4,183 research outputs found

    Complexes of ruthenium, rhodium and osmium with some dithioacid ligands

    Get PDF

    Wide Angle Redshift Distortions Revisited

    Full text link
    We explore linear redshift distortions in wide angle surveys from the point of view of symmetries. We show that the redshift space two-point correlation function can be expanded into tripolar spherical harmonics of zero total angular momentum Sl1l2l3(x^1,x^2,x^)S_{l_1 l_2 l_3}(\hat x_1, \hat x_2, \hat x). The coefficients of the expansion Bl1l2l3B_{l_1 l_2 l_3} are analogous to the ClC_l's of the angular power spectrum, and express the anisotropy of the redshift space correlation function. Moreover, only a handful of Bl1l2l3B_{l_1 l_2 l_3} are non-zero: the resulting formulae reveal a hidden simplicity comparable to distant observer limit. The Bl1l2l3B_{l_1 l_2 l_3} depend on spherical Bessel moments of the power spectrum and f=Ω0.6/bf = \Omega^{0.6}/b. In the plane parallel limit, the results of \cite{Kaiser1987} and \cite{Hamilton1993} are recovered. The general formalism is used to derive useful new expressions. We present a particularly simple trigonometric polynomial expansion, which is arguably the most compact expression of wide angle redshift distortions. These formulae are suitable to inversion due to the orthogonality of the basis functions. An alternative Legendre polynomial expansion was obtained as well. This can be shown to be equivalent to the results of \cite{SzalayEtal1998}. The simplicity of the underlying theory will admit similar calculations for higher order statistics as well.Comment: 6 pages, 1 figure, ApJL submitte

    An Inversion Method for Measuring Beta in Large Redshift Surveys

    Full text link
    A precision method for determining the value of Beta= Omega_m^{0.6}/b, where b is the galaxy bias parameter, is presented. In contrast to other existing techniques that focus on estimating this quantity by measuring distortions in the redshift space galaxy-galaxy correlation function or power spectrum, this method removes the distortions by reconstructing the real space density field and determining the value of Beta that results in a symmetric signal. To remove the distortions, the method modifies the amplitudes of a Fourier plane-wave expansion of the survey data parameterized by Beta. This technique is not dependent on the small-angle/plane-parallel approximation and can make full use of large redshift survey data. It has been tested using simulations with four different cosmologies and returns the value of Beta to +/- 0.031, over a factor of two improvement over existing techniques.Comment: 16 pages including 6 figures Submitted to The Astrophysical Journa

    The European Chemical Society (EuChemS)

    Get PDF
    The European Chemical Society (EuChemS) coordinates the work of almost all the European Chemical Societies. As an organization, it provides an independent and authoritative voice on all matters relating to chemistry, and try to place chemistry at the heart of policy in Europe. Furthermore, EuChemS seeks to develop its members through various activities, workshops and awards. Particularly, EuChemS has fostered growth in its young members through the European Young Chemists′ Network. Beyond Europe, EuChemS has collaborated with various organizations in bringing chemistry out of the lab and into society in building a sustainable future for everyone.PostprintPeer reviewe

    Measuring the galaxy power spectrum with future redshift surveys

    Get PDF
    Precision measurements of the galaxy power spectrum P(k) require a data analysis pipeline that is both fast enough to be computationally feasible and accurate enough to take full advantage of high-quality data. We present a rigorous discussion of different methods of power spectrum estimation, with emphasis on the traditional Fourier method, the linear (Karhunen-Loeve; KL), and quadratic data compression schemes, showing in what approximations they give the same result. To improve speed, we show how many of the advantages of KL data compression and power spectrum estimation may be achieved with a computationally faster quadratic method. To improve accuracy, we derive analytic expressions for handling the integral constraint, since it is crucial that finite volume effects are accurately corrected for on scales comparable to the depth of the survey. We also show that for the KL and quadratic techniques, multiple constraints can be included via simple matrix operations, thereby rendering the results less sensitive to galactic extinction and mis-estimates of the radial selection function. We present a data analysis pipeline that we argue does justice to the increases in both quality and quantity of data that upcoming redshift surveys will provide. It uses three analysis techniques in conjunction: a traditional Fourier approach on small scales, a pixelized quadratic matrix method on large scales and a pixelized KL eigenmode analysis to probe anisotropic effects such as redshift-space distortions.Comment: Major revisions for clarity. Matches accepted ApJ version. 23 pages, with 2 figs included. Color figure and links at http://www.sns.ias.edu/~max/galpower.html (faster from the US), from http://www.mpa-garching.mpg.de/~max/galpower.html (faster from Europe) or from [email protected]

