI) is the likelihood and P (HijDI) is the posterior probability. Notice that

all probabilities here are conditional on the information I which is either known

or assumed to be true in a given model. If the prior is relatively at and the like-

lihood of the data D is strongly peaked for a particular Hi then our inference of

the posterior probability is strongly determined by the data. If, on the other hand,

the data discriminate only weakly between the models then the posterior is domi-

nated by the prior. In general, however, both prior and likelihood are required for

the inverse problem to be well{posed. Many critics have dubbed the Bayesian ap-

proach \subjective" because di�erent individuals may possess di�erent information

and therefore assign di�erent priors to the same hypothesis. This is not a serious

objection: your assessment of the probability that a given horse will win a race must

change if you learn the other horses have all been drugged! What is important is

that, given the same information, the same prior should be assigned. We therefore

need an objective set of rules for assigning priors when information is speci�ed. In

particular, we may have no information at all other than that inherent in the model

we adopt. What should one do when one has such minimal information about a

system?
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Even this apparently simple question turns out to be extremely deep and there

is no universally accepted principle for assigning minimally{informative priors in

general circumstances. Jaynes7 has described one approach which is, as far as we

are aware, the most general objective algorithm available. \Jaynes' principle" is that

one looks for a measure on the parameter space of the system that possesses the

property of invariance under the group of transformations which leave unchanged

the mathematical form of the physical laws describing the system. In the absence

of any other constraints, the principle of maximum information entropy (a principle

of least prejudice) yields a prior probability simply proportional to this measure.

To take a trivial illustrative example, consider the problem of estimating the

position of a particle on the real line. Our state of knowledge, if no signposts are vis-

ible, must be unchanged if we shift our coordinates by any distance . This requires

�(x) = �(x + ), a functional equation which has only one solution: � =constant.

This is in full accord with our intuition, but it does not mean that a uniform prior

is appropriate for all cases where we are seeking to encode minimal information.

For example, Evrard8 has calculated the least{informative prior for a free particle

in velocity space using Jaynes' principle and the laws of special relativity. Even in

this simple example, the result is non{trivial: \least information prior" does not

necessarily mean \no prior".

We now turn to the appropriate minimally informative prior for the cosmo-

logical parameters H0 and 
0. We take the laws of physics to be the Friedman

equations describing a pressureless perfect uid in the form

a
�
k +

_a2

c2

�
= �; (2)
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where � remains constant throughout the evolution of the system; its value is de-

termined by the \initial value equation"

� =
4�G�a3

3c2
: (3)

The quantity � can be thought of as an absolute scale parameter. In equations (2)

& (3), a is the cosmic scale factor (another scale parameter) and � is the matter

density. The quantity k appearing in equation (2) is the curvature of spatial sections

in the model, scaled to take the values 0 if 
 = 1, �1 if 
 < 1 or +1 if 
0 > 1.

The system can be parametrised completely in terms of � and a. (In fact, we

could equally well have chosen to work with redshift z, cosmological proper time t,

conformal time � , temperature T , or anything else monotonically related to a: the

resulting measure would turn out to be the same, but the equations turn out to be

simpler in terms of a itself.) We now need to express the cosmological parameters

H = _a=a and 
 = 2q = �2a�a= _a2 in terms of a and �. We obtain, for k = �1,


 = 2(2� a=�)�1 (4)

and

H =
� c
�

�p2� a=�

(a=�)3=2
: (5)

Remember that the su�x 0 represents a quantity de�ned at the present epoch, so

H0 and 
0 are the values of these parameters when a = a0; � = �0 at all epochs.

Because both � and a are scale parameters, we look for a measure which is invariant

under the transformations a0 = �a and �0 = ��, where � and � are constants. Such
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invariances require that the information represented by our measure does not change

if we use a di�erent ruler to measure distances. It follows that

�(�; a) /
1

�a
; (6)

which becomes, after substituting from equations (4) & (5),

�(H;
) /
1

H
j
� 1j
: (7):

Note that this measure leads to an improper (i.e. non{normalisable) prior proba-

bility. This can be recti�ed by bringing in additional information, such as the ages

of cosmic objects which rule out high values of both 
 and H. Anthropic selection

e�ects can also be brought to bear on this question5. The measure for H is uni-

form in the logarithm, as one might expect from the Bayesian \rule of thumb" for

scale parameters9. The measure in 
 is, however, more complicated than this. In

particular, it diverges at 
 = 0 and 
 = 1, the former corresponding to an empty

Universe without deceleration and the latter to the critical-density Einstein{De Sit-

ter model. These singularities could have been anticipated because these are two

�xed points in the evolution of 
. A model with 
 = 1 exactly remains in that

state forever. Models with 
 < 1 evolve to a state of free expansion with 
 = q = 0.

Since states with 0 < 
 < 1 are transitory, it is reasonable, in the absence of any

other information, to infer that the system should be in one of the two �xed states.

(All values of 
 > 1 are transitory.)

The measure (7) also demonstrates how dangerous it is to talk about 
0 \near"

unity. In terms of our least{informative measure, values of 
 not exactly equal to 1
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are actually in�nitely far from this value. A similar property is held by the velocity{

space measure8, which demonstrates the velocities of all material particles are, in a

well{de�ned sense, in�nitely far from c.

We now turn to the atness problem. The usual argument is essentially that,

without ination, the models that produce 
0 = 1� � at the present epoch emerge

from earlier states with 
 even closer to unity. If one were to adopt a measure

which is roughly at in the vicinity of 
 = 1 as t ! 0 then the probability as-

sociated with this set of states would vanish and there would indeed be a atness

problem: it would appear \unlikely" that our Universe was correctly modelled by

the standard Friedman equations and one would be pushed into accepting ination

as a solution of this \�ne{tuning". But our measure (7) demonstrates that the

assumption of a constant prior for 
 is not consistent with the assumption of min-

imal information. It therefore represents a considerable prejudice compared to the

least|informative and, therefore, least{prejudiced measure. This prejudice may

be motivated to some extent by quantum{gravitational considerations that render

the classical model inappropriate, but unless the model adopted and its associated

information are stated explicitly one has no right to assign a prior and therefore no

right to make any inferences.

Notwithstanding the recent research interest in quantum gravity, we feel that

`minimal knowledge' is a fair description of our state of understanding of physics

at the Planck epoch. In terms of the least{informative measure, the probability

associated with smaller and smaller intervals of 
 (around unity) at earlier and

earlier times need not become arbitrarily small because of the singularity at 
 = 1.
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Indeed, this measure is constructed in precisely such a way that the probability

associated with a given range of 
0 is preserved as the system evolves. We should

not therefore be surprised to �nd 
0 ' 1 at the present epoch even in the absence

of ination, so we do not need ination to \explain" this value. In this sense, there

is no atness problem in a purely classical cosmological model.

We realise that many of the issues we have discussed remain controversial.

We accept, for example, that Jaynes' principle may be the last word in the theory

of prior assignment based on minimal information. Nevertheless, inferences based

only on vague prescriptions of uniform priors have no place in physics or cosmol-

ogy. Consistent inverse reasoning requires the assignment of a prior according to

some objective rules; failure to do this replaces bona �de inductive logic with mere

superstition.
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