D.J. COLE-HAMILTCN

Ph.D. Thesis
University of Edinburgh
1974

To my father, my step-mother and my wife.

In memory of my mother.

ACKNOWLEDGEMENTS

```
I am deeply indebted to Dr. T.A. Stephenson for his continual help, encouragement and enthusiasm throughout the length of this project, as well as to Professor E.A.V. Ebsworth, Drs. R. Harris, R.M. Lyndon-Bell, J.A. McCleverty, D.W.H. Rankin and many others, particularly my fellow students; for their helpful discussions.
My thanks are also due to Mrs. I. Bruce who typed this thesis; J.R.A. Millar and Dr. A.S. Boyd for running many of the n.m.r. spectra; Johnson Matthey Ltd. for loans of precious metal salts and the University of Edinburah for two avards (Chalmers Research Scholarship and McKay-Smith Research Scholarship) and for the use of their facilities.
```

Page No.
Chapter 1. A Survey of Transition Metal Complexes 1
with Dithioacid Ligands

1) Bonding in transition metal dithioacid complexes 1
2) Complexes of Copper, Silver and Gold 5
a) Binary compounds 5
b) Compounds containing other ligands 10
(i) Nitrogen donors 10
(ii) Phosphorus donors 11
(iii) Halogen and alkyl ligands 12
3) Complexes of Titanium, Zirconium and Hafnium 12
a) Binary compounds 12
b) Compounds containing other ligonds 13
4) Complexes of Vanadium, Niobium and Tantalum 14
a) Binary compounds 14
b) Compounds containing other ligands 14
5) Complexes of Chromiur, Molybdenum and Tungsten 16
a) Binary compounds 16
b) Compounds containing other ligands 17
(i) Oxygen 17
(ii) Nitric Oxide 18
(iii) Carbon Monoxide 20
6) Complexes of Manganese, Technetium and Rhenium 21
a) Binary Compounds 21
b) Compounds containing other Iigands 23
7) Complexes of Iron, Rutherium and Osmium 26
a) Binary Compounds 26
b) Compounds containing other ligands 29
8) Complexes of Cobalt; Rhodium and Iridium 32
a) Binary compounds 32
b) Compounds containing other ligands 34
9) Complexes of Nickel, Palladium and Platinum 36
a) Binary compounds 36
b) Complexes containing other ligands 38
(i) Nitrogen donors 39
(ii) Phosphorus donors 40
Chapter 2. Dialkyl, Diaryl-phosphinodithioato and 42
N,N-Dialkyl dithiocarbamato Complexes of Ruthenium II.
Intronuction 42
Results and Discussions 45
10) Preparations of $\mathrm{Ru}(\mathrm{S}-\mathrm{S})_{2} \mathrm{~L}_{2}$ 45
11) Reactions of $\mathrm{Ru}(\mathrm{S}-\mathrm{S})_{2} \mathrm{~L}_{2}$ complexes 51
12) Spectroscopic properties of dithioacid complexes 53
a) Infra-red spectra 53
b) Mass spectra 54
c) ${ }^{1} \mathrm{H}$ n.m.r. spectra 55
(i) Complexes of formula $R u\left(S_{2} \mathrm{PR}_{2}\right)_{2} \mathrm{~L}_{2}$ 55
(ii) Complexes of formula $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PM}_{2}\right)_{2}(\mathrm{~L}-\mathrm{L})$ 62
(iii) Conplexes of formula $R u\left(S_{2} \mathrm{PR}_{2}\right) 2^{\mathrm{LCO}}$ and 64
$\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2} \mathrm{LL}^{\prime}$
(iv) Complexes of formula $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CMM} \mathrm{C}_{2}\right)_{2} \mathrm{~L}_{2}$ 72
13) Mechanism of Inversion of Optical Isomers of
$\mathrm{Ru}\left(\mathrm{S}_{2}{ }^{\mathrm{PMe}} \mathrm{e}_{2}\right)_{2} \mathrm{~L}_{2}$ 74
a) Bailar (or trigonal) twists 80
b) Rây Dutt (or rhombic) twist 83
c) Cleavage of a ruthenium-phosphorus bond 84
d) Complete dissociation of a dithicacid ligand 85
e) Cleavage of a ruthenium-sulphur bond 85
14) $C=N$ bond rotation in cis-Ru($\left.S_{2} \mathrm{CNM}_{2}\right)_{2} L_{2}$. 94
15) Mechanism of carbonylation of cis-Ru(S $\left.{ }_{2} \mathrm{PR}_{2}\right)_{2}{ }^{\left(\mathrm{PNi}_{2} \mathrm{Fh}\right)_{2}}$ 95
Experimental 106
Tables 119
Chapter 3. Reactions of mer-RhCl ${ }_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ with Dithioacid Ligands 132
Introduction 132
Results and discussion 134
16) NN-dimethyldithiocarbamato complexes 135
17) Diphenyl and dimethylphosphinodithioato complexes 136
18) O-ethyldithiocarbonato (xanthato) and dithiocarhonato
complexes 137
19) Spectroscopic properties of dithioacid complexes 138
a) Infra-red spectra 138
b) n.m.r. spectra 140
Experimental 147
Tables 155
Chapter 4. Reactions of mer- $\mathrm{OsCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3}\right.$ with 161
Dithioacid Ligands
Introduction 161
Results and ciiscussion 162
20) $\mathrm{N} N$-dimethyldithiocarbamato complexes 163
21) Diphenyl- and dimethylphosphinodithioato complexes 164
22) O-ethyldithiocarbonato (xanthato) complexes 167
23) Spectroscopic properties of dithioacid complexes 167
a) Infra-red spectra 167
b) Mass spectra 169
c) ${ }^{1}{ }_{H}$ nom.r. spectra 170
d) ${ }^{31} \mathbf{P}$ n.m.r. spectra 182
24) Stereochemical pathway for conversion of mer-OsC1 $_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ to $\left.\mathrm{cis}^{-O s(S-S)}{ }_{2} \mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ 182
Experimental 187
Tables 193
Appendix 1. Calculation of Activation Parameters for
a Two Site Exchange 199
Appendix 2. The Crystal Structure of cis-
$\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PEt}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ 202
Erratum 205
References

Page No.

2.1	Methyl region of ${ }^{1} \mathrm{H}$ n.m.r. spectrum of	57
	$\left.\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ in CDCl_{3} at different	
	temperatures.	
2.2	Diagrammatic representation of cis-configuration	58
	for $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}{ }^{\text {d }}$	
2.3	Diagrammatic representation of $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)$.	63
2.4	Diagrammatic representation and low field (AA' BB^{\prime} type)	65
2.5	Diagrammatic representation of cis-configuration for	68
	$\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{LL}^{\prime}$.	
2.6	Methyl region of ${ }^{1} \mathrm{H}$ n.m.r. spectrum of	71
	$\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{P}(\mathrm{OPh})_{3}\right)$ at different temperatures.	
2.7	Arrhenius plots $\left(\log _{10} k\right.$ vs. $\left.1 / \mathrm{T}\right)$ for various	76
	cis-Ru($\left.\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{~L}_{2}$ 。	
2.8	Arrhenius plots ($\log _{10} \mathrm{k}$ vs. $\left.1 / \mathrm{T}\right)$ for	77
	cis $\left.\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ in various solvents.	
2.9	Rate of inversion of cis-Ru($\left.\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}{ }^{\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)} 2$	78
	($0.015 \mathrm{gml}^{-1}$) in $\mathrm{CS}_{2}-\mathrm{CDCl}_{3}$ solution at 301 K as a	
	function of CDCl_{3} concentration.	
2.10	Labelling of the four imaginary C_{3} axes (i-c C_{3}) for	81
	the cis- $\triangle-\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{LL}^{\prime}$ complex.	
2.11	Bailar (trigonal) twists for a cis $-\Delta-\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PM}_{2}\right)_{2} \mathrm{LL}^{\prime}$	82
	compound about the four $i-C_{3}$ axes.	
2.12	Possible solvent (Y) assisted bond-rupture	88
	mechanisms for inversion of cis-Ru($\left.\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{LL}^{\prime}$.	
2.13	Postulated mechanisms of inversion for $R u\left(S_{2} P e_{2}\right) 2^{\prime \prime}$.	92
2. 14	Possible isomeric forms for $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{CO}$	97
	assuming bidentate and unidentate $\mathrm{S}_{2} \mathrm{PR}_{2}$ coordination.	

$$
2.15{ }^{1} \mathrm{H} \text { n.m.r. spectrum of } \mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{CO}(\mathrm{E})
$$ (methyl region).

$2.16^{31}{ }^{3}$ nom.r. spectrum of $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PM}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{CO}(\mathrm{E})$ 100
2. 17 Proposed mechanism for carhonylation of
cirs-Ru(S $\left.\mathrm{PR}_{2}\right)_{2}{ }^{\left(\mathrm{PR}_{2} \mathrm{e}_{2} \mathrm{Ph}\right)_{2}} 104$
3.1 Rhodium-103 decoupling of ${ }^{1} \mathrm{H}$ n.m.r. spectrum of 144 $\operatorname{cis}-\operatorname{Rh}\left(\mathrm{S}_{2} \mathrm{CO}\right)\left(\mathrm{S}_{2} \mathrm{COEt}\right)\left(\mathrm{PM}_{2} \mathrm{Ph}\right)_{2}$ (XIX).
$3.2{ }^{1} \mathrm{H}$ n.m.r. spectrum of phosphine methyl groups of 145 cis- $\left[\operatorname{Rn}\left(\mathrm{S}_{2} \mathrm{CNHe}_{2}\right)_{2}\left(\mathrm{PNe}_{2} \mathrm{Ph}\right)_{2}\right] \mathrm{PF}_{6}$ in CDCl_{3} at different temperatures.
4.1 Methyl region of ${ }^{1} \mathrm{H}$ n.m.r. spectrum of 174 cis-Os(S2 $\left.\mathrm{PMe}_{2}{ }_{2}{ }_{2} \mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}(\mathrm{VI})$ in CDCl_{3} at different temperatures
4.2 Methyl region of ${ }^{1}$ H n.m.r. spectrum of cis-0s $\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}(\mathrm{I})$ in CDCl_{3} at 175 different temperatures.
4.3 Arrhenius plots $\left(\log _{10} \mathrm{k} \mathrm{vs} .1 / \mathrm{T}\right)$ and activation 176 parameters for cis-Os $\left(\mathrm{S}_{2} \mathrm{PM} \mathrm{e}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}(\mathrm{VI})$ in different solvents.
4.4 Methyl region of ${ }^{1} \mathrm{H}$ n.m.r. spectrum of cis-Os $\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}^{-}$ 178 ($\mathrm{PMe}_{2} \mathrm{Ph}$)CO (XIII) in CDCl_{3} at different temperatures.
4.5 Methyl region of ${ }^{1} \mathrm{H}$ n.m.r. spectrum of
$\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)(\mathrm{CO})_{2}(\mathrm{XIV})$.
4.6 $3^{1} \mathrm{P}$ n.m.r. spectra of
a) mer-Os $\left(\mathrm{S}_{2} \mathrm{CMMe}_{2}\right) \mathrm{Cl}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ (II) (AB $\mathrm{Alype}^{\text {(II }}$ 183
b) $\operatorname{mer}-0 \mathrm{Os}\left(\mathrm{S}_{2} \mathrm{COEt}\right) \mathrm{Cl}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(\mathrm{XVII})\left(\mathrm{AB}_{2} \mathrm{type}\right) \quad 184$
c) ${ }_{\text {mer- } \mathrm{RhCl}_{3}\left(\mathrm{PMie}_{2} \mathrm{Ph}\right)_{3}(\text { ANX }}^{2}$ type) 185

A2 Structure of cis-Ru(S $\left.\mathrm{PEt}_{2}\right)_{2}\left(\mathrm{PHe}_{2} \mathrm{Ph}\right)_{2}$ viewed down 203 the approximate two-fold axis.
Page No.
Table 2.1 Preparative methods for some ruthenium complexes 119
" 2. 2 Analytical data for some ruthenium complexes 120
" 2.3 Infra-red spectra of various ruthenium dithioacid 122complexes.
" 2.4 Main peaks in the mass spectrum of $\mathrm{Ru}_{\mathrm{i}}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{2}$ 123
" 2.5 Main peaks in the mass spectrum of $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OPh})_{3}\right) \mathrm{CO}$ 124
2. ${ }^{1}$ H n.m.r. data for various ruthenium dithioacid 125complexes." 2.7 Rates and activation parameters obtained by line129shape analysis for the inversion processcis $\Delta \underset{\mathrm{F}}{\mathrm{c}} \mathrm{S} \Lambda$ in some ruthenium (II) dimethylphosphino-`dithioato complexes.
" 2.8 Assignment of methyl grouns stereochemistries for130cis- $\Delta-\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{LL}^{\prime}$ after twisting and hondrupture operations." 2.9 Rates and activation parameters obtained by line131shape analysis for the interchange of methyl groups insome ruthenium (II) N.N dimethyldithiocarbamatocomplexes.
" 3.1 Analytical data for some rhodium complexes. 155
$"$ 3.2 Infra-red spectra of various rhodium dithioacid complexes. 157
" $3.3{ }^{1} \mathrm{H}$ n.m.r. data for various sulphur comrounds (in CDCl_{3}). 158
Scheme 3.1 Pronosed mechanism for reactions of 160
$\left.\mathrm{mer}_{-\mathrm{RhCl}_{3}} \mathrm{Pr:e}_{2} \mathrm{Ph}\right)_{3}$ with (S-S) -
Table 4.1 Anaiytical data for some osmium dithioacid complezes. 193
" 4.2 Infra-red spectra for some osmium dithioacid complexes. 194
Table 4.3 Main osmium containing fragments observed in the 195mass snectrum of mer- $\left.\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right) \mathrm{Cl}^{(\mathrm{PM}} 2_{2} \mathrm{Ph}\right)_{3}(\mathrm{II})$ at$200^{\circ} \mathrm{C}$
" $4.4{ }^{1} \mathrm{H}$ n.m.r. spectra of some osmium (II) dithioacid 196complexes in $\mathrm{CDCl}_{3}{ }^{\circ}$
Scheme 4.1-Proposed mechanisms for reactions of mer- 197$\mathrm{OsCl}_{3}\left(\mathrm{FHe}_{2} \mathrm{Ph}\right)_{3}$ with (S-S)-
" 4.2 Proposed mechanism of carbonylation of 198cis-Os $\left.\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$.
Table AC Selected interatomic distances (\AA) and angles 204

Chapter 1. The chemistry of transition metal complexes of dithinacid ligands is reviewed group by group; with reference both to complexes with and without other ligands.

