3,451 research outputs found

    Multi-strange baryon production at mid-rapidity in Pb-Pb collisions at √sNN = 2.76TeV with ALICE

    Get PDF
    The ALICE Collaboration at the CERN Large Hadron Collider has measured the production of multi-strange baryons in Pb-Pb collisions at 2.76TeV. Preliminary results on mid-rapidity transverse momentum spectra of the charged Ξ and Ω baryons, in different centrality classes, are presented

    Monitoring prohemostatic treatment in bleeding patients

    Get PDF
    Acutely bleeding patients are commonly found in the trauma and major surgery scenarios. They require prompt and effective treatment to restore an adequate hemostatic pattern, to avoid serious and sometimes life-threatening complications.Different prohemostatic treatments are available, including allogeneic blood derivatives (fresh frozen plasma, platelet concentrates, and cryoprecipitates), prothrombin complex concentrates, specific coagulation factors (fibrinogen, recombinant factor XIII, recombinant activated factor VII), and drugs (protamine for patients under heparin treatment, desmopressin, antifibrinolytics).For decades, prohemostatic treatment of the acutely bleeding patient was based on empirical strategies and clinical judgment, both in terms of a correct diagnosis of the mechanism(s) leading to bleeding, and of an assessment of the effects of the treatment. This empirical strategy may lead to excessive or unnecessary use of allogeneic blood products, as well as to an incorrect, inefficacious, or even dangerous treatment. Different monitoring devices are nowadays available for guiding the diagnostic and therapeutic decision-making process in an acutely bleeding patient. This review addresses the available tools for monitoring prohemostatic treatment of the bleeding patient, with a specific respect for point-of-care tests (thromboelastography, thromboelastometry, platelet function tests, and heparin monitoring systems) at the light of the existing evidence

    Quantum Gravity - Testing Time for Theories

    Get PDF
    The extreme smallness of both the Planck length, on the one side, and the ratio of the gravitational to the electrical forces between, say, two electrons, on the other side has led to a widespread belief that the realm of quantum gravity is beyond terrestrial experiments. A series of classical and quantum arguments are put forward to dispel this view. It is concluded that whereas the smallness of the Planck length and the ratio of gravitational to electrical forces, does play its own essential role in nature, it does not make quantum gravity a science where humans cannot venture to probe her secrets. In particular attention is drawn to the latest neutron and atomic interferometry experiments, and to gravity wave interferometers. The latter, as Giovanni Amelino-Camelia argues [Nature 398, 216 (1999)], can be treated as probes of space-time fuzziness down to Planck length for certain quantum-gravity models

    new beam scanning device for active beam delivery system bds in proton therapy

    Get PDF
    Abstract A new Beam Delivery System (BDS) has been studied in the framework of a new proton therapy project, called AMIDERHA. It is characterized by an active scanning system for target irradiation with a pencil beam. The project is based on the use of a Linac with variable final energy and the Robotized Patient Positioning System instead of the traditional gantry. As a consequence, in the active BDS of AMIDERHA a pencil beam scanning system with a relatively long Source to Axis Distance (SAD) can be used. In this contribution, the idea of using a unique new device capable of both horizontal and vertical beam scansion for the AMIDERHA active BDS will be presented and discussed. Furthermore, a preliminary design of that device will be shown, together with the results of simulations

    Comment on "Gravitationally Induced Neutrino-Oscillation Phases"

    Get PDF
    We critically examine the recent claim (gr-qc/9603008) of a ``new effect'' of gravitationally induced quantum mechanical phases in neutrino oscillations. A straightforward exercise in the Schwarzschild coordinates appropriate to a spherically symmetric non-rotating star shows that, although there is a general relativistic effect of the star's gravity on neutrino oscillations, it is not of the form claimed, and is too small to be measured.Comment: Plain LaTeX, 7 pages, no figure

    Effect of preoperative P2Y12 and thrombin platelet receptor inhibition on bleeding after cardiac surgery

    Get PDF
    BACKGROUND: Drugs that act on the platelet P2Y12 receptor are responsible for postoperative bleeding in cardiac surgery. However, protease-activated receptor (PAR) that reacts to thrombin stimulation might still be active in patients treated with P2Y12 inhibitors. Preoperative platelet function testing could possibly guide the timing of surgery. We investigated the association between P2Y12 receptor and PAR inhibition and bleeding after cardiac surgery. METHODS: A retrospective cohort study of 361 patients undergoing cardiac surgery and treated with P2Y12 anti-platelet agents was undertaken. All patients received a preoperative multiplate electrode aggregometry testing of platelet P2Y12 receptor activity (ADPtest) and PAR reactivity with thrombin receptor-activating peptide (TRAP) stimulation. ADPtest and TRAPtest data measured before surgery were analysed for association with postoperative bleeding (ml per 12 h) and severe postoperative bleeding. RESULTS: Both the ADPtest and the TRAPtest were significantly (P=0.001) associated with postoperative bleeding. A threshold of 22 U for the ADPtest yielded a negative predictive value (NPV) of 94% and a positive predictive value (PPV) of 20%, and a threshold of 75 U for the TRAPtest yielded an NPV of 95% and a PPV of 23%. In the subgroup of patients with ADPtest <22 U, TRAPtest ≥75 U was not associated with severe bleeding (NPV of 100% and PPV of 37%). CONCLUSIONS: In patients taking P2Y12 receptor inhibitors, residual platelet reactivity to thrombin stimulation limits the risk of severe postoperative bleeding

