27,352 research outputs found
Modeling river delta formation
A new model to simulate the time evolution of river delta formation process
is presented. It is based on the continuity equation for water and sediment
flow and a phenomenological sedimentation/ erosion law. Different delta types
are reproduced using different parameters and erosion rules. The structures of
the calculated patterns are analyzed in space and time and compared with real
data patterns. Furthermore our model is capable to simulate the rich dynamics
related to the switching of the mouth of the river delta. The simulation
results are then compared with geological records for the Mississippi river
A Characterisation of the Weylian Structure of Space-Time by Means of Low Velocity Tests
The compatibility axiom in Ehlers, Pirani and Schild's (EPS) constructive
axiomatics of the space-time geometry that uses light rays and freely falling
particles with high velocity, is replaced by several constructions with low
velocity particles only. For that purpose we describe in a space-time with a
conformal structure and an arbitrary path structure the radial acceleration, a
Coriolis acceleration and the zig-zag construction. Each of these quantities
give effects whose requirement to vanish can be taken as alternative version of
the compatibility axiom of EPS. The procedural advantage lies in the fact, that
one can make null-experiments and that one only needs low velocity particles to
test the compatibility axiom. We show in addition that Perlick's standard clock
can exist in a Weyl space only.Comment: to appear in Gen.Rel.Gra
Prediction of stable walking for a toy that cannot stand
Previous experiments [M. J. Coleman and A. Ruina, Phys. Rev. Lett. 80, 3658
(1998)] showed that a gravity-powered toy with no control and which has no
statically stable near-standing configurations can walk stably. We show here
that a simple rigid-body statically-unstable mathematical model based loosely
on the physical toy can predict stable limit-cycle walking motions. These
calculations add to the repertoire of rigid-body mechanism behaviors as well as
further implicating passive-dynamics as a possible contributor to stability of
animal motions.Comment: Note: only corrections so far have been fixing typo's in these
comments. 3 pages, 2 eps figures, uses epsf.tex, revtex.sty, amsfonts.sty,
aps.sty, aps10.sty, prabib.sty; Accepted for publication in Phys. Rev. E.
4/9/2001 ; information about Andy Ruina's lab (including Coleman's, Garcia's
and Ruina's other publications and associated video clips) can be found at:
http://www.tam.cornell.edu/~ruina/hplab/index.html and more about Georg
Bock's Simulation Group with whom Katja Mombaur is affiliated can be found at
http://www.iwr.uni-heidelberg.de/~agboc
High Density Preheating Effects on Q-ball Decays and MSSM Inflation
Non-perturbative preheating decay of post-inflationary condensates often
results in a high density, low momenta, non-thermal gas. In the case where the
non-perturbative classical evolution also leads to Q-balls, this effect shields
them from instant dissociation, and may radically change the thermal history of
the universe. For example, in a large class of inflationary scenarios,
motivated by the MSSM and its embedding in string theory, the reheat
temperature changes by a multiplicative factor of .Comment: 4 page
Vacuum decay and internal symmetries
We study the effects of internal symmetries on the decay by bubble nucleation
of a metastable false vacuum. The zero modes about the bounce solution that are
associated with the breaking of continuous internal symmetries result in an
enhancement of the tunneling rate into vacua in which some of the symmetries of
the initial state are spontaneously broken. We develop a general formalism for
evaluating the effects of these zero modes on the bubble nucleation rate in
both flat and curved space-times.Comment: LaTex, 11 pages, No figures, one minor chang
Dynamical variables in Gauge-Translational Gravity
Assuming that the natural gauge group of gravity is given by the group of
isometries of a given space, for a maximally symmetric space we derive a model
in which gravity is essentially a gauge theory of translations. Starting from
first principles we verify that a nonlinear realization of the symmetry
provides the general structure of this gauge theory, leading to a simple choice
of dynamical variables of the gravity field corresponding, at first order, to a
diagonal matrix, whereas the non-diagonal elements contribute only to higher
orders.Comment: 15 page