Chapter 2. The synthesis and properties of complexes of general formula $\mathrm{Ru}(\mathrm{S}-\mathrm{S})_{2} \mathrm{~L}_{2}\left(\mathrm{~S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{PR}_{2}(\mathrm{R}=\mathrm{Me}, \mathrm{Et}, \mathrm{Ph}), \mathrm{S}_{2}\right.$ CMPe ${ }_{2}$; $L=\mathrm{PPh}_{3}, \mathrm{PMe}_{2} \mathrm{Ph}, \mathrm{PMePh}_{2}, \mathrm{P}(\mathrm{OPh})_{3}, \mathrm{CO}$, etc. or $\mathrm{L}_{2}=$ diene, diars, diphos or $\left.\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CH}_{2}\right)$ are renorted. For $\mathrm{S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{PR}_{2}$, the complexes are carbonylated to $\mathrm{Ru}(\mathrm{S}-\mathrm{S})_{2}$ LCO. Although for $\mathrm{S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{CNMe}_{2}$ the complexes are more inert to carbonylation, all the complexes undergo ligand exchange with L to give either $\mathrm{Ru}_{1}\left(\mathrm{~S}_{2} \mathrm{PM}_{2}\right)_{2} \mathrm{LL}$ or $\operatorname{Ru}\left(S_{2} \mathrm{PMe}_{2}\right)_{2} L_{2}$ or, in some cases, both. Most of the compounds show temperature variable ${ }^{1} \mathrm{H}$ n.m.r. spectra which for $\mathrm{S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{PMe}_{2}$ are attributable to a facile inversion of optical isoners via a solvent assisted bond rupture mechanism which is discussed in detail; whereaz for $S-S=S_{2} C N M e_{2}$; they are attributable to facile rotation about the C...N bond at higher temperatures. Finally, carbonylation of $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ gives rise to two other complexes of formula $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}{ }^{\left(\mathrm{PNe}_{2} \mathrm{Ph}\right)}{ }_{2} \mathrm{CO}$ whose spectra and structures are discussed. Chapter 3. The formation of $\mathrm{Rh}\left(\mathrm{S}-\mathrm{S}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\left(\mathrm{~S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{PR}_{2}\right.\right.$, ($\mathrm{R}=\mathrm{Me}$ or Ph) or $\mathrm{S}_{2} \mathrm{CNMe}_{2}$) from mer $-\mathrm{RhCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ and $\mathrm{Na} \mathrm{S}-\mathrm{S}$ in refluxing ethanol has been shown to occur via stenwise displacement of chloride ions and phosphine ligands and, by varying the reaction conditions, many of the intermediates have been isolated. The reaction with K_{2} COEt proceeds along similar lines although attack on coordinated xanthato grouns leads to the formation of various dithiocarbonato
complexes, such as mer- $\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{CO}\right) \mathrm{Cl}\left(\mathrm{Phe}_{2} \mathrm{Ph}\right)_{3}$, cis and trans
$\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{COEt}\right)\left(\mathrm{S}_{2} \mathrm{CO}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ and $\mathrm{K}\left[\operatorname{trans}-\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{CO}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$.

The spectroscopic properties of the complexes are discussed.
 $\left(S-S=S_{2} \mathrm{PR}_{2}(\mathrm{R}=\mathrm{Ph}, \mathrm{Pe}), \mathrm{S}_{2} \mathrm{CNMe}_{2}, \mathrm{~S}_{2} \mathrm{COEt}\right)$ are discussed. With $\mathrm{KS}_{2} \mathrm{COEt}$, the sole product is mer-Os $\left(\mathrm{S}_{2} \operatorname{COEt}\right) \mathrm{Cl}\left(\mathrm{PMe} \mathrm{PH}_{2}\right)_{3}$ whereas with $\mathrm{S}_{2} \mathrm{CNMe}_{2}$ and $\mathrm{S}_{2} \mathrm{PR}_{2}$, the final products are
 temperatu: $=$ variable ${ }^{1} \mathrm{H}$ n.m.r. spectra which are similarly interpreted although for $S-S=S_{2} P M e_{2}$, the optical inversion appears to occur via a non solvent assisted bond rupture mechanism. The formation of $\mathrm{cis}-\mathrm{Os}(\mathrm{S}-\mathrm{S})_{2}\left(\mathrm{PM}_{2} \mathrm{Ph}\right)_{2}$ appears to go via a series of $O s^{I I I}$ ionic intermediates with reduction to $O s^{I I}$ as the last step whilst for $\left.\mathrm{Os}_{\left(\mathrm{S}_{2} \mathrm{CNHe}\right.}^{2}\right)_{2}\left(\mathrm{PAle}_{2} \mathrm{Ph}\right)_{2}$, a parallei mechanism operates which involves an $0 s^{I I}$ intermediate of the form mer-Os $\left(\mathrm{S}_{2} \mathrm{CMMe}_{2}\right) \mathrm{Cl}\left(\mathrm{PR}_{2} \mathrm{Ph}\right)$ which isonerises to the facial isomer before reaction with more ${ }^{-} \mathrm{S}_{2} \mathrm{CNMe}_{2}$ 。 This facial isomer also reacts with solvent (EtCH) to give fac-Os ($\mathrm{S}_{2} \mathrm{CMMe}_{2}$) $\mathrm{OEt}\left(\mathrm{PMe} \mathrm{Ph}_{3}\right)_{3}$ Finally, carbonylation of cis-Os $\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ gives the analagous products to the ruthenium system except that they are less labile and $\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{PM} \mathrm{e}_{2}\right)_{2}\left(\mathrm{Pr!} \mathrm{e}_{2} \mathrm{Ph}\right)(\mathrm{CO})_{2}$ is also formed. Appendix 1 outlines the method of obtaining activation parameters from experinental and computed spectra at different temperatures and lifetimes respectively.

Appendix 2 The crystal structure of cis $\left.-\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PEt}\right)_{2}\right)_{2}\left(\mathrm{PMe} \mathrm{P}_{2} \mathrm{Ph}\right)_{2}$ is presented.

A Survey of Transition Metal Complexes with Dithioacid Ligands

Dithioacids may be regarded as being derived from any oxoacid having two or more functional oxygen atoms by replacing two of the functional oxygen atoms in that acid with sulphur atoms. Since the results presented in the later chapters of this thesis refer to complexes of N, N-disubstituted dithiocaroamates (${ }^{\left(S_{2}\right.} \mathrm{CNR}_{2}$), O-substituted dithiocarbonates (${ }^{-} \mathrm{S}_{2} \mathrm{COR}$) (hereafter referred to as xanthates), and P,P disubstituted phosphinodithioates, it is considered of interest to review the results that have already been published on transition metal complexes of these ligands.

1) Bonding in transition metal dithioacid complexes.

The versatility of dithioacid ligands is evidenced by the fact that they are able to stabilize vide ranges of oxidation states for many metals. This phenomenon is perhaps best explained because, apart from being δ-donors, the sulphur atoms are also capable of acting as weak π-donors (from the filled 3 p orbitals), thus stabilizing high oxiation states, or π-acceptors (to empty 3d orbitals) thus stabilizing lower oxidation states. This T-donor ability has also been used to explain the change in the mode of bonding of thiocyanate ions from N - to S - bonded when potassium $=$ hyl xanthate is reacted ${ }^{1}$ with $[\operatorname{Cr}(N C S)]^{3-}$ to give $\left[\operatorname{Cr}(\operatorname{SCN})_{4}\left(S_{2} \operatorname{COE} t\right)\right]^{2-}$, whilst the π-acceptor properties are confirmed by the covalency of the out of plane π-bonds in $\mathrm{Cu}(\mathrm{S}-\mathrm{S})_{2}\left(\mathrm{~S}-\mathrm{S}=\mathrm{S}_{2}-\mathrm{NR}_{2}\right.$ or $\left.\mathrm{S}_{2} \mathrm{COR}\right)$, as detected by e.s.r. spectroscopy. ${ }^{2,3}$

There are differences, however, between the dithioacid ligands; e.g. lower oxidation states tend to be better stabilized by phosphinodithioates than by xanthates or dithiocarbamates. Thus,
whereas the xanthates and dithiocarbamates of Mn (II), $\mathrm{Fe}(\mathrm{II})$ and $\left.C_{o(I I}\right)^{4}$ are relatively difficult to prepare since they are readily oxidised to the $M(I I I)$ complexes, the phosphinodithioates of the divalent ions are easier to prepare and more stable than their correspording M (III) compounds ${ }^{5,6}$. An explanation of this is forthcoming from a consideration of the different resonance structures that can be exhibited by the various iigands, and of the effect of these on the donor and acceptor properties of the ligands.

Since all the dithioacid anions have two terminal sulphur atons, either of these may be doubly bonded to the neighbouring atom (C or P), in the free ion, while the other supports the uninegative charge. i.e.

For ${ }^{-} \mathrm{S}_{2} \mathrm{CNR}_{2}$ and ${ }^{-} \mathrm{S}_{2} \mathrm{COR}$, however, a further resonance form is possible in which a lone pair from the oxygen or nitrogen atax is donated to the carbon atom and each sulphur atom supports a: uninegative charge ${ }^{7,8}$. i.e.

On account of the greater electronegativity of oxygen compared with that of nitrogen, it has been suggested ${ }^{7}$ that donation of the lone pair from the oxygen atom is less likely and therefore this resonance structure will be less important for ${ }^{-} \mathrm{S}_{2} \mathrm{CCR}$ than for $\mathrm{S}_{2} \mathrm{CNR}_{2}$, and this has been shown by infrared (i.r. $)^{7,9}$ and x-ray techniques ${ }^{10,11}$ to be experimentally the case.

Thus, the following order of negative charge density on the sulphur atoms of the dithioacid ligands may be drawn up, and this order will correlate directly with the donor properties of the ligands but inversely with their acceptor properties ${ }^{8}$ and consequently directly with their ability to stabilize higher oxidation states of metals:

$$
-\mathrm{s}_{2} \mathrm{CNR}{ }_{2}>-\mathrm{s}_{2} \mathrm{COR}>-\mathrm{S}_{2} \mathrm{PR}_{2}
$$

Another facet of the versatility of dithioacid ansons as ligands arises from the different ways in which they may cooroinate to metals. Thus, apart from acting as simple counter anions, they may act as unidentate one electron donors, i.e.

or a lone pair of the uncoordinated sulphur atom may then donate either to the same metal atom or to another one, forming a bidentate or bridging ligand.
i.e.

or

Occasionally, a further two electrons may then be donated to another metal atom to form a five electron donor ligand bridging either two or three metal atoms.
i.e.

Complexes which exhibit all these types of bonding have been made (vide infra) and i.r. ${ }^{12-16}$ and n.m.r. ${ }^{17}$ techniques have been developed to distinguish between them.

Finally, some reactions occur in which mejification of the dithioacid ligand takes place. These include attack on the alkoxy group of $\mathrm{S}_{2} \mathrm{COR}$ by nucleophiles to give dithiocarbonates; 18,19

and the formation of coordinated carbenes by the reaction of $\mathrm{Mo}(\mathrm{II})$

in which a molybdenua atom apparently inserts into a C-S bond. Transition metal complexes of these three dithioacid ligands will now be examined triad by triad.
2) Complexes of Copper, Silver and Gold.
a) Binary compounds.

