308 research outputs found

    Quasiclassical negative magnetoresistance of a 2D electron gas: interplay of strong scatterers and smooth disorder

    Get PDF
    We study the quasiclassical magnetotransport of non-interacting fermions in two dimensions moving in a random array of strong scatterers (antidots, impurities or defects) on the background of a smooth random potential. We demonstrate that the combination of the two types of disorder induces a novel mechanism leading to a strong negative magnetoresistance, followed by the saturation of the magnetoresistivity ρxx(B)\rho_{xx}(B) at a value determined solely by the smooth disorder. Experimental relevance to the transport in semiconductor heterostructures is discussed.Comment: 4 pages, 2 figure

    Two-Component Scaling near the Metal-Insulator Bifurcation in Two-Dimensions

    Full text link
    We consider a two-component scaling picture for the resistivity of two-dimensional (2D) weakly disordered interacting electron systems at low temperature with the aim of describing both the vicinity of the bifurcation and the low resistance metallic regime in the same framework. We contrast the essential features of one-component and two-component scaling theories. We discuss why the conventional lowest order renormalization group equations do not show a bifurcation in 2D, and a semi-empirical extension is proposed which does lead to bifurcation. Parameters, including the product zνz\nu, are determined by least squares fitting to experimental data. An excellent description is obtained for the temperature and density dependence of the resistance of silicon close to the separatrix. Implications of this two-component scaling picture for a quantum critical point are discussed.Comment: 7 pages, 1 figur

    Dephasing time of composite fermions

    Full text link
    We study the dephasing of fermions interacting with a fluctuating transverse gauge field. The divergence of the imaginary part of the fermion self energy at finite temperatures is shown to result from a breakdown of Fermi's golden rule due to a faster than exponential decay in time. The strong dephasing affects experiments where phase coherence is probed. This result is used to describe the suppression of Shubnikov-de Haas (SdH) oscillations of composite fermions (oscillations in the conductivity near the half-filled Landau level). We find that it is important to take into account both the effect of dephasing and the mass renormalization. We conclude that while it is possible to use the conventional theory to extract an effective mass from the temperature dependence of the SdH oscillations, the resulting effective mass differs from the mm^\ast of the quasiparticle in Fermi liquid theory.Comment: 14 pages, RevTeX 3.0, epsf, 1 EPS figur

    Effective Mass of the Four Flux Composite Fermion at ν=1/4\nu = 1/4

    Full text link
    We have measured the effective mass (mm^*) of the four flux composite fermion at Landau level filling factor ν=1/4\nu = 1/4 (4^4CF), using the activation energy gaps at the fractional quantum Hall effect (FQHE) states ν\nu = 2/7, 3/11, and 4/15 and the temperature dependence of the Shubnikov-de Haas (SdH) oscillations around ν=1/4\nu = 1/4. We find that the energy gaps show a linear dependence on the effective magnetic field BeffB_{eff} (BBν=1/4\equiv B-B_{\nu=1/4}), and from this linear dependence we obtain m=1.0mem^* = 1.0 m_e and a disorder broadening Γ\Gamma \sim 1 K for a sample of density n=0.87×1011n = 0.87 \times 10^{11} /cm2^2. The mm^* deduced from the temperature dependence of the SdH effect shows large differences for ν>1/4\nu > 1/4 and ν<1/4\nu < 1/4. For ν>1/4\nu > 1/4, m1.0mem^* \sim 1.0 m_e. It scales as Bν\sqrt{B_{\nu}} with the mass derived from the data around ν=1/2\nu =1/2 and shows an increase in mm^* as ν1/4\nu \to 1/4, resembling the findings around ν=1/2\nu =1/2. For ν<1/4\nu < 1/4, mm^* increases rapidly with increasing BeffB_{eff} and can be described by m/me=3.3+5.7×Beffm^*/m_e = -3.3 + 5.7 \times B_{eff}. This anomalous dependence on BeffB_{eff} is precursory to the formation of the insulating phase at still lower filling.Comment: 5 pages, 3 figure

