49 research outputs found

    Genetic background influences murine prostate gene expression: implications for cancer phenotypes

    Get PDF
    Microarray analyses to quantitate transcript levels in the prostates of five inbred mouse strains identified differences in gene expression in benign epithelium that correlated with the differentiation state of adjacent tumors

    Correlation of mRNA and protein levels: Cell type-specific gene expression of cluster designation antigens in the prostate

    Get PDF
    Background: Expression levels of mRNA and protein by cell types exhibit a range of correlations for different genes. In this study, we compared levels of mRNA abundance for several cluster designation (CD) genes determined by gene arrays using magnetic sorted and laser-capture microdissected human prostate cells with levels of expression of the respective CD proteins determined by immunohistochemical staining in the major cell types of the prostate - basal epithelial, luminal epithelial, stromal fibromuscular, and endothelial - and for prostate precursor/stem cells and prostate carcinoma cells. Immunohistochemical stains of prostate tissues from more than 50 patients were scored for informative CD antigen expression and compared with cell-type specific transcriptomes. Results: Concordance between gene and protein expression findings based on 'present' vs. 'absent' calls ranged from 46 to 68%. Correlation of expression levels was poor to moderate (Pearson correlations ranged from 0 to 0.63). Divergence between the two data types was most frequently seen for genes whose array signals exceeded background (> 50) but lacked immunoreactivity by immunostaining. This could be due to multiple factors, e.g. low levels of protein expression, technological sensitivities, sample processing, probe set definition or anatomical origin of tissue and actual biological differences between transcript and protein abundance. Conclusion: Agreement between these two very different methodologies has great implications for their respective use in both molecular studies and clinical trials employing molecular biomarkers.This work was supported by grant DK63630 and DK069690 from NIDDK. Additional funding came from grants CA85859, CA98699 and CA111244 from NCI, and PM50 GMO76547/Center for Systems Biology

    Differential expression of glucose transporters and hexokinases in prostate cancer with a neuroendocrine gene signature: A mechanistic perspective for 18 F-FDG imaging of PSMA-suppressed tumors

    Get PDF
    Although the incidence of de novo neuroendocrine prostate cancer (PC) is rare, recent data suggest that low expression of prostatespecific membrane antigen (PSMA) is associated with a spectrum of neuroendocrine hallmarks and androgen receptor (AR) suppression in PC. Previous clinical reports indicate that PCs with a phenotype similar to neuroendocrine tumors can be more amenable to imaging by 18F-FDG than by PSMA-targeting radioligands. In this study, we evaluated the association between neuroendocrine gene signature and 18F-FDG uptake-associated genes including glucose transporters (GLUTs) and hexokinases, with the goal of providing a genomic signature to explain the reported 18F-FDG avidity of PSMA suppressed tumors. Methods: Data-mining approaches, cell lines, and patient-derived xenograft models were used to study the levels of 14 members of the SLC2A family (encoding GLUT proteins), 4 members of the hexokinase family (genes HK1-HK3 and GCK), and PSMA (FOLH1 gene) after AR inhibition and in correlation with neuroendocrine hallmarks. Also, we characterize a neuroendocrine-like PC (NELPC) subset among a cohort of primary and metastatic PC samples with no neuroendocrine histopathology. We measured glucose uptake in a neuroendocrine-induced in vitro model and a zebrafish model by nonradioactive imaging of glucose uptake using a fluorescent glucose bioprobe, GB2-Cy3. Results: This work demonstrated that a neuroendocrine gene signature associates with differential expression of genes encoding GLUT and hexokinase proteins. In NELPC, elevated expression of GCK (encoding glucokinase protein) and decreased expression of SLC2A12 correlated with earlier biochemical recurrence. In tumors treated with AR inhibitors, high expression of GCK and low expression of SLC2A12 correlated with neuroendocrine histopathology and PSMA gene suppression. GLUT12 suppression and upregulation of glucokinase were observed in neuroendocrine- induced PC cell lines and patient-derived xenograft models. A higher glucose uptake was confirmed in low-PSMA tumors using a GB2-Cy3 probe in a zebrafish model. Conclusion: A neuroendocrine gene signature in neuroendocrine PC and NELPC associates with a distinct transcriptional profile of GLUTs and hexokinases. PSMA suppression correlates with GLUT12 suppression and glucokinase upregulation. Alteration of 18F-FDG uptake-associated genes correlated positively with higher glucose uptake in AR- and PSMA-suppressed tumors. Zebrafish xenograft tumor models are an accurate and efficient preclinical method for monitoring nonradioactive glucose uptake

    The Effects of Aging on the Molecular and Cellular Composition of the Prostate Microenvironment