The coinage metals are the only transition elements for which univalent dithioacid complexes are known. These metals all have a d^{10} electronic configuration in their +1 oxidation state and the stability of the closed sub-shell presumably accounts for the formation of these complexes. There are two main modes of preparation of $\mathrm{Cu}(\mathrm{I})$ dithioacid complexes. Dithiocarbamates may be prepared by oxidation of the metal with tetraalkylthiuram disulphides, $\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}$, in cold benzene ${ }^{23}$ or chloroform ${ }^{24}$, although in the latter solvent, some $\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}$ is also formed. Yanthates ${ }^{25}$ and phosphinodithioates ${ }^{26}$, on the other hand, are best prepared by the reduction of $\mathrm{Cu}(\mathrm{II})$ salts with the appropriate dithioacid anion. $\left\{\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{PF}_{2}\right)\right\}_{\mathrm{n}}$ has also been prepared, by tie action of $\mathrm{HS}_{2} \mathrm{PF}_{2}$ on copper in toluene at $70^{\circ} \mathrm{C}^{27}$.

Since silver and gold both have stable + 1 chlorides, direct reaction of these with dithioacid anions leads to the formation of $\{M(S-S)\}_{n}\left(S-S=S_{2} C N R_{2}^{28}, S_{2} C^{29,30}\right.$ or $\left.\mathrm{S}_{2} \mathrm{PR}_{2}^{26,31}\right) .\{\mathrm{Au}(\mathrm{S}-\mathrm{S})\}_{2}$ ($\mathrm{S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{COR}^{28}, \mathrm{~S}_{2} \mathrm{PR}_{2}{ }^{26}$) may also be prepared by the interaction of $\mathrm{Au}(\mathrm{III})$ salts with $\mathrm{Na}(\mathrm{S}-\mathrm{S})$, whereas oxidation of metallic gold with xanthates leads to the isolation of $\left\{\operatorname{Au}\left(S_{2} C O R\right)\right\}_{2}$. However, since higher oxidation states of silver are relatively unstable, $\mathrm{Ag}(\mathrm{I})$ salts are not oxidised by $\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}$ but react with them or $\mathrm{Ni}\left(\mathrm{S}_{2} \mathrm{CNR}\right)_{2}$ to produce $\left\{\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)\right\}_{6}{ }^{32,33}$.

All these dithioacid complexes are found to be associated both in solution and in the solid state and, although the degree of association is not always easy to determine, it appears that at least

Abstract

for the dithiocarbamates ${ }^{34-36}$ and phosphinodithioates ${ }^{26}$, the gold complexes are dimeric, the copper complexes tetrameric and the silver complexes hexameric or of higher association.

The only x-ray crystallographic data available on these complexes pertain to the dithiocarbamates and these are shown to have interesting siructures and unusual bonding modes for the ligands. Thus, $\left\{\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)\right\}_{4}^{34}$ has the copper atoms arranged at the corners of a somewhat distorted tetrahedron with a dithiocarbamate ligand situated above each face of this tetrahedron and coordinated to all three metal atoms of the face such that each copper atom is boind to three sulphur atoms in an almost planar fashion. Although it is evident that one sulphur atom of each ligand binds to one copper atom whilst the other is coordinated to two copper atoms; the electronic nature of the bonding in this compound is not entirely clear, but it is presumably similar to that in the complex $\left\{\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{CNPr}_{2}\right)\right\}_{6}^{35}$, in which the silver atoms are arranged at the apices of a distorted octabedron with the dithiocarbamate ligands again situated above six of the faces of the octahedron and coordinated to all three sulphur atoms of that face so that the silver atoms are trigonally coordinated although not quite planar. $\quad\left\{A u\left(S_{2} C N P r_{2}\right)\right\}_{2}^{36}$ is rather d ifferent, with both of the dithiocarbamate ligands bridging the two gold atoms and acting as three electron donors. However, the molecule is twisted in such a way that the coordination of each gold atom by sulphur is essentially linear, as in most other complexes of Au(I). It is also interesting to note that in all three complexes some of the metal-metal distances are shorter than those found in the free metal, but this need not necessarily be due to direct metal-metal
bonding ${ }^{36}$.
Oxidation of these univalent dithiocarbamate complexes by $\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}$ leads to $\mathrm{M}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}(\mathrm{M}=\mathrm{Cu}, \mathrm{Ag})$ and, whilst the gold compound is oxidised slowly to $\mathrm{Au}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{3}$ under these conditions, the $A u(I I)$ complex has been detectea as an intermediate by E.S.R. ${ }^{38}$
$\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}$ may also be prepared by the reaction of Cu or CuSO_{4} with $\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}$ in refluxing solvents 23,24 , or by reaction between CuCJ_{2} and $\left(\mathrm{Me}_{2} \mathrm{NCS}\right)_{2} \mathrm{~S}^{39}$ Attempts to oxidise $\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{PF}_{2}\right)$ to $\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{PF}_{2}\right)_{2}$ with $\left(\mathrm{S}_{2} \mathrm{PF}_{2}\right)_{2}$ were unsuccessful, yielding only unchanged starting material. ${ }^{27}$ $\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{COR}\right)_{2}^{40}$ and $\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}^{41}$ have been prepared by the reaction of stoichiometric amounts of the dithioacid anions with CuSO_{4} in water followed by extraction of the product with $\mathrm{CC}_{4}-$ However, facile reduction to the $C u(I)$ complexes (vide supra) means that yields of the $\mathrm{Cu}(\mathrm{II})$ complexes are low.

Very little structural information is available for the phosphinodithioates or xanthates of the divalent coinage metals except that e.s.r. experiments on $\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}^{42}$ have shown that the hyperfine splitting of the signals arises from coupling of the unpaired electron on the copper ion with the ${ }^{31}{ }_{P}$ nucleus of the ligand via delocalisation through the coordinated sulphur atoms. This indicates that the ureaired electron is in the $d x^{2}-y^{2}$ orbital of the copper ion (as predicted by simple crystal field theory) and contrasts with the mechanism for the interaction of the unpaired electron with the phosphorus atoms in $\mathrm{VO}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}$, which occurs by a direct interaction between the 3 d xy orbital on vanadium and the 3 s orbital on phosphorus. However, the structures of $\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}$ have been very extensively studied and they have been shown to be monomeric square-planar species
in solution ${ }^{43}$, the gas phase ${ }^{44}$, and at high temperatures in the solid state 45 when they are isomorphous with $\mathrm{Ni}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}$. At normal temperatures in the solid state, however, the complexes are isomorphous with $\left\{\mathrm{Z}_{\mathrm{n}}\left(\mathrm{s}_{2} \mathrm{CNR}_{2}\right)_{2}\right\}_{2}^{46}$, i.e. dimeric with the two planes of sulphur atoms parallel to ine another, and each copper atom in a distorted square- pyramidal environment
(1). For $R=\operatorname{Pr}^{47}$ or $E t^{48}$, it is found that

the sixth coordinating position of the copper atoms is occupied by a hydrogen atom of a neighbouring dimer. E.s.r. and magnetic measurements also indicate that, apart from a weak anti-ferromagnetic interaction between dimers ${ }^{49}$, the individual dimers each have a triplet $(S=1)^{50}$ ground state because of a ferromagnetic ${ }^{49}$ exchange interaction between the two halves of the dimer which occurs through the out of plene orbitals ${ }^{51}$ and the bridging sulphur atoms ${ }^{50}$. This has also been confirmed for the dimeric $\left\{\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{CNPr}\right)_{2}\right\}_{2}^{52}$. The only non dimeric compound of this kind is $\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{CNMePh}\right)_{2}$ which is monomeric in the crystal ${ }^{53}$. This is rationalised in terms of a steric interaction between the methyl group and the phenyl ring on each dithiocarbamate ligand which leads to the plane of the ring being inclined at 87° to the plane of the four sulphur atoms, thus making it sterically unfavourable for dimerisation to occur 53 .

As has already been noted, $\left\{\mathrm{Au}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)\right\}_{2}$ slowly give $\left.\mathrm{Au}\left(\mathrm{S}_{2} \mathrm{CNR}\right)_{3}\right)_{3}$ when treated with $\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}$. These $\mathrm{Au}(I I I)$ complexes may also be
prepared by the reaction of AuCH_{3} with $\mathrm{NaS}_{2} \mathrm{CNR}_{2}$ in slightly acid solution. ${ }^{54}$. This reaction occurs by stepwise displacement of the chloride ions by dithiocarbamate ligands ${ }^{54}$ but if carried out in basic solution or if excess dithiocarbanate is used, $\left\{\operatorname{Au}\left(S_{2} C N R_{2}\right)\right\}_{2}$ is the only product ${ }^{55}$. A similar technique has been employed to isolate $\mathrm{Au}\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)_{3}{ }^{56}$.

Cationic dithiocarbamate complexes of $\mathrm{Au}(\mathrm{III}),\left[\mathrm{Au}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}\right]$ -
[AuBr], have also been prepared, by the interaction of one equivalent of $\left\{\mathrm{Au}\left(\mathrm{S}_{2} \mathrm{CNR} \mathrm{S}_{2}\right)\right\}_{2}$ with half a mole of bromine ${ }^{57}$. Other anions may then replace the $A u B r^{-}$either by the use of an ion exchange column or by precipitation ${ }^{58}$. In the case of $\left[A u\left(S_{2} \mathrm{CNR}_{2}\right)_{2}\right]\left[A u B r_{4}\right]$, this decomposes on neating to yield $\mathrm{Au}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right) \mathrm{Br}_{2}$ which may also be prepared by the action of one mole of bromine with one equivalent of $\left\{\mathrm{Au}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)\right\}_{2}$ and which reacts with excess $\mathrm{S}_{2} \mathrm{CNR}$, to give $\left[\mathrm{Au}\left(\mathrm{S}_{2} \mathrm{CNR} R_{2}\right)_{2}\right] \mathrm{Br}$. These Au(III) complexes ($5 \mathrm{~d}^{8}$) are isoelectronic with Pt (II) complexes and would therefore be expected to be spin-paired; square-planar compounds. This is indeed the case and an x-ray structure of $\left.\mathrm{Au}^{\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right.}\right)_{3}^{59}$ has shown that one of the dithiocarbamate ligands is bidentate whilst the other two are unidentate (c.f. the xanthate ligands in [AsPh_{4}]$\left.\left[\mathrm{Pt}\left(\mathrm{S}_{2} \mathrm{COEt}\right)_{3}\right]\right)^{60}$ The ionic Au(III) complexes are also square-planar but an interesting feature of their crystal structures ${ }^{61}$ is that the anions often pack close to the nitrogen atoins of the dithiocarbamate ligands and hence have an effect on the position of $V C=N$ in the solid state i.r. spectra ${ }^{61}$

An analagous series of cationic copper complexes has also been prepared, by the oxidation of $\left\{\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)\right\}_{4}$ or $\left\{\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}\right\}_{2}$
with iodine or metal chlorides ${ }^{62}$ and a crystal structure of $\left[\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{CNBu}_{2}\right)_{2}\right] \mathrm{I}_{3}{ }^{63}$ has revealed that the copper atom is in a square-planar environment of sulphur atoms, with the Cu-S bond length being ca $0.08 \AA$ shorter than in neutral $\left\{\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{CNBu}_{2}\right)_{2}\right\}_{2}$ which is consistent with there being a greater positive cinarge on the metal in the former complex.

Finally, if three moles of $\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{CNBu}_{2}\right)_{2}$ are treated with one mole of bromine and one of $\mathrm{MBr}_{2}(\mathrm{M}=\mathrm{Zn}, \mathrm{Cd}$ or Hg$)$, compounds of formula $\left[\mathrm{Cu}_{3}\left(\mathrm{~S}_{2} \mathrm{CNBu}_{2}\right)_{6}\right]\left[\mathrm{M}_{2} \mathrm{Br}_{3}\right]$ can be isolated ${ }^{64}$. An x-ray crystal structure ${ }^{64}$ of the compound ($M=C d$) shows that the cation consists of three square-planar $\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{CNBu}_{2}\right)_{2}$ units bound together in such a way that their planes are parallel (2); the two outer copper

atoms are in distorted square pyramidal environments whilst the environment of the central copper atom is a distorted octahedron. On the basis of $\mathrm{Cu}-\mathrm{S}$ bond lengths, the outer two copper atoms are assigned a +3 oxidation state, whereas the central atom is in +2 oxidation state.
b) Compounds containing other ligands.
(i) Nitrogen donors.

No complexes of the coinage metals containing both dithioacid ligands and nitrogen conor ligands have been isolated but solutions of $\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}$ containing pyridine ${ }^{65}$, piperidine ${ }^{65}$, n-hexylamine ${ }^{65}$, 3-, 4- picolines ${ }^{66}$, 3, 4- and 2,6- lutidines ${ }^{67}$ in various solvents
have been studied by e.s.r.techniques. All these ligands form 1:1 adducts, the base being in the apical ${ }^{68}$ position of a squarepyramid, and thermodynamic and kinetic parameters have been calculated for adduct formation. A similar study on $\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{CNR}\right)_{2}^{69}$ has shown that this too forms 1:1 adoucts with pyridine, 2-, 3-, 4picolines and triethylamine.
(ii) Phosphsrus donors.