    Local and global gravity

    Full text link
    Our long experience with Newtonian potentials has inured us to the view that gravity only produces local effects. In this paper we challenge this quite deeply ingrained notion and explicitly identify some intrinsically global gravitational effects. In particular we show that the global cosmological Hubble flow can actually modify the motions of stars and gas within individual galaxies, and even do so in a way which can apparently eliminate the need for galactic dark matter. Also we show that a classical light wave acquires an observable, global, path dependent phase in traversing a gravitational field. Both of these effects serve to underscore the intrinsic difference between non-relativistic and relativistic gravity.Comment: LaTeX, 20 pages plus three figures in two postscript files. To appear in a special issue of Foundations of Physics honoring Professor Lawrence Horwitz on the occasion of his 65th birthday; A. van der Merwe and S. Raby, Editors, Plenum Publishing Company, N.Y., 199

    Behavioural aspects in ass during the end of pregnancy and ass and their foal during the first week post–partum in Martina Franca breed

    Get PDF
    AbstractThe study was carried out to investigate behavioural pattern in ass during the end of pregnancy and in asses and their foals during the first week after foaling. The study was performed on a total of 17 asses and 8 foals of Martina Franca breed reared outdoors free- ranging over the natural scrub area. In particular, for the behavioural observations on ass before the foaling 9 asses on the last month of pregnancy were considered, while, during the first post-partum week the observations were performed on 8 couples of dams and their foals. The behavioural observations were performed in a fenced area (4000 m2) from 08:00 to 20:00 using scan sampling with 5 min intervals. The data were collected by trained observers and recorded on a protocol form which considered the following main behavioural aspects: eating, drinking, walking, resting up, standing, and other behaviours. Within the class of other behaviours it was included secondary behaviours as grooming, vocalisation, playing, defecation, sniffin..

    Piecewise Parabolic Method on a Local Stencil for Magnetized Supersonic Turbulence Simulation

    Full text link
    Stable, accurate, divergence-free simulation of magnetized supersonic turbulence is a severe test of numerical MHD schemes and has been surprisingly difficult to achieve due to the range of flow conditions present. Here we present a new, higher order-accurate, low dissipation numerical method which requires no additional dissipation or local "fixes" for stable execution. We describe PPML, a local stencil variant of the popular PPM algorithm for solving the equations of compressible ideal magnetohydrodynamics. The principal difference between PPML and PPM is that cell interface states are evolved rather that reconstructed at every timestep, resulting in a compact stencil. Interface states are evolved using Riemann invariants containing all transverse derivative information. The conservation laws are updated in an unsplit fashion, making the scheme fully multidimensional. Divergence-free evolution of the magnetic field is maintained using the higher order-accurate constrained transport technique of Gardiner and Stone. The accuracy and stability of the scheme is documented against a bank of standard test problems drawn from the literature. The method is applied to numerical simulation of supersonic MHD turbulence, which is important for many problems in astrophysics, including star formation in dark molecular clouds. PPML accurately reproduces in three-dimensions a transition to turbulence in highly compressible isothermal gas in a molecular cloud model. The low dissipation and wide spectral bandwidth of this method make it an ideal candidate for direct turbulence simulations.Comment: 28 pages, 18 figure

    The Possibility of Emersion of the Outer Layers in a Massive Star Simultaneously with Iron-Core Collapse: A Hydrodynamic Model

    Full text link
    We analyze the behavior of the outer envelope in a massive star during and after the collapse of its iron core into a protoneutron star (PNS) in terms of the equations of one-dimensional spherically symmetric ideal hydrodynamics. The profiles obtained in the studies of the evolution of massive stars up to the final stages of their existence, immediately before a supernova explosion (Boyes et al. 1999), are used as the initial data for the distribution of thermodynamic quantities in the envelope.We use a complex equation of state for matter with allowances made for arbitrary electron degeneracy and relativity, the appearance of electron-positron pairs, the presence of radiation, and the possibility of iron nuclei dissociating into free nucleons and helium nuclei. We performed calculations with the help of a numerical scheme based on Godunov's method. These calculations allowed us to ascertain whether the emersion of the outer envelope in a massive star is possible through the following two mechanisms: first, the decrease in the gravitational mass of the central PNS through neutrino-signal emission and, second, the effect of hot nucleon bubbles, which are most likely formed in the PNS corona, on the envelope emersion. We show that the second mechanism is highly efficient in the range of acceptable masses of the nucleon bubbles (≤0.01M⊙\leq 0.01M_\odot) simulated in our hydrodynamic calculations in a rough, spherically symmetric approximation.Comment: 14 pages, 11 figure
    • …
    corecore