    Baryon Acoustic Oscillations in 2D: Modeling Redshift-space Power Spectrum from Perturbation Theory

    Get PDF
    We present an improved prescription for matter power spectrum in redshift space taking a proper account of both the non-linear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the non-linear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with monopole and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism. We find that the existing phenomenological models of redshift distortion produce a systematic error on measurements of the angular diameter distance and Hubble parameter by 1~2%, and the growth rate parameter by ~5%, which would become non-negligible for future galaxy surveys. Correctly modeling redshift distortion is thus essential, and the new prescription of redshift-space power spectrum including the non-linear corrections can be used as an accurate theoretical template for anisotropic BAOs.Comment: 18 pages, 10 figure

    Radial Redshift Space Distortions

    Get PDF
    The radial component of the peculiar velocities of galaxies cause displacements in their positions in redshift space. We study the effect of the peculiar velocities on the linear redshift space two point correlation function. Our analysis takes into account the radial nature of the redshift space distortions and it highlights the limitations of the plane parallel approximation. We consider the problem of determining the value of \beta and the real space two point correlation function from the linear redshift space two point correlation function. The inversion method proposed here takes into account the radial nature of the redshift space distortions and can be applied to magnitude limited redshift surveys that have only partial sky coverage.Comment: 26 pages including 11 figures, to appear in Ap

    Determination of the Baryon Density from Large Scale Galaxy Redshift Surveys

    Get PDF
    We estimate the degree to which the baryon density, Ωb\Omega_{b}, can be determined from the galaxy power spectrum measured from large scale galaxy redshift surveys, and in particular, the Sloan Digital Sky Survey. A high baryon density will cause wiggles to appear in the power spectrum, which should be observable at the current epoch. We assume linear theory on scales ≥20h−1Mpc\geq 20h^{-1}Mpc and do not include the effects of redshift distortions, evolution, or biasing. With an optimum estimate of P(k)P(k) to k∼2π/(20h−1Mpc)k\sim 2\pi/(20 h^{-1} Mpc), the 1σ1 \sigma uncertainties in Ωb\Omega_{b} are roughly 0.07 and 0.016 in flat and open (Ω0=0.3\Omega_{0}=0.3) cosmological models, respectively. This result suggests that it should be possible to test for consistency with big bang nucleosynthesis estimates of Ωb\Omega_{b} if we live in an open universe.Comment: 23 Pages, 10 Postscript figure

    Complete Treatment of Galaxy Two-Point Statistics: Gravitational Lensing Effects and Redshift-Space Distortions

    Full text link
    We present a coherent theoretical framework for computing gravitational lensing effects and redshift-space distortions in an inhomogeneous universe and investigate their impacts on galaxy two-point statistics. Adopting the linearized FRW metric, we derive the gravitational lensing and the generalized Sachs-Wolfe effects that include the weak lensing distortion, magnification, and time delay effects, and the redshift-space distortion, Sachs-Wolfe, and integrated Sachs-Wolfe effects, respectively. Based on this framework, we first compute their effects on observed source fluctuations, separating them as two physically distinct origins: the volume effect that involves the change of volume and is always present in galaxy two-point statistics, and the source effect that depends on the intrinsic properties of source populations. Then we identify several terms that are ignored in the standard method, and we compute the observed galaxy two-point statistics, an ensemble average of all the combinations of the intrinsic source fluctuations and the additional contributions from the gravitational lensing and the generalized Sachs-Wolfe effects. This unified treatment of galaxy two-point statistics clarifies the relation of the gravitational lensing and the generalized Sachs-Wolfe effects to the metric perturbations and the underlying matter fluctuations. For near future dark energy surveys, we compute additional contributions to the observed galaxy two-point statistics and analyze their impact on the anisotropic structure. Thorough theoretical modeling of galaxy two-point statistics would be not only necessary to analyze precision measurements from upcoming dark energy surveys, but also provide further discriminatory power in understanding the underlying physical mechanisms.Comment: 20 pages, 5 figures, Fig.4 corrected, appendix added, accepted for publication in Physical Review
    • …
    corecore