Complexes containing both a dithioacid ligand and phosphorus donor ligands may either be prepared by the action of tertiary phosphines or phosphites on $\{M(S-S)\}_{n}$, or by reaction of (S-S) with a complex of the metal which already contains the phosphorus ligand. Thus, the reactions between $\{\mathrm{M}(\mathrm{S}-\mathrm{S})]_{\mathrm{n}}\left(\mathrm{M}=\mathrm{Ag}, \mathrm{S}-\mathrm{Se}=\mathrm{S}_{\mathbf{2}}-\right.$ $\mathrm{CNR}_{2}{ }^{70}$ or $\mathrm{S}_{2} \operatorname{coEt}^{20} ; \mathrm{M}=\mathrm{Cu}, \mathrm{S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{CNR}_{2}{ }^{70}$) and triphenylphosphine yield $\mathrm{M}\left(\mathrm{PPh}_{2}\right)_{2}(\mathrm{~S}-\mathrm{S})$ which are definitely ionic for $\mathrm{S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{CNR}_{2}{ }^{70}$ and probably ionic for $S-S=S_{2} \operatorname{COEt} t^{29}$. In contrast, reaction of $\left\{M\left(S_{2} C N R_{2}\right)\right\}_{n}(M=C u, A g)^{70}$ with triethylphosphine leads to the formation of $\mathrm{M}\left(\mathrm{PEt}_{3}\right)\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)$ which, for $\mathrm{M}=\mathrm{Cu}$, is rapidly oxidised by air to $\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}$. Similar compounds, AuL ($\mathrm{S}-\mathrm{S}$) $\quad\left(\mathrm{L}=\mathrm{PPh}_{3}\right.$, $\mathrm{S}-\mathrm{S}=\mathrm{S}_{2} \operatorname{COEt}^{29} ; \quad \mathrm{L}=\mathrm{PEt}_{3}, \mathrm{~S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{CNR}_{2}{ }^{70}$ or $\mathrm{S}_{2} \mathrm{COR}^{29}$) have also been prepared by the action of $(S-S)^{-}$on $A u L B r$, although for $S-S=S_{2} \mathrm{CMM}_{2}$ or $\mathrm{S}_{2} \mathrm{CNEt}_{2}$, both Br^{-}and trieth ylphosphine are replaced to yield $\mathrm{Au}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}{ }^{70}$.

Finally, reaction of $M\left(S_{2} \mathrm{PF}_{2}\right)\left(M=\mathrm{Cu}^{71}, \mathrm{Ag}^{72}\right)$ with tri-o-tolylphosphine or triphenylphosphite leads, at low temperature to the tetrahedral $L_{3} M\left(S P(S) F_{2}\right.$) complex with the anion bound through only one sulphur atom; on heating, tnis expels a phosphorus donor ligand with concomitant chelation of the $\mathrm{S}_{2} \mathrm{PF}_{2}$ ligand.
(iii) Halogen and alkyl ligands.

Oxidation of $\left.\left\{\mathrm{M}_{2} \mathrm{~S}_{2} \mathrm{CNR}_{2}\right)\right\}_{\mathrm{n}}\left(\mathrm{M}=\mathrm{Au}^{73}, \mathrm{Cu}^{74}\right)$ with halogens (1:1 molar ratios) leads to the formation of square-planar ${ }^{75}$ $M\left(S_{2} C N R_{2}\right) X_{2}$, which react with Grignard or alkyl cadmium reagents to produce $M\left(S_{2} C N R_{2}\right) R_{2}^{\prime 73}$. These compounds may also be prepared by the interaction of AuCl_{4} with $\mathrm{NaS}_{2} \mathrm{CNR}_{2}$ in the presence of a Grignard or alkyl cadmium reagent. If excess halogen is used in the reaction with $\left\{\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)\right\}_{n}$, the monomeric compound $\mathrm{CuX}_{3}{ }^{-}$ $\left(S_{2} \mathrm{CNR}_{2}\right)$ is formed ${ }^{76}$. Magnetic measurements indicate that this molecule has one unpaired electron which could be explained either by invoking the presence of $\mathrm{Cu}(\mathrm{IV})\left(3 \mathrm{~d}^{7}\right)$ or by assuming $\mathrm{Cu}(\mathrm{II})$ ($3 \mathrm{~d}^{9}$) and a coordinated halogen molecule; either of these situations would be extremely unusual.
$\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right) \mathrm{Cl}$ has been prepared by direct exchange between $\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}$ and $\mathrm{CuCl}_{2}{ }^{77}$, a reaction that has also been used to form compounds containing more than one dithioacid ligand e.g. $\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{CNEt} \mathrm{t}_{2}\right)\left(\mathrm{S}_{2} \mathrm{PPr}_{2}\right)^{78}$ and $\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{CNE} \mathrm{t}_{2}\right)\left(\mathrm{S}_{2} \mathrm{P}(\mathrm{OEt})_{2}\right)^{79 .}$

Finally, the anions $A u\left(S_{2} C N R_{2}\right)\left(S_{2} C_{2}(C N)_{2}\right)$ have been prepared 80 and shown to have the square-planar configuration expected for Au (III) $\left(5 \mathrm{~d}^{8}\right)$.
3. Complexes of Titanium, Zirconium and Hafnium.
a) Binary compounds.

Only one dithioacid complex of hafnium has been reported ($\left.\mathrm{Hf}\left(\mathrm{S}_{2} \mathrm{CNVF}_{2}\right)_{4}\right)^{81}$ but the dithiocarbamates of $\mathrm{Ti}(\mathrm{IV})$ and $\mathrm{Zr}(\mathrm{IV})$ are relatively well known. They may be prepared either by reaction of TiCl_{4} with $\mathrm{NaS}_{2} \mathrm{CNR}_{2}^{82}$, in which case stepwise substitution of chloride ions by $\mathrm{S}_{2} \mathrm{CNR}_{2}$ occurs, or by insertion or CS_{2} into the
$M-N$ bonds of $M\left(\mathrm{NR}_{2}\right)_{4}^{14,81}$. It has also been shown that reaction of $\mathrm{Ti}\left(\mathrm{NR}_{2}\right)_{3}$ with CS_{2} yields $\mathrm{Ti}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{4}^{83}$ along with a brown powder, tentatively formulated as $\mathrm{Ti}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}^{84}$. This reaction presumably involves initial formation of $\mathrm{Ti}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{3}$ folloved by disproportionation to yield the pronacts.

The compounds $M\left(S_{2} \mathrm{CNEt}_{2}\right)_{4}(\mathrm{M}=\mathrm{Ti}$ or Zr$)$ are isomorphous ${ }^{85}$, and a sincile crystal study of $\mathrm{Ti}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{4}$ reveals that all eight sulphur atoms are coordinated to titanium in a dodecahedral arrangement ${ }^{85}$. This is not inconsistent with its behaviour in solution ${ }^{86}$, although both $\mathrm{Ti}(\mathrm{IV})$ and $\mathrm{Zr}(I V)$ compounds have been shown by ${ }^{1} \mathrm{H}^{13}{ }^{13} \mathrm{C} \quad 87,88$ and, in the case of $\mathrm{Zr}\left(\mathrm{S}_{2} \mathrm{CNNeC}_{6} \mathrm{~F}_{5}\right)_{4},{ }^{19} \mathrm{~F}$: n 。 mor_{0}. 88 to be stereochemically non-rigid down to $-130^{\circ} \mathrm{C}$.
b) Compounds containing other ligands.

Reactions of TiCl_{4} with dithioacids or their sodium salts in refluxing benzene lead to complexes which contain both chlorine and dithioacid ligands. Thus, $\operatorname{Ti}\left(S_{2} \mathrm{CNR}_{2}\right)_{n} \mathrm{C}_{4-n} 82(n=2,3$ or 4$)$ all of which contain only bidentate $\mathrm{S}_{2} \mathrm{CNR}_{2}$ ligands and show rapid metal centred rearrangements down to $-90^{\circ} \mathrm{C}$, may be isolated from the reaction with $\mathrm{NaS}_{2} \mathrm{CNR}_{2}$, whilst $\mathrm{HS}_{2} \mathrm{PF}_{2}$ and $\mathrm{HS}_{2} \mathrm{PPh}_{2}$ yield only $\operatorname{TiC}_{3}\left(\mathrm{~S}_{2} \mathrm{PF}_{2}\right)^{89}$ and $\mathrm{TiCl}_{2}\left(\mathrm{~S}_{2} \mathrm{PPh}_{2}\right)_{2}{ }^{90}$ respectively. This last compound reacts with phenol to give $\mathrm{Ti}(\mathrm{OPh})_{2}\left(\mathrm{~S}_{2} \mathrm{PPh}_{2}\right)_{2}{ }^{90}$.

The only other complexes of titanium containing dithioacid and other ligands are $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}(\mathrm{S}-\mathrm{S})\left(\mathrm{S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{CNR}_{2} 83,91\right.$ or $S_{2} \operatorname{COR}^{92}$) which may either be prepared by the action of the appropriats dithioacid anion on $\left(\eta^{5}-C_{5} H_{5}\right)_{2} \operatorname{Ticl}^{91,92}$ or, for $\mathrm{S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{CNR}_{2}$, by insertion of CS_{2} into the $\mathrm{Ti}-\mathrm{N}$ bonds of $\left.(\}^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}\left(\mathrm{NMe}_{2}\right)_{2} 83$.
4. Complexes of Vanadium, Niobium and Tantalum.
a) Binary compounds.

Both dithiocarbamates and phosphinodithioates are known for $V(I I I)$ and are presumably tris chelates with distorted octahedral stereochemistries. $\quad \mathrm{V}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{3}^{86}$ are prepared by heating $\mathrm{V}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{4}$ in vaccuo, whilst $\mathrm{V}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{3} 93,94$ are made by the action of ${ }^{-} \mathrm{S}_{2} \mathrm{PR}_{2}$ on VC_{3} under anaerobic conditions. These compounds are all air-sensitive solids, being readily oxidised to $\mathrm{VO}(\mathrm{S}-\mathrm{S})_{2}{ }^{95}, V\left(\mathrm{~S}_{2} \mathrm{PF}_{2}\right)_{3}$ can also be prepared, by reaction of $\mathrm{HS}_{2} \mathrm{PF}_{2}$ with either VCl_{3}^{95} or $\mathrm{VC}_{4} 89$.

As with titanium, reaction of $M\left(N R_{2}\right)_{n}(M=V$ or $N b, n=4 ; M=T a, n=5)$
with CS_{2} yield $M\left(\mathrm{~S}_{2} \mathrm{CNR}_{2}\right)_{n}^{14}$ which for the $M(I V)$ species are dodecanedral ${ }^{96}$, fluxional ${ }^{87}$ compounds. Although $V\left(\mathrm{~S}_{2} \mathrm{CNEt}_{2}\right)_{4}$ is isostructural with $\mathrm{Ti}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{4}^{85}$, an aged solution of $\mathrm{V}\left(\mathrm{S}_{2} \mathrm{CNEt}\right)_{4}$ appears to contain only unidentate ligands. These are presumably arranged in a distorted tetrahedral configuration; c.f. $V\left(S_{2} \operatorname{COEt}\right)_{4}$ which has been shown by e,s.r. experiments to add phosphorus donor ligands to its coordination sphere at high temperatures ${ }^{98} . \quad M\left(S_{2} C N R_{2}\right)_{n}(M=N b, n=4 ; M=T a, n \equiv 5)$ have also been prepared from MCl_{n} and $\mathrm{NaS}_{2} \mathrm{CNR}_{2} 99$, but the structure of the $\mathrm{Ta}(V)$ complex is unknown.
b) Compounds containing other ligands.

Reactions of VOSO_{4} with dithioacid ligands lead to the formation of $\mathrm{VO}(\mathrm{S}-\mathrm{S})_{2}\left(\mathrm{~S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{CNR}_{2}{ }^{100}, \mathrm{~S}_{2} \mathrm{COR}^{101}\right.$ or $\left.\mathrm{S}_{2} \mathrm{PR}_{2}^{102}\right)$ which have been extensively studied by e.s.r. spectroscopy ${ }^{103}$ and rave been shown to have square-pyramidal structures with the oxygen atom in the apical position of the pyramid ${ }^{104}$. These compounds all interact with solvents ${ }^{100}$, pyridine $94,100,4$ methylpyridine ${ }^{104}$ or dimethyl sulphoxide 100
to yield 1:1 trans oc t ahedral adducts, some of which ($\mathrm{S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{CNR}_{2}$, L=pyridine or 4 -methylpyridine) have been isolated ${ }^{104}$. A more recent study of the reaction of $\mathrm{VO}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}$ with pyridine, dimethyl formamide or hexamethyl phosphoramide has shown that several products are formed by stepwise cleavage of the V-S bonds ${ }^{105}$.