    Get PDF
    Advancing age is associated with substantial increases in the incidence rates of common diseases affecting the prostate gland including benign prostatic hyperplasia (BPH) and prostate carcinoma. The prostate is comprised of a functional secretory epithelium, a basal epithelium, and a supporting stroma comprised of structural elements, and a spectrum of cell types that includes smooth muscle cells, fibroblasts, and inflammatory cells. As reciprocal interactions between epithelium and stromal constituents are essential for normal organogenesis and serve to maintain normal functions, discordance within the stroma could permit or promote disease processes. In this study we sought to identify aging-associated alterations in the mouse prostate microenvironment that could influence pathology.We quantitated transcript levels in microdissected glandular-adjacent stroma from young (age 4 months) and old (age 20-24 months) C57BL/6 mice, and identified a significant change in the expression of 1259 genes (p<0.05). These included increases in transcripts encoding proteins associated with inflammation (e.g., Ccl8, Ccl12), genotoxic/oxidative stress (e.g., Apod, Serpinb5) and other paracrine-acting effects (e.g., Cyr61). The expression of several collagen genes (e.g., Col1a1 and Col3a1) exhibited age-associated declines. By histology, immunofluorescence, and electron microscopy we determined that the collagen matrix is abundant and disorganized, smooth muscle cell orientation is disordered, and inflammatory infiltrates are significantly increased, and are comprised of macrophages, T cells and, to a lesser extent, B cells.These findings demonstrate that during normal aging the prostate stroma exhibits phenotypic and molecular characteristics plausibly contributing to the striking age associated pathologies affecting the prostate

    Cabozantinib can block growth of neuroendocrine prostate cancer patient-derived xenografts by disrupting tumor vasculature.

    No full text
    With the advent of potent second-line anti-androgen therapy, we and others have observed an increased incidence of androgen receptor (AR)-null small cell or neuroendocrine prostate cancer (SCNPC) in metastatic castration-resistant prostate cancer (mCRPC). Our study was designed to determine the effect of cabozantinib, a multi-targeted tyrosine kinase inhibitor that inhibits VEGFR2, MET and RET on SCNPC. Transcriptome analysis of the University of Washington rapid autopsy and SU2C mCRPC datasets revealed upregulated MET and RET expression in SCNPCs relative to adenocarcinomas. Additionally, increased MET expression correlated with attenuated AR expression and activity. In vitro treatment of SCNPC patient-derived xenograft (PDX) cells with the MET inhibitor AMG-337 had no impact on cell viability in LuCaP 93 (MET+/RET+) and LuCaP 173.1 (MET-/RET-), whereas cabozantinib decreased cell viability of LuCaP 93, but not LuCaP 173.1. Notably, MET+/RET+ LuCaP 93 and MET-/RET- LuCaP 173.1 tumor volumes were significantly decreased with cabozantinib treatment in vivo, and this activity was independent of MET or RET expression in LuCaP 173.1. Tissue analysis indicated that cabozantinib did not inhibit tumor cell proliferation (Ki67), but significantly decreased microvessel density (CD31) and increased hypoxic stress and glycolysis (HK2) in LuCaP 93 and LuCaP 173.1 tumors. RNA-Seq and gene set enrichment analysis revealed that hypoxia and glycolysis pathways were increased in cabozantinib-treated tumors relative to control tumors. Our data suggest that the most likely mechanism of cabozantinib-mediated tumor growth suppression in SCNPC PDX models is through disruption of the tumor vasculature. Thus, cabozantinib may represent a potential therapy for patients with metastatic disease in tumor phenotypes that have a significant dependence on the tumor vasculature for survival and proliferation

    Mouse prostate strain-associated gene expression and analysis in human prostate tissues: FVB/N and C57BL/6

    No full text
    Genes differentially expressed in prostates of FVB/N and C57BL/6 strains. Heat map colors reflect fold ratio values between sample and reference pool. Columns 1-4 represent biological replicates for each strain. Rows represent individual genes. Values shown in red are relatively larger than the overall mean; values shown in green are relatively smaller than the overall mean. Transcript abundance levels in benign human prostate tissues associated with high grade (7-10) or low grade (≀6) adenocarcinomas for each gene determined to be altered in mouse strain comparisons where a corresponding ortholog was identified. Genes depected in (a) and (b) are in identical order. Black box (b) and text (a) represent genes with significant differential expression in the human datasets altered in the expected orientation. Gray box (b) and text (a) represent genes with significant differential expression in the human datasets altered in the opposite orientation. Transcript alterations for selected genes in benign tissue samples associating with high (Gleason 7-10) and low (Gleason ≀6) prostate cancers. Plots represent the 95% confidence intervals of logexpression ratios of tissues samples relative to a cell line reference.<p><b>Copyright information:</b></p><p>Taken from "Genetic background influences murine prostate gene expression: implications for cancer phenotypes"</p><p>http://genomebiology.com/2007/8/6/R117</p><p>Genome Biology 2007;8(6):R117-R117.</p><p>Published online 18 Jun 2007</p><p>PMCID:PMC2394769.</p><p></p