    Tunneling Between Parallel Two-Dimensional Electron Gases

    Get PDF
    The tunneling between two parallel two-dimensional electron gases has been investigated as a function of temperature TT, carrier density nn, and the applied perpendicular magnetic field BB. In zero magnetic field the equilibrium resonant lineshape is Lorentzian, reflecting the Lorentzian form of the spectral functions within each layer. From the width of the tunneling resonance the lifetime of the electrons within a 2DEG has been measured as a function of nn and TT, giving information about the density dependence of the electron-impurity scattering and the temperature dependence of the electron-electron scattering. In a magnetic field there is a general suppression of equilibrium tunneling for fields above B=0.6B=0.6 T. A gap in the tunneling density of states has been measured over a wide range of magnetic fields and filling factors, and various theoretical predictions have been examined. In a strong magnetic field, when there is only one partially filled Landau level in each layer, the temperature dependence of the conductance characteristics has been modeled with a double-Gaussian spectral density.Comment: LaTeX requires REVTeX macros. Eighteen pages. Fourteen postscript figures are included. (All figures have been bitmapped to save space. The original can be requested by email from [email protected]). Accepted for publication in Phys. Rev.

    Analysis of the Metallic Phase of Two-Dimensional Holes in SiGe in Terms of Temperature Dependent Screening

    Full text link
    We find that temperature dependent screening can quantitatively explain the metallic behaviour of the resistivity on the metallic side of the so-called metal-insulator transition in p-SiGe. Interference and interaction effects exhibit the usual insulating behaviour which is expected to overpower the metallic background at sufficiently low temperatures. We find empirically that the concept of a Fermi-liquid describes our data in spite of the large r_s = 8.Comment: 4 pages, 3 figure

    Spin instabilities and quantum phase transitions in integral and fractional quantum Hall states

    Full text link
    The inter-Landau-level spin excitations of quantum Hall states at filling factors nu=2 and 4/3 are investigated by exact numerical diagonalization for the situation in which the cyclotron (hbar*omega_c) and Zeeman (E_Z) splittings are comparable. The relevant quasiparticles and their interactions are studied, including stable spin wave and skyrmion bound states. For nu=2, a spin instability at a finite value of epsilon=hbar*omega_c-E_Z leads to an abrupt paramagnetic to ferromagnetic transition, in agreement with the mean-field approximation. However, for nu=4/3 a new and unexpected quantum phase transition is found which involves a gradual change from paramagnetic to ferromagnetic occupancy of the partially filled Landau level as epsilon is decreased.Comment: 4 pages, 5 figures, submitted to Phys.Rev.Let

    Interaction-Induced Enhancement of Spin-Orbit Coupling in Two-Dimensional Electronic System

    Full text link
    We study theoretically the renormalization of the spin-orbit coupling constant of two-dimensional electrons by electron-electron interactions. We demonstrate that, similarly to the gg factor, the renormalization corresponds to the enhancement, although the magnitude of the enhancement is weaker than that for the gg factor. For high electron concentrations (small interaction parameter rsr_s) the enhancement factor is evaluated analytically within the static random phase approximation. For large rs10r_s\sim 10 we use an approximate expression for effective electron-electron interaction, which takes into account the local field factor, and calculate the enhancement numerically. We also study the interplay between the interaction-enhanced Zeeman splitting and interaction-enhanced spin-orbit coupling.Comment: 18 pages, 2 figures, REVTe

    The relative importance of electron-electron interactions compared to disorder in the two-dimensional "metallic" state

    Full text link
    The effect of substrate bias and surface gate voltage on the low temperature resistivity of a Si-MOSFET is studied for electron concentrations where the resistivity increases with increasing temperature. This technique offers two degrees of freedom for controlling the electron concentration and the device mobility, thereby providing a means to evaluate the relative importance of electron-electron interactions and disorder in this so-called ``metallic'' regime. For temperatures well below the Fermi temperature, the data obey a scaling law where the disorder parameter (kFlk_{\rm{F}}l), and not the concentration, appears explicitly. This suggests that interactions, although present, do not alter the Fermi-liquid properties of the system fundamentally. Furthermore, this experimental observation is reproduced in results of calculations based on temperature-dependent screening, in the context of Drude-Boltzmann theory.Comment: 5 pages, 6 figure
    corecore