The interesting $\operatorname{VO}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{3}$ may also be prepared by the reaction of vo SO_{4} with $\mathrm{NaS}_{2} \mathrm{CNR}_{2}$, but only in the presence of nydrogen peroxide ${ }^{106}$. This compound, like its niobium analogue, prepared by the reaction of NbCl_{5} with $\mathrm{NaS}_{2} \mathrm{CNR}_{2}$ in cold, anhydrous methanol ${ }^{106}$, has a pentagonalbipyramidal configuration with the oxygen atom in an axial position ${ }^{107}$.

The reaction of NbCl_{5} or TaCl_{5} with $\mathrm{NaS}_{2} \mathrm{CNR}_{2}$ in cold, anhydrous methanolhas, however, been shown by other workers to produce MCl (OMe) $\frac{-}{2}$ $\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}^{108}$, another pentagonal-bipyramidal molecule with axial methoxy groups, whilst in less polar solvents $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right.$ or $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, $\mathrm{M}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{4} \mathrm{Cl}_{1} \mathrm{M}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{3} \mathrm{~S}$ or $\mathrm{M}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2} \mathrm{C}_{3}$ are formed, depending upon the relative ratios of the starting materials ${ }^{109}$.

The only other dithioacid complexes that have been isolated are the ionic $\left.\left[(\}^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{VS}_{2} \mathrm{COR}\right]\left(\mathrm{S}_{2} \mathrm{COR}\right)^{110}$, prepared by reaction of $\mathrm{S}_{2} \mathrm{COR}$ with $\left.(\}^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}^{\mathrm{VCl}} \frac{1}{2}$ and these complexes with BPh_{4}^{-}or BF_{4}^{-} as counter anions, $\left.\left[(\}^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{V}\left(\mathrm{S}_{2} \mathrm{COR}\right)\right] \mathrm{X}$. 111

5. Complexes of Chromium, Molybdenum and Tungsten.

a) Binary compounds.

Dithiocarbamate complexes of $\mathrm{Cr}(\mathrm{II})$ may be prepared by
interaction of hydrated chromous chloride with $\mathrm{NaS}_{2} \mathrm{CNR}_{2}$ in carefully degassed water ${ }^{4}$. The resulting yeliow-green complexes are pyrophoric in air and oxidise readily in solution to yield $\operatorname{Cr}\left(\right.$ III) srasies ${ }^{4}$. However, they have been shown to be isomorphous with $\left\{\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}\right\}_{2}$ and are thus dimeric with each chromium ion surrounded by five sulphur atoms in a square-pyramidal arrangement. Magnetic measurements indicate that the complexes are low-spin d^{4} systems which, in contrast to their $C u(I I)$ analogues, have rather Low magnetic monsonts on account of an anti-ferromagnetic interaction between unpaired electrons on the two chromium ions of a diner ${ }^{112}$.
Mo_{2} (OCOMe) 4_{4}, on the other hand, reacts with $\mathrm{NaS}_{2} \mathrm{CNR}_{2}{ }^{22}$, $\mathrm{NaS}_{2} \mathrm{COR}^{21,1 i 3}$ or $\mathrm{NaS}_{2} \mathrm{PPh}_{2}{ }^{22}$ to give dimeric, diamagnetic complexes with fous bridging dithioacid ligands and very significant metalmetal interaction ${ }^{113}$. Care must, however, be exercised in the preparation of $\mathrm{MO}_{2}\left(\mathrm{~S}_{2} \mathrm{CNR}_{2}\right)_{4}$ since prolonged reaction in alcohols leads to the sulphur bridged carbene complex mentioned earlier ${ }^{21,22}$ (page 4) and, in air, oxidation to the oxo-bridged $\mathrm{Mo}_{2} \mathrm{O}_{3}\left(\mathrm{~S}_{2} \mathrm{CNR}_{2}\right)_{4}$ readily occurs ${ }^{22}$.

Reaction of CrCl_{3} with dithioacid ligands leads to the formation of $\mathrm{Cr}(\mathrm{S}-\mathrm{S})_{3}\left(\mathrm{~S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{CNR}_{2}^{114,115}, \mathrm{~S}_{2} \mathrm{COR}^{115}, \mathrm{~S}_{2} \mathrm{PR}_{2}^{31,116,117}\right.$ or $\mathrm{S}_{2} \mathrm{PF}_{2}^{27}$, all of which are monomeric compounds with magnetic moments close to their spin-only values ${ }^{118,119}$, as expected for a d^{3} configuration. An x-ray crystal structure of $\operatorname{Cr}\left(\mathrm{S}_{2} \operatorname{COEt}\right)_{3}^{120}$, as weli as low temperature absorption and emission spectra ${ }^{121,122}$ and solution electronic spectra 119,123 ,
indicates that all these complexes have trigonally distorted octrahedral stereochemistries. These distortions towards trigonal prismatic geometry are perhaps best explained in terms of the steric nature of the ligands, which seem to require that the S-Cr-S angle (both suiphur atoms in the same chelate) be ca. 75°, somewhere between that for an octahedron (90) and a trigonal prism (ca 70°). $\quad \operatorname{Mo}\left(\mathrm{S}_{2} \mathrm{PF}_{2}\right)_{3} \mathrm{mav}$ also be prepared, by the reaction of MoCl_{5} with $\mathrm{HS}_{2} \mathrm{PF}_{2}$, which again indicates the reducing nature of the $-\mathrm{S}_{2} \mathrm{FF}_{2}$ anion ${ }^{124}$.

The dodecahedral complex $\mathrm{Mo}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{4}$ may be prepared either by treatment of $\mathrm{Mo}(\mathrm{CO})_{6}$ with $\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}^{125}$ or by insertion of CS_{2} into the Mo-N bonds of $\operatorname{Mo}\left(\mathrm{NR}_{2}\right)_{4}{ }^{126}$, whilst $W\left(\mathrm{~S}_{2} C N R_{2}\right)_{4}$ is best prepared by reaction of $\mathrm{WC}_{4}(\mathrm{MeCN})_{2}$ with $\mathrm{NaS}_{2} \mathrm{CNR}_{2}{ }^{99}$. Both these M (IV) species ($\mathrm{R}=\mathrm{Et}$) may be oxidised by iodine or bromine to $\left.\left[\mathrm{M}_{2} \mathrm{~S}_{2} \mathrm{CNEt}_{2}\right)_{4}\right] \mathrm{X}$ $(X=I, B r)^{127}$, in which the cation again posesses dodecanedral ster eochemistry ${ }^{128}$.
b) Compounds containing other ligands.
(i) Oxygen.

Oxygen containing complexes of these mstals with dithioacid ligands are limited to those of molybdenum in relatively high oxidation states (IV, V and VI). Reactions of $\left[\mathrm{MOO}_{4}\right]^{2-}$ with $\mathrm{NaS}_{2} \mathrm{CNR}_{2}$ in alkaline solution yield $\mathrm{MOO}_{2}\left(\mathrm{~S}_{2} \mathrm{CNR}_{2}\right)_{2}^{114}$ whereas if the reactions are carried out in neutral or slightly acid solution, the singly oxombridged $\mathrm{Mo}_{2} \mathrm{O}_{3}\left(\mathrm{~S}_{2} \mathrm{CNR}_{2}\right)_{4}$ are isolated ${ }^{129}$. These may also be prepared by the action of $\mathrm{NaS}_{2} \mathrm{CNR}_{2}$ on $\left[\mathrm{MOOCH}_{5}\right]^{2 \infty} 106,130$ or $\left[\mathrm{MOO}_{4}\right]^{3-114}$ in acid solution. If $1: 1$ ratios of $\mathrm{NaS}_{2} \mathrm{CiNR}_{2}$ and $\left[\mathrm{MOO}_{4}\right]^{3-}$ are employed, the product is the doubly oxo-bridged
$\mathrm{Mo}_{2} \mathrm{O}_{4}\left(\mathrm{~S}_{2} \mathrm{CNR}_{2}\right)_{2}^{131 a}$ Similar compounds but with sulphur bridges, $\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{~S}_{2} \mathrm{COR}\right)_{2}$ have recently been prepared by the reaction of $\mathrm{Mo}_{2} \mathrm{O}_{3}\left(\mathrm{~S}_{2} \mathrm{COR}\right)_{4}$ with alcohols ${ }^{131 \mathrm{~b}}$. With xanthates, however, both $\left[\mathrm{MoO}_{4}\right]^{2-}$ and $\left(\mathrm{MO}_{4} \mathrm{O}^{3-}\right.$ give $\mathrm{Mo}_{2} \mathrm{O}_{3}\left(\mathrm{~S}_{2} \mathrm{COR}\right)_{4}$, the former requiring three moles of $\mathrm{KS}_{2} \mathrm{COR}$ per mole of molybdenum so that reduction can occur ${ }^{132}$. Reaction of $\left[\mathrm{MOO}_{4}^{2}\right]^{-}$with $\mathrm{HS}_{2} \mathrm{PPh}_{2}$ yields $\mathrm{MoO}_{2}\left(\mathrm{~S}_{2} \mathrm{PPn}_{2}\right)_{2}{ }^{93}$. The monomeric Mo(VI) species $\mathrm{MoO}_{2}(5-S)_{2}$ have been shown by $x-$ ray 133, dipole moment measurements ${ }^{134}$ and i.r. spectroscopy (two ν Mo $=0$ near 900 cm$)^{130,134}$ to have a cis arrangement of oxygen atoms, although the dimeric species $\left[\mathrm{MOO}_{2}\left(\mathrm{~S}_{2} \mathrm{CNR}_{2}\right)_{2}\right]_{2}$ have also been reported, as arising from the oxidation of $\mathrm{Mo}(\mathrm{CO}) \frac{\mathbf{2}}{\mathbf{2}}$ $L\left(S_{2} C N R_{2}\right)\left(L=P P h_{3}, A s P h_{3}\right.$ or $\left.S b P h_{3}\right)$ in non-poiar solvents ${ }^{135}$. However, in the $M o(v)$ species, although the terminal oxygen atoms are always cis to the bridging oxygen, they may be either mutually cis $\left(S-S=S_{2} \operatorname{COR}^{136}\right.$ or $S_{2} \mathrm{CNR}_{2}^{130}$) or trans $\left(\mathrm{S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{P}(\text { OEt })_{2}^{137}\right)$ and their diamagnetism has been explained in terms of interaction between the unpaired electrons on each molybdenum ion via the linear oxygen bridge ${ }^{136}$.

Reductions of $\mathrm{MO}_{2} \mathrm{O}_{3}\left(\mathrm{~S}_{2} \mathrm{CNR}_{2}\right)_{4}$ with zinc ${ }^{138}$, or of $\mathrm{MOO}_{2}\left(\mathrm{~S}_{2} \mathrm{CNR}_{2}\right)_{2}$ with triphenylphosphine ${ }^{139}$ produce $\operatorname{MoO}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}$, which readily coordinate unsaturated $C=C$ bonds in their vacant position ${ }^{140}$ and are presumably isostructural with the corresponding vo $\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}^{103}$. The analagous $\mathrm{MoO}\left(\mathrm{S}_{2} \mathrm{PF}_{2}\right)_{2}$ is formed by the reaction of MoOCl$\frac{1}{4}$ with $\mathrm{HS}_{2} \mathrm{PF}_{2}^{124}$, and reacts with pyridine to give [MoOpy $\left.{ }_{4}\right] \cdot\left[\mathrm{S}_{2} \mathrm{PF}_{2}\right]_{2}^{124}$ (c.f. reaction of vo $\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}$ with pyridine) ${ }^{105}$.
(ii) Nitric oride.

Complexes containing nitric oxide and dithioacid ligands are
known for all the group VIa metals; thus, the monomeric cis $M(N O)_{2}\left(S_{2} \mathrm{CNR}_{2}\right)_{2}$ are readily prepared either by reaction of $\left\{M(N O) C l_{2}\right\}_{n}(M=M o \text { or } W)^{141}$ with $N a S_{2} C N R_{2}$, or by interaction of $\mathrm{Cr}_{2}(\mathrm{OCOMe})_{4}$, NO and $\mathrm{Na} \mathrm{S}_{2} \mathrm{CNR}_{2}$ at low temperatures ${ }^{142}$. In all these somplexes, the NO ligand acts as a three electron donor making them eighteen electron systems. The molybdenum and tungsten species both show temperature dependent nom.r. spectra which have been interpreted in terms of a rupture of a metal sulphur bond, followed by recombination of the ligand with the environments of the R groups interchanged ${ }^{143} \quad \operatorname{Cr}(\mathrm{NO})_{2}\left(\mathrm{~S}_{2} \mathrm{CNEt}_{2}\right)_{2}$ may also be prepared by reaction of $\left[\operatorname{Cr}(\mathrm{NO})_{2}(\mathrm{MeCN})_{4}\right]\left[\mathrm{PF}_{6}\right]_{2}$ with As $\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{3}{ }^{144}$. In contrast, reactions of $\{\text { MoNOC1 }\}_{n}$ with $\mathrm{NaS}_{2} \mathrm{CNR}_{2}$ give the interesting pentagonal-bipyramidal $\mathrm{Mo}(\mathrm{NO})\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right){ }_{3}^{145}$ which are also eighteen electron systems and their temperature variable n.m.r. spectra have been explained in a similar fashion to those of $\mathrm{M}(\mathrm{NO})_{2}\left(\mathrm{~S}_{2} \mathrm{CNR}_{2}\right)_{2}(\mathrm{M}=\mathrm{Mo} \text { or } \mathrm{W})^{143}$.

