Abstract

We consider a two-component scaling picture for the resistivity of two-dimensional (2D) weakly disordered interacting electron systems at low temperature with the aim of describing both the vicinity of the bifurcation and the low resistance metallic regime in the same framework. We contrast the essential features of one-component and two-component scaling theories. We discuss why the conventional lowest order renormalization group equations do not show a bifurcation in 2D, and a semi-empirical extension is proposed which does lead to bifurcation. Parameters, including the product zνz\nu, are determined by least squares fitting to experimental data. An excellent description is obtained for the temperature and density dependence of the resistance of silicon close to the separatrix. Implications of this two-component scaling picture for a quantum critical point are discussed.Comment: 7 pages, 1 figur

    Similar works

    Full text

    thumbnail-image