    Analysis of strain-dependent differences in prostate gene expression by qRT-PCR

    No full text
    RNAs from preparations used in the microarray analysis or microdissected epithelium were reverse transcribed and amplified using qRT-PCR with primers specific for (), (), () and (). Ribosomal protein S16 expression levels were used to normalize qRT-PCR data. Normalized results are expressed relative to the lowest expressing value. Error bars indicate the standard deviation of four biological independent replicates. qRT-PCR for microdissected epithelium is represented by one sample per strain for each gene. White bars denote measurements from the microarray analysis. Black bars denote measurements generated by qRT-PCR from whole prostate. Diagonal lines denote measurements generated by qRT-PCR from microdissected prostate epithelium.<p><b>Copyright information:</b></p><p>Taken from "Genetic background influences murine prostate gene expression: implications for cancer phenotypes"</p><p>http://genomebiology.com/2007/8/6/R117</p><p>Genome Biology 2007;8(6):R117-R117.</p><p>Published online 18 Jun 2007</p><p>PMCID:PMC2394769.</p><p></p

    Mouse prostate strain-associated gene expression and analysis in human prostate tissues: BALB/c and C57BL/6

    No full text
    Genes differentially expressed in prostates of BALB/c (BALB) and C57BL/6 (C57) strains. Heat map colors reflect fold ratio values between sample and reference pool. Columns 1-4 represent biological replicates for each strain. Rows represent individual genes. Values shown in red are relatively larger than the overall mean; values shown in green are relatively smaller than the overall mean. Transcript abundance levels in benign human prostate tissues associated with high grade (7-10) or low grade (≀6) adenocarcinomas for each gene determined to be altered in mouse strain comparisons where a corresponding ortholog was identified. Genes depicted in (a) and (b) are in identical order. Black box (b) and text (a) represent genes with significant differential expression in the human datasets altered in the expected orientation. Gray box (b) and text (a) represent genes with significant differential expression in the human datasets altered in the opposite orientation. Transcript alterations for selected genes in benign tissue samples associating with high (Gleason 7-10) and low (Gleason ≀6) prostate cancers. Plots represent the 95% confidence intervals of logexpression ratios of tissues samples relative to a cell line reference.<p><b>Copyright information:</b></p><p>Taken from "Genetic background influences murine prostate gene expression: implications for cancer phenotypes"</p><p>http://genomebiology.com/2007/8/6/R117</p><p>Genome Biology 2007;8(6):R117-R117.</p><p>Published online 18 Jun 2007</p><p>PMCID:PMC2394769.</p><p></p

    Inhibition of Androgen-Independent Prostate Cancer by Estrogenic Compounds Is Associated with Increased Expression of Immune-Related Genes 1

    No full text
    Abstract The clinical utility of estrogens for treating prostate cancer (CaP) was established in the 1940s by Huggins. The classic model of the anti-CaP activity of estrogens postulates an indirect mechanism involving the suppression of androgen production. However, clinical and preclinical studies have shown that estrogens exert growth-inhibitory effects on CaP under low-androgen conditions, suggesting additional modes whereby estrogens affect CaP cells and/or the microenvironment. Here we have investigated the activity of 17B estradiol (E2) against androgen-independent CaP and identified molecular alterations in tumors exposed to E2. E2 treatment inhibited the growth of all four androgen-independent CaP xenografts studied (LuCaP 35V, LuCaP 23.1AI, LuCaP 49, and LuCaP 58) in castrated male mice. The molecular basis of growth suppression was studied by cDNA microarray analysis, which indicated that multiple pathways are altered by E2 treatment. Of particular interest are changes in transcripts encoding proteins that mediate immune responses and regulate androgen receptor signaling. In conclusion, our data show that estrogens have powerful inhibitory effects on CaP in vivo in androgendepleted environments and suggest novel mechanisms of estrogen-mediated antitumor activity. These results indicate that incorporating estrogens into CaP treatment protocols could enhance therapeutic efficacy even in cases of advanced disease. Neoplasia (2006) 8, 862-87

    Inhibition of Androgen-Independent Prostate Cancer by Estrogenic Compounds Is Associated with Increased Expression of Immune-Related Genes

    Get PDF
    The clinical utility of estrogens for treating prostate cancer (CaP) was established in the 1940s by Huggins. The classic model of the anti-CaP activity of estrogens postulates an indirect mechanism involving the suppression of androgen production. However, clinical and preclinical studies have shown that estrogens exert growth-inhibitory effects on CaP under low-androgen conditions, suggesting additional modes whereby estrogens affect CaP cells and/or the microenvironment. Here we have investigated the activity of 17Ξ² estradiol (E2) against androgen-independent CaP and identified molecular alterations in tumors exposed to E2. E2 treatment inhibited the growth of all four androgen-independent CaP xenografts studied (LuCaP 35V, LuCaP 23.1AI, LuCaP 49, and LuCaP 58) in castrated male mice. The molecular basis of growth suppression was studied by cDNA microarray analysis, which indicated that multiple pathways are altered by E2 treatment. Of particular interest are changes in transcripts encoding proteins that mediate immune responses and regulate androgen receptor signaling. In conclusion, our data show that estrogens have powerful inhibitory effects on CaP in vivo in androgen-depleted environments and suggest novel mechanisms of estrogen-mediated antitumor activity. These results indicate that incorporating estrogens into CaP treatment protocols could enhance therapeutic efficacy even in cases of advanced disease
    corecore