A series of e.s.r. experiments on compounds containing
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right){ }_{3} \mathrm{NO}(\mathrm{S}-\mathrm{S})\right]^{+}\left(\mathrm{S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{CNR}_{2}^{146}, \mathrm{~S}_{2} \mathrm{COR}^{146}\right.$ or $\left.\mathrm{S}_{2} \mathrm{PR}_{2}^{147}\right)$ has revealed that the water molecules in this cation are facially arranged, and that reactions with nitrogen ${ }^{148}$, phosphorus ${ }^{149-151}$ and arsenic ${ }^{153}$ donor ligands only produce substitution of the water molecule trans to the nitric oxide ligand, which is an effective demonstration of the much lower six-coordinate trans effect of the sulphur ligand than of NO. The only exception to this pattern occurs for the very nucleophilic trialkylphosphites which also replace one of the water molecules trans to sulphur, but only with some difficulty ${ }^{154,155}$.

Finally, $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoNO}\left(\mathrm{S}_{2} \mathrm{CNMe}\right)^{156}$ has been prepared and at low temperature contains one η^{5} and one η^{1} cyclopentadienyl ring, as required for the molydbenum atom to be an eighteen electron system. However, on warming, the η^{1} ring first becomes fluxional and this is followed by site exchange of the two cyclopentadienyl rings together with interconversion of the environments of the two methyl groups on the dithiocarbamate ligand ${ }^{156}$. (iii) Carbon monoxide.

Reaction of $\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{Cl}_{2}$ with $\mathrm{NaS}_{2} \mathrm{CNR}_{2}$ under anaerobic conditions has been shown to yield $\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{~S}_{2} \mathrm{CNR}_{2}\right)_{2}{ }^{157}$ which loses carbon monoxide reversibly under high vaccuum to give $\mathrm{Mo}(\mathrm{CO})_{2}\left(\mathrm{~S}_{2} \mathrm{CNR}_{2}\right)_{2}$ and can thus act as a carbon monoxide carrier ${ }^{158}$. The similar stabilities of the two complexes presumably arises from less steric crowding in the dicarbonyl counter-balanced by the preferable eighteen electron system of the tricarbonyl.

The complexes $\left(\eta^{5}-C_{5} H_{5}\right) M(C O){ }_{2}(S-S)$ have been extensively studied, being prepared from $\left(3^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{M}(\mathrm{CO})_{3} \mathrm{Cl}$ and $\mathrm{Na}(\mathrm{S}-\mathrm{S}) \quad\left(\mathrm{M}=\mathrm{Mo}^{159}\right.$ or $W^{160,161}, \mathrm{~S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{CNR}_{2} ; \mathrm{M}=\mathrm{Mo}, \mathrm{S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{PEt}_{2}{ }^{162}$), reaction of $\left.\left\{(\}^{5}-\mathrm{C}_{5} \mathrm{H}\right)^{\mathrm{Mo}(\mathrm{CO})_{3}}\right\}_{2}$ with $\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}^{163}$ or from the interaction of $\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}$ on $\left\{\left(3^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{M}(\mathrm{CO})_{3}\right\}_{2} \mathrm{Hg}(\mathrm{M}=\mathrm{Cr} \text {, Mo or } W)^{164}$. In the last reaction, $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{M}(\mathrm{CO})_{3} \mathrm{Hg}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)$ is also isolated ${ }^{164}$.

Photolysis if $\mathrm{M}(\mathrm{CO})_{6}$ with $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{~N}\right]\left[\mathrm{F}_{2} \mathrm{PS}_{2}\right]$ gives only $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{~N}\right]\left[\mathrm{M}(\mathrm{CO})_{4}\left(\mathrm{~S}_{2} \mathrm{PF}_{2}\right)\right] \quad(\mathrm{M}=\mathrm{Cr} \text {, Mo or } \mathrm{W})^{165}$, whilst the products of the reactions of $\mathrm{Mo}(\mathrm{CO})_{3} \mathrm{~L}_{2} \mathrm{C}_{2}$ and $\left[\mathrm{M}(\mathrm{CO})_{3}\right.$ NO diphos] PF_{6}
 cis $M(\mathrm{CO})(\mathrm{NO})$ diphos $\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)\left(M=\mathrm{Mo} \text { or } \mathrm{W} \text {, diphos }=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)^{166}$.
All these complexes contain only bidentate dithicacid ligands and are
eighteen electron systems. However, cis - Mo(CO) (NO) diphose $\left(S_{2} \mathrm{CNR}_{2}\right)$ exhibit temperature variable n.m.r. spectra ${ }^{166}$ which have been explained by the same mechanism as that invoked for $\mathrm{Mo}(\mathrm{NO})_{2}\left(\mathrm{~S}_{2} \mathrm{CNR}_{2}\right)_{2}^{143}$.
6. Complexes of Manganese, Technetirm and Rhenium.
a) Binary compounds.

React.lons of MnC_{2} or MnSO_{4} with dithioacid anions under anaerobic conditions lead to the formation of $\mathrm{Mn}(\mathrm{S}-\mathrm{S})_{2} \quad(\mathrm{~S}-\mathrm{S}=$ $\mathrm{S}_{2} \mathrm{CNR}_{2}^{4,167}, \mathrm{~S}_{2} \mathrm{COEt}{ }^{168}, \mathrm{~S}_{2} \mathrm{FR}_{2}^{31,169}$ or $\mathrm{S}_{2} \mathrm{PF}_{2}^{27}$), whose stabilities are very dependent upon the nature of the dithioacid ligand. The dithiocarbamates, like their chromium analogues, are very unstable, being pyrophoric in air ${ }^{4}$ and being oxidised readily in solution to $\operatorname{Mn}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{3}{ }^{170}$. The xanthates and phosphinodithioates, however, are relatively stable to oxidation and $\mathrm{Mn}(\mathrm{S}-\mathrm{S})_{3}$ (S-S $=\mathrm{S}_{2}$ COEt or $S_{2}{ }^{P R}{ }_{2}$) have not been isolated, although reaction of three moles of $\mathrm{KS}_{2} \mathrm{COEt}$ with one mole of MnC_{2} in the presence of $\left[\mathrm{Et}_{4} \mathrm{~N}\right] \mathrm{Cl}$ leads to the formation of $\left[\mathrm{Et}_{4} \mathrm{~N}\right]\left[\mathrm{Mn}\left(\mathrm{S}_{2} \mathrm{COEt}\right)_{3}\right]^{168}$. presumably a distorted cctahedral $\mathrm{Mn}(\mathrm{I} I)$ anionic species.

The structures and magnetic properties of these ligands also seem to be dependent upon the dithioacid ligand present and sometimes, even on the ligand substituents. There seems to be conilicting evidence about the crystal structure of $\operatorname{Mn}\left(S_{2} C N E t\right)_{2}$ as it has been reported ${ }^{4,171}$ to be isostructural with $\left\{\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2}\right\}_{2}^{48}$ (i.e. dimeric with a square-pyramidal arrangement of sulphur atoms around the metal) and with $\mathrm{Ni}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2}^{172}$ (i.e. a monomeric square-planar species). However, whichever of these two structures is correct, it is clear that the tetragonal distortion from octahedral symmetry
is sufficient for $\operatorname{Mn}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2}$ to have a ${ }^{4} \mathrm{E}$ ground state ${ }^{171}$ which, although unusual for $\operatorname{Mn}(I)\left(3 d^{5}\right)$, may be explained in terms of simple crystal field theory by the presence of three electrons in the $d_{x z}$ and $d_{y z}$ orbitals, one in each of the $d_{x y}$ and $d_{z} 2$ orbitals and no electrons in the $d_{x} \mathbf{2}_{-y}{ }^{2}$ orbital. In contrast, $M n\left(S_{2} P R_{2}\right)_{2}$ all have ${ }^{6} A_{1}$ ground states and are isostructural with their $\operatorname{Co}(I I)$ analogues ${ }^{〔}$. which for $R=M e$ is polymeric with S_{2} PMe $_{2}$ bridges and each metal atom in a tetrahedral ervironment, whilst for $R=E t$, the compounds are dimeric, again with tetrahedral coordination but with two bridging and two bidentate $\mathrm{S}_{2} \mathrm{PEt}_{2}$ ligands per dimer ${ }^{6}$. $\mathrm{Mn}^{\left(\mathrm{S}_{2} \mathrm{PF}_{2}\right)_{2}}$ is monomeric and probably tetrahedral in solution but, in the solid state its pale pink colour is indicative of octahodral geometry, which can be achieved by forming a layer type of polymeric structure ${ }^{27}$.

As has been noted earlier $\operatorname{Mn}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}$ are not very stable in solution and are readily oxidised to $\mathrm{Mn}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{3}^{170}$. The magnetic moments of these $\mathrm{Mn}($ III) compounds are temperature invariant and are close to the spin-only values expected for a high-spin d^{4} configuration ${ }^{118}$. This is consistent with a ${ }^{5} \mathrm{E}$ ground state with the first excited state (${ }^{3} \mathrm{~T}_{1}$) being not-too-low-1ying ${ }^{173,174}$. The structures of $\mathrm{Mn}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{3}$, as indicated by x-ray analysis $(R=E t)^{175}$ and electronic spectra ${ }^{123}$, deviate widely from octahedral geometry in a way which is best explained by a Jahn-Teller distortion arising from the high-spin d^{4} configuration (O_{h} arproximation) superimposed upon the trigonal distortion noted elsewhere for $\operatorname{Cr}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{3}$ and attributable to the steric requirements of the ligands. This deviation from octahedral geometry, together with the change in ligand field stabilization energy on changing from octahedral to trigonal-prismatic symmetry, has
been correlated with the activation energy of inversion of the two possible optical enantiomorphs by means of a trigonal twist mechanism via a trigonal-prismatic intermediate, which has been invoked to account for the temperature variable ${ }^{1} \mathrm{H}$ n.m.r. spectra of $\left.\mathrm{Mnis}_{2} \mathrm{CNR}_{2}\right)_{3}{ }^{176}$.

These Mn(III) complexes have been shown to oxidise slowly in air to give Mn(IV) species ${ }^{170}$ whose structures are not known; and eight coordinate $\operatorname{Re}(V)$ cationic species $\left[\operatorname{Re}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{4}\right]^{+}$have been isolated along with other products from the reaction of $\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2}$ with $\mathrm{Re}(\mathrm{CO})_{5} \mathrm{Cl}$ in berzene or acetone ${ }^{177(\mathrm{a})}$. b) Compounds containing other ligands.

The most extensively studied non binary dithioasid complexes of group VIIa metals are $M(C O)_{4}(S-S) \quad\left(M=\mathrm{Mn}^{160,163}\right.$ or Tc^{178}, $\mathrm{S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{CNR}_{2} ; \quad \mathrm{M}=\mathrm{Me}^{179,180}$ or $\mathrm{Re}^{180}, \mathrm{~S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{PR}_{2}$), which are prepared by the interaction of $\mathrm{M}\left(\mathrm{CO}_{5} \mathrm{X}(\mathrm{X}=\mathrm{Cl}\right.$ or Br$)$ with dithioacid anions. For $S-S=S_{2} P R_{2}$, these complexes have been shown to undergo reversible loss of carbon monoxide with concomitant
 in which the phosphinodithioate ligands act as bridging five electron donors ${ }^{181}$. Reactions

of $\mathrm{M}(\mathrm{CO})_{4}\left(\mathrm{~S}_{2} \mathrm{PR}_{2}\right)$ with various ligands have also been studied and
it is found that with monodentate non π - acceptor ligands, such as
ammonia, a stepwise displacement of $\mathrm{S}_{2} \mathrm{PR}_{2}$ occurs to give first $\mathrm{M}(\mathrm{CO})_{4}\left(\mathrm{NH}_{3}\right)\left(\mathrm{SP}(\mathrm{S}) \mathrm{R}_{2}\right)$ and then $\mathrm{M}(\mathrm{CO})_{4}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{~S}_{2} \mathrm{PR}_{2}{ }^{182}$. In contrast, monodentate ligands which are capable of back bonding simply replace one carbon monoxide molecule to yield facm $M(\mathrm{CO})_{3}$ $\mathrm{L}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)\left(\mathrm{L}=\text { pyridine, } \mathrm{PPh}_{3}, \mathrm{AsPh}_{3} \text { or } \mathrm{SuPh}_{3}\right)^{182}$, which, for $\mathrm{L}=\mathrm{PPh}_{3}$, is also the product of reaction of $\left\{\mathrm{M}(\mathrm{CO})_{3}\left(\mathrm{~S}_{2} \mathrm{PR}_{2}\right)\right\}_{2}$ with triplaeylphosphine ${ }^{183}$. If bidentate π - acceptor ligands are reacted with $\mathrm{M}(\mathrm{CO})_{4}\left(\mathrm{~S}_{2} \mathrm{PR}_{2}\right)$, one carbon monoxide molecule is lost and the $\mathrm{S}_{2} \mathrm{PR}_{2}$ ligand becomes unidentate so as to accommodate the chelating ligand, the product being fac-M (CO) ${ }_{3}(\mathrm{~L}-\mathrm{L})\left(\mathrm{SP}(\mathrm{S}) \mathrm{R}_{2}\right)$ (L-L = 2,2 - bipyridyl or $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$ (diphos)) ${ }^{182}$. For L-L = diphos, it has been shown that this reaction occus via a dimeric species with a diphos bridge (4). Finally, reactions of $\{\mathrm{Re}(\mathrm{CO})$ $\left.\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)\right\}_{2}$ with ammonia at low temperatures give $\left\{\operatorname{Re}(\mathrm{CO})_{3}\left(\mathrm{NH}_{3}\right)-\right.$ $\left.\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)\right\}_{2}$ (5) with the bridging $\mathrm{S}_{2} \mathrm{PR}_{2}$ groups acting as three electron donors, which convert to $\mathrm{Re}(\mathrm{CO})_{3}\left(\mathrm{NH}_{3}\right)\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)$ on warming ${ }^{184}$.