Solid state Ku-band spacecraft transmitters
A transmitter is considered that consists of GaAs IMPATT and Read diodes operating in a microstrip circuit environment to provide amplification with a minimum of 63 db small signal gain and a minimum compressed gain at 5 W output of 57 db. Reported are Schottky-Read diode design and fabrication, microstrip and circulator optimization, preamplifier development, power amplifier development, dc-to-dc converter design, and integration of the breadboard transmitter modules. A four-stage power amplifier in cascade with a three-stage preamplifier had an overall gain of 56.5 db at 13.5 GHz with a power output of 4.5 W. A single-stage Read amplifier delivered 5.9 W with 4 db gain at 22% efficiency
Kondo effect and channel mixing in oscillating molecules
We investigate the electronic transport through a molecule in the Kondo
regime. The tunneling between the electrode and the molecule is asymmetrically
modulated by the oscillations of the molecule, i.e., if the molecule gets
closer to one of the electrodes the tunneling to that electrode will increase
while for the other electrode it will decrease. The system is described by a
two-channel Anderson model with phonon-assisted hybridization, which is solved
with the Wilson numerical renormalization group method. The results for several
functional forms of tunneling modulation are presented. For a linearized
modulation the Kondo screening of the molecular spin is caused by the even or
odd conduction channel. At the critical value of the electron-phonon coupling
an unstable two-channel Kondo fixed point is found. For a realistic modulation
the spin at the molecular orbital is Kondo screened by the even conduction
channel even in the regime of strong coupling. A universal consequence of the
electron-phonon coupling is the softening of the phonon mode and the related
instability to perturbations that break the left-right symmetry. When the
frequency of oscillations decreases below the magnitude of such perturbation,
the molecule is abruptly attracted to one of the electrodes. In this regime,
the Kondo temperature is enhanced and, simultaneously, the conductance through
the molecule is suppressed.Comment: published versio
Renormalization Group Flow and Fragmentation in the Self-Gravitating Thermal Gas
The self-gravitating thermal gas (non-relativistic particles of mass m at
temperature T) is exactly equivalent to a field theory with a single scalar
field phi(x) and exponential self-interaction. We build up perturbation theory
around a space dependent stationary point phi_0(r) in a finite size domain
delta \leq r \leq R ,(delta << R), which is relevant for astrophysical applica-
tions (interstellar medium,galaxy distributions).We compute the correlations of
the gravitational potential (phi) and of the density and find that they scale;
the latter scales as 1/r^2. A rich structure emerges in the two-point correl-
tors from the phi fluctuations around phi_0(r). The n-point correlators are
explicitly computed to the one-loop level.The relevant effective coupling turns
out to be lambda=4 pi G m^2 / (T R). The renormalization group equations (RGE)
for the n-point correlator are derived and the RG flow for the effective
coupling lambda(tau) [tau = ln(R/delta), explicitly obtained.A novel dependence
on tau emerges here.lambda(tau) vanishes each time tau approaches discrete
values tau=tau_n = 2 pi n/sqrt7-0, n=0,1,2, ...Such RG infrared stable behavior
[lambda(tau) decreasing with increasing tau] is here connected with low density
self-similar fractal structures fitting one into another.For scales smaller
than the points tau_n, ultraviolet unstable behaviour appears which we connect
to Jeans' unstable behaviour, growing density and fragmentation. Remarkably, we
get a hierarchy of scales and Jeans lengths following the geometric progression
R_n=R_0 e^{2 pi n /sqrt7} = R_0 [10.749087...]^n . A hierarchy of this type is
expected for non-spherical geometries,with a rate different from e^{2 n/sqrt7}.Comment: LaTex, 31 pages, 11 .ps figure
Fractional-Spin Integrals of Motion for the Boundary Sine-Gordon Model at the Free Fermion Point
We construct integrals of motion (IM) for the sine-Gordon model with boundary
at the free Fermion point which correctly determine the boundary S matrix. The
algebra of these IM (``boundary quantum group'' at q=1) is a one-parameter
family of infinite-dimensional subalgebras of twisted affine sl(2). We also
propose the structure of the fractional-spin IM away from the free Fermion
point.Comment: 19 pages, LaTeX, no figure
- …