(4)

(5)

If $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Cl}$ is treated with $\left(\mathrm{S}_{2} \mathrm{CNE}_{2}\right)_{2}$, no $\operatorname{Re}(\mathrm{CO})_{4}\left(\mathrm{~S}_{2} \mathrm{CNEt}\right)$ is isolated, but variolis other dithioacid species are produced and their natures depend upon the conditions for the reaction. Thus, if the reaction is carried out in benzene, the main products are ReCl ${ }_{2}$ $\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{4}, \operatorname{Re}\left(\mathrm{~S}_{2} \mathrm{CNEt}_{2}\right)_{4} \quad \operatorname{ReCl}_{4}\left(\mathrm{~S}_{2} \mathrm{CNEt}_{2}\right)$ and $\operatorname{ReCO}\left(\mathrm{S}_{2} \mathrm{CNE} \mathrm{t}_{2}\right)_{3}{ }^{177(\mathrm{a})}$
whose x-ray structure indicates a pentagonal-bipyrainidal structure with
an axial CO group $177(\mathrm{~b})$ In acetone, however, $\operatorname{Re}(\mathrm{CO})\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{3}$ is again isolated along with $\operatorname{Re}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{4} \quad \operatorname{ReCl}(\mathrm{CO})_{3}\left(\mathrm{~S}_{2} \mathrm{CNEt}_{2}\right){ }^{17 X}$ (a). In contrast, $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Cl}$ and $\mathrm{II}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)$ react together to give the dimeric $\left\{\operatorname{Re}(\mathrm{CO})_{3}\left(\mathrm{~S}_{2} \mathrm{CNEt}_{2}\right)\right\}_{2}$, which is similar in structure and properties to $\left\{\operatorname{Re}(\mathrm{CO})_{3}\left(\mathrm{~S}_{2} \mathrm{PR}_{2}\right)\right\}$, e.g. reacting with PPh_{3} to give $\operatorname{Re}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)$ which may also be prepared by reaction of $\mathrm{T} 1\left(\mathrm{~S}_{2} \mathrm{CNEt}_{2}\right)$ on $\mathrm{ReCl}(\mathrm{CO})_{3}\left(\mathrm{PPH}_{3}\right)_{2}^{177(\mathrm{a})}$.
$\mathrm{Re}_{2} \mathrm{O}_{3}\left(\mathrm{~S}_{2} \mathrm{CNR}_{2}\right)_{4}$ have been prepared by the action of $\mathrm{NaS}_{2} \mathrm{CNR}_{2}$ on $\left\{\operatorname{ReCl}(\mathrm{OCOMe})_{2}\right\}_{2}^{185}, \mathrm{ReOCl}_{3} 185,186$ or $\mathrm{Re}_{2} \mathrm{O}_{3} \mathrm{Cl}_{4} \mathrm{py}_{4}{ }^{185}$ and, in contrast to their molybdenum analogues, have a linear $0=\operatorname{Re}-0-\operatorname{Re}=0$ backbone (6); whereas reaction between FeNCl ${ }_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ and $\mathrm{NaS}_{2} \mathrm{CNEt}_{2}$ leads to the monomeric square-pyramidal $\operatorname{ReN}\left(S_{2} \mathrm{CNEt}_{2}\right)_{2}$ with an apical nitrogen atom.

(6)

The only non binary xanthate complexes of manganese that have been reported are $\operatorname{Mn}\left(\mathrm{S}_{2} \mathrm{COR}\right)_{2}(\mathrm{~N}-\mathrm{N})^{168}$ and $\left\lfloor\mathrm{Mn}\left(\mathrm{N}-\mathrm{N}_{3}\right]_{\left(\mathrm{S}_{2} \mathrm{COR}\right)_{3} 187}\right.$ ($N-N=2,2^{\prime}$-bipyridyl or 1,10-phenanthroline) prepared from stoichiomet:ic amounts of $\mathrm{MnCl}_{2},(\mathrm{~N}-\mathrm{N})$ and $\mathrm{KS}_{2} \mathrm{COR}$; and $\mathrm{Mn} \mathrm{NO}\left(\mathrm{S}_{2} \mathrm{COR}\right)_{2}$ which, like their dithiocarbamate analogues are square pyramidal (apical NO) and have only one unpaired electron ${ }^{188}$.

Finally, the nitrosyl complexes $\left(\left\{^{5}-\mathrm{RC}_{5} \mathrm{H}_{4}\right) \mathrm{MnNO}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}^{1}\right)\right.$ have been prepared by the reaction of $\mathrm{NaS}_{2} \mathrm{CNR}_{2}^{1}$ with $\left[\left(3^{5}-\mathrm{RC}_{5} \mathrm{H}_{4}\right) \mathrm{MnNO}(\mathrm{CO})_{2}\right] \mathrm{PF}_{6}^{189}$ ($R=H$ or alkyl); and the reaction of ReCl_{3} with $\mathrm{NaS}_{2} \mathrm{CNEt}_{2}$ gives
the diamagnetic $\operatorname{ReCl}_{2}\left(\mathrm{~S}_{2} \mathrm{CNR}_{2}\right)^{190}$, which was originally formulated as an unusual low-spin tetrahedral complex ${ }^{190}$ but may in fact be a trimer derived from the well known $\mathrm{Re}_{3} \mathrm{CI}_{9}$ cluster ${ }^{103}$.
7. Complexes of Iron, Ruthenium and Osmium.

Reactions of FeSO_{4} with $\mathrm{NaS}_{2} \mathrm{CNO}_{2}$ in oxygen-free water yield $\mathrm{Fe}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}{ }^{4}$, high-spin complexes which are isomorphous with $\left\{\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}\right\}_{2}$, being dimeric with each iron atom exhibiting square-pyramidal coordination ${ }^{4,48}$. These complexes are readily air oxidised, whilst the complezes $F e\left(S_{2} \mathrm{PR}_{2}\right)_{2}$ (prepared similarly) 169 are remarkably stable. $\quad \mathrm{Fe}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}$ are isostructural with the corresponding manganese complexes, being polymeric for $R=M e$ and
 in solution but, again like its manganese analogue, appears to be polymeric in the solid state with each iron atom surrounded by an octahedral arrangement of sulphur atoms ${ }^{27}$. If the reactions of FeSO_{4} with $\mathrm{Na}(\mathrm{S}-\mathrm{S})$ are carried out in the presence of a large cation, e.g. $E t_{4} \mathrm{~N}^{+}$, the interesting high-spin ${ }^{191}$ distorted octahedral complex anions $\left[\mathrm{Et}_{4} \mathrm{~N}\right]\left[\mathrm{Fe}(\mathrm{S}-\mathrm{S})_{3}\right]\left(\mathrm{S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{CNR}_{2}\right.$ or $\left.\mathrm{S}_{2} \mathrm{COR}\right)$ are isolated ${ }^{168}$.

In contrast to the $\mathrm{Fe}(\mathrm{II})$ complexes, $\mathrm{Fe}(\mathrm{III})$ dithiocarbamates are much more stable than the phosphinodithioates. All these trivalent complexes are prepared by reaction of FeCl_{3} with $\mathrm{Na}(\mathrm{S}-\mathrm{S})$ ($\mathrm{S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{CNR}_{2}^{192}, \mathrm{~S}_{2} \mathrm{COR}^{193}$ or $\mathrm{S}_{2} \mathrm{PR}_{2}^{26(\mathrm{~b}), 194}$) but $\mathrm{Fe}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{3}$ readily decompose in air ${ }^{194}$. These $F e(I I I)$ complexes have interesting structural and magnetic properties which are very dependent on the ligand. In general, all $\mathrm{Fe}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{3}$ are high-spin complexes ${ }^{6}$, all $\mathrm{Fe}\left(\mathrm{S}_{2} \mathrm{COR}\right)_{3}^{195}$ are low-spin and $\mathrm{Fe}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{3}$ represent spin cross-over systems, the magnetic properties of which are dependent upon R and the temperature of measurement ${ }^{196}$.

It is clear from simple crystal field theory considerations, that since for a high-spin d^{5} system there are two electrons in the e_{g} set of metal orbitals of an octahedral complex, whereas in the low-spin system the five electrons are all in the $t_{2 g}$ set of metal orbitals, the coordinating atoms of the ligands are more shielded from the positive charge on the metal ion and hence, the metal-ligand bonds are longer in high-spin complexes than in low-spin complexes. On account of this, there is more interaction between the ligands and the e_{g} orbitals for the low-spin case and hence Δ (low-spin) is greater than Δ (high-spin) for a given set of ligands. If it happens that the energy required to pair two electrons in a $t_{2 g}$ orbital lies between Δ (low-spin) and (high-spin), it is difficult to predict which of the two spin states will produce the lowest energy system. It has been shown by semi-empirical calculations that this is, in fact, the situation in certain Fe (III) dithiocarbamates ${ }^{195}$, and this has been used to explain both their temperature ${ }^{197}$ and pressure ${ }^{197}$ variable magnetic moments, and the contraction of Fe-S bond length of $\mathrm{Fe}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{3} 198$ from when the structure is measured at 279 K (high-spin) to when it is measured at 79 K (low-spin), as well as the difference of ca. $0 \cdot 1 \mathrm{~A}$. in the Fe-S bond lengths of known high-spin (Fe($\left.\mathrm{S}_{2} \mathrm{CNBu}_{2}\right)_{3}^{199}$ $\mathrm{Fe}\left(\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{2}\right)_{4}\right)_{3}^{200}$; and known low-spin $\left(\mathrm{Fe}\left(\mathrm{S}_{2} \mathrm{COEt}\right)_{3}^{201}, \mathrm{Fe}\left(\mathrm{S}_{2} \mathrm{CNMePh}\right)_{3}^{200}\right)$ compounds. However, it has not been possible to decide whether the electronic structures of the iron atoms in these cross-over systems are in a rapid spin state equilibrium (${ }^{2} T_{2} \geqslant \sigma_{A_{1}}$), or whether they represent genuine mixed spin state: systems ${ }^{198}$. Correlations have, however, been noted between μ eff and both the steric size of the R groups ${ }^{195}$ and the pK_{a} of the parent secondary amine $\left(\mathrm{NHR}_{2}\right)^{202}$.

These have been rationalised in terms of the effect of the $R-N-R$ angle or the donor properties of the $N R_{2}$ group on the bond order of the $C \cdots \cdots$ bond, which, in turn, affects the electronic properties of the sulphur atoms and their capacity to act as π-acceptors from the filled $t_{2 g}$ orbitals on the metal, which acceptor capacity is greater for low-spin systems 195,202 .
$M(S-S)_{3}\left(M=R u^{203}\right.$ or $\mathrm{Os}^{204}, \mathrm{~S}-\mathrm{S}-\mathrm{S}_{2} \mathrm{CNR}_{2} ; M=\mathrm{Ru}^{205}$, $S-S=S_{2} \mathrm{PR}_{2}$) have also been prepared, by the reaction of RuCl_{3} or $\left[\mathrm{NH}_{4}\right]_{2}\left[\mathrm{OsCl}_{6}\right]$ with $\mathrm{Na}(\mathrm{S}-\mathrm{S})$ but, being of 2nd and 3rd row eiements, these complexes do not exhibit variable magnetic properties and are all low-spin d^{5} compounds ${ }^{203}$.

Like the trivalent complexes of Cr, Mn and Co , the iron complexes exhibit substantial deviations from octahedral geometry. Thus, $\mathrm{Fe}\left(\mathrm{S}_{2} \mathrm{CNBu}_{2}\right)_{3}$ has a distortion towards trigonal prismatic geometry in the crystal 199 which was originally thought to be due to crystal packing forces because of the large difference between solid state and solution magnetic moments ${ }^{103}$. However, distortions of this kind have since been shown to occur both in the solid state 200,201 and in solution ${ }^{123}$ for other similar iron complexes and are attributable to the steric requirements of the 1 igands ${ }^{200}$. It is interesting to note that the distortions of the high-sfin complexes from octahedral geometry (ca. 30°) are significantly greater than those of the lowspin complexes $\left(c_{2} 20^{\circ}\right)^{200}$.
[$\mathrm{Fe}\left(\mathrm{S}_{2} \mathrm{rNR}_{2}\right)_{3}$]X cations have also been prepared, by oxidation of $\mathrm{Fe}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{3}$ with BF_{3} in air $\left(\mathrm{X}=\mathrm{BF}_{4}\right)^{206}$, by the action of $\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}$ on FeCl_{3} in ether $\left(\mathrm{X}=\mathrm{FeCl}_{4}\right)^{62}$, or by electrolytic oxidation of $\mathrm{Fe}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{3}$ in the presence of $\mathrm{BF}_{4}-\left(\mathrm{X}=\mathrm{BF}_{4}\right)^{20 \%}$.

The complexes $\left[\mathrm{Fe}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{3}\right] \mathrm{X}, \mathrm{M}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{3}\left(\mathrm{M}=\mathrm{Fe}\right.$ or $\left.\mathrm{Ru}^{208}\right)$ and
$\mathrm{Fe}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}$ (phen) ${ }^{168}$, made by the interaction of FeCl_{2}, $\mathrm{NaS}_{2} \mathrm{CNR}_{2}$ and 1,10-phenanthroline, have all been shown to be steriochemically non-rigid on the n.m.r. time scale and, as for the analagous $\mathrm{Mn}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{3}$, this has been attributed to an interconversion of the two possible optical isomers of the complexes via a trigonal twist mechanism. The activation energies (ΔG^{\dagger}) for this process follor, the order of the $M-S$ bond strengths, i.e. $\mathrm{Fe}(\mathrm{II})(\mathrm{S}=2)<\mathrm{Fe}(\mathrm{III})(\mathrm{S}=5 / 2 \rightleftharpoons \mathrm{~S}=1 / 2)$ $\Omega \mathrm{Fe}$ (IV) $(S=1)$ with $\mathrm{Fe}(\mathrm{III})(S=5 / 2)<\mathrm{Fe}(\mathrm{II})(\mathrm{S}=1 / 2)^{209}$. $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{3}$ are less labile than any of the iron compounds ${ }^{208}$. The activation parameters for the racemisation have also been correlated with structural factors of the grou:d state and changes in ligand field stabilization energies on passing from the ground state to the trigonal-prismatic transitior state ${ }^{209}$.

Finally, $\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{3}\right] \mathrm{BF}_{4}$ has been prepared by the oxidation of $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{3}$ with BF_{3} in air but, unlike the iron analogue, this compound is strongly associated in solution and diamagnetic ${ }^{210}$.
b) Compounds containing other ligands.

The most extensively studied non-binary dithioacid complexes of iron are $\mathrm{FeNO}(\mathrm{S}-\mathrm{S})_{2}\left(\mathrm{~S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{CNR}_{2}\right.$ or $\left.\mathrm{S}_{2} \mathrm{COR}\right)$ which have the iron in a formal oxidation state of +1 and, as such have a doublet ${ }^{211}$ ground state characteristic of a low-spin d^{7} configuration. Several methods have been devised for preparing these complexes, including reaction of $\mathrm{Fe}(\mathrm{S}-\mathrm{S})_{2}$ with $\left(\mathrm{NH}_{2} \mathrm{OH}\right)_{2} \mathrm{SO}_{4}$ or nitric oxide ${ }^{213}$. The green crystalline complexes ${ }^{212}$ have been shown by e.s.r. ${ }^{214}$ and x-ray $215-217$ methods to have the iron atom in a square-pyramidal environment with the nitric oxide group at the apex bound through the nitrogen atom. Disorder in the positions of the oxygen atoms
at room temperature in certain of the crystals ${ }^{216}$ has led to some doubt as to whether the $\mathrm{Fe}-\mathrm{N}-\mathrm{O}$ group is linear, but this has been resolved by a low temperature x-ray study of FeNO(S CNMe $)_{2}^{217}$ which shows the $\mathrm{Fe}-\mathrm{N}-\mathrm{O}$ angle to be 170°. This small deviation from linearity is attributed to an electrostatic attracion betwes: a lone pair on the oxygen atom and the N^{8+} on a dithiocarbamate moiety ${ }^{217}$. This explanation i:s supported by the observation that changing from ${ }^{-} \mathrm{S}_{2} \mathrm{CNR}_{2}$ to $\mathrm{E}_{2} \mathrm{COR}$ causes a shift in V NO which is attributed to the smaller positive change on the oxygen atom of the xanthate group producing less attraction to it of the nitric oxide oxygen atom ${ }^{218}$. I.r. ${ }^{219,220}$ and e.s.r. ${ }^{220}$ studies on Fe $\mathrm{NO}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}$ in different solvents have shown shifts in \mathcal{V} N as well as in the e.s.r. parameters $g_{a v}$ and $A_{i s o}\left({ }^{14} \mathrm{~N}\right)$ which correlate well with the coordinating ability of the solvent. This has been interpreted in terms of coordination of the solvent in the vacant site of the iron atom (trans to NO) and the large changes in e.s.r. parameters are due to the presence of the unpaired electron in the d_{z} orbital 220.

Since the compounds $\mathrm{Fe} \mathrm{NO}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}$ are seventeen electron systems, they easily form adducts with one electron fonors. However, in contrast to the solvated species, these adducts are all cis$\mathrm{Fe}(\mathrm{NO}) \mathrm{X}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}\left(\mathrm{X}=\mathrm{I}, \mathrm{Br} \text { or } \mathrm{NO}_{2}\right)^{221}$. The original reports of addition of NO to FeNO $(S-S)_{2}$ to yield cis-Fe(NO) $)_{2}(S-S)_{2} 142,213,222$ have now been shown to be incorrect; the correct formulation of the products being $\mathrm{FeNO}\left(\mathrm{NO}_{2}\right)\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}^{221}$, which is more consistent with their dianagnetism ${ }^{222}$.
$\operatorname{Ru}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{3}$ reacts with nitric oxide under mild conditions to yield RuNO $\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{3}{ }^{223}$, the first complex to be isolated containing a unidentate dithiocarbamate ligand ${ }^{224}$, which can also
be prepared by reaction of $\mathrm{NaS}_{2} \mathrm{CNR}_{2}$ with $\mathrm{K}_{2} \mathrm{RuNO}(\mathrm{CN})_{5}$ at $0^{\circ} \mathrm{C}^{223}$.
Square-pyramidal complexes of $\mathrm{Fe}(\mathrm{III}), \mathrm{FeX}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}(\mathrm{X}=\mathrm{Cl}$, Br, I or NCS) have been prepared either by the reaction of FeX_{3} with $\mathrm{Fe}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{3}, \mathrm{NaS}_{2} \mathrm{CNR}_{2}$ or $\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}^{225}$, or by the reaction of $\mathrm{Fe}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}$ with the appropriate haloacid ${ }^{226}$. These complexes are interesting in that they have a ${ }^{4} \mathrm{~A}$ ground state (three unpaired electrons) ${ }^{225}$ and one, $\mathrm{FeCl}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2}$ exnibits ferromagnetism ${ }^{227,228}$. The zero-field quadrapole splitting of $\mathrm{Fe} X\left(\mathrm{~S}_{2} \mathrm{CNR}_{2}\right)_{2}$ has been shown to be dependent upon the nature of X^{225} and is reduced markedly on passing from the solid state to solution, presumably because the asymmetry of the iron atom is decreased by coordination of a solvent molecule in the position trans to $X{ }^{229}$

Reactions of $\mathrm{FeCl}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}$ with sodium dithiolates give $\left[\mathrm{Fe}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}(\mathrm{~S}-\mathrm{S})^{\prime}\right]^{-}\left(\mathrm{S}-\mathrm{S} \cdot=\mathrm{S}_{2} \mathrm{C}_{2}(\mathrm{CN})_{2}\right.$ or $\left.\mathrm{S}_{2} \mathrm{C}_{2}\left(\mathrm{CF}_{3}\right)_{2}\right)$ which can be oxidised to $\mathrm{Fe}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}(\mathrm{~S}-\mathrm{S}) \cdot 230$. These $\mathrm{Fe}(\mathrm{IV})$ complexes, which may also be prepared by reaction of $\mathrm{Fe}\left(\mathrm{S}_{2} \mathrm{CNR}\right)_{2}{ }_{n}(\mathrm{n}=2$ or 3) and $\mathrm{Na}_{2}(\mathrm{~S}-\mathrm{S})$ ' followed by oxidation by air or $\mathrm{Cu}(\mathrm{II})$ in acetonitrile ${ }^{231,232}$, exhibit magnetic properties of spin cross-over systems and their temperature variable, contact shifted, n.m.r. spectra have been interpreted as arising from two processes, the one of lower activation energy being an inversion of optical isomers via a trigonal twist mechanism (as for $\mathrm{Fe}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{3}$), and the other a fast rotation about the $C-{ }_{-i}$ N bond of the dithiocarbamate ligands at higher temperatures ${ }^{231,232}$.

Other non-binary dithioacid complexes of metals in the iron group
are all prepared by the action of dithioacid anions on compourids already containing other ligands. Thus, $\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{Br}_{2}$ reacts with $\mathrm{NaS}_{2} \mathrm{CNR}_{2}$ to yield cis $-\mathrm{Fe}(\mathrm{CO})_{2}\left(\mathrm{~S}_{2} \mathrm{CNR}_{2}\right)_{2}^{163}$ whilst $\mathrm{Fe}(\mathrm{CO})_{3} \mathrm{I}_{2}$ gives rise to $\mathrm{Fe}(\mathrm{CO})_{3} \mathrm{I}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)^{160}$. Reaction of $\left.\left\{(\}^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\right\}_{2}$
with $\mathrm{NaS}_{2} \mathrm{CNR}_{2}$ gives $\left(3^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{FeCO}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)^{160}$ whilst the reaction with $\mathrm{HS}_{2} \mathrm{PF}_{2}$ yields $\left(3^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\left(\mathrm{SP}(\mathrm{S}) \mathrm{F}_{2}\right)$, a rare example of a complex containing a unidentate $\mathrm{S}_{2} \mathrm{PF}_{2}$ ligand ${ }^{159}$. ($\left(3^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)$ $\mathrm{Fe}(\mathrm{CO})_{32}$ yields $\left(\mathrm{g}^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\left(\mathrm{~S}_{2} \mathrm{CNR}_{2}\right)$ when reacted with $\mathrm{NaS}_{2} \mathrm{CNR}_{2}{ }^{160}$.

In ruthenium chemistry, fewer complexes have been made. However, $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ reacts which $\mathrm{Na}(\mathrm{S}-\mathrm{S})$ to produce $\mathrm{Ru}(\mathrm{S}-\mathrm{S})_{2}-$ $\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{~S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{CNR}_{2} \text { or } \mathrm{S}_{2} \mathrm{COR}\right)^{233},\left\{\left(\mathrm{C}_{8} \mathrm{H}_{12}\right) \mathrm{RuX}_{2}\right\}_{n}$ and $\mathrm{NaS}_{2} \mathrm{CNMe}_{2}$ give $\left.\left(\mathrm{C}_{8} \mathrm{H}_{12}\right) \mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNMe}\right)_{2}\right)_{2}^{234}$, reaction of the red solution (obtained by passing CO through an ethanolic solution of RuCl_{3}) with $\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}$ gives $\mathrm{Ru}(\mathrm{CO})_{n}\left(\mathrm{~S}_{2} \mathrm{CNR}_{2}\right)_{2}(\mathrm{n}=1 \text { or } 2)^{235}$ and the reaction between $\mathrm{K}_{3}\left[\mathrm{Ru}_{2} \mathrm{NCi}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ and $\mathrm{NaS}_{2} \mathrm{CNEt}_{2}$ has recently been shown to yield the interesting nitrogen bridged compound $\mathrm{Zu}_{2}(\mathrm{~N})\left(\mathrm{S}_{2} \mathrm{CNEt}\right)_{4} \mathrm{Cl}_{1}$ which is thought to be polymeric, at least in the solid state ${ }^{236}$. Finally, apart from a brief mention of $\mathrm{OsO}_{2}\left(\mathrm{~S}_{2} \mathrm{CNR}_{2}\right)_{2}{ }^{237}$, the only osmium complex of this kind to have been prepared is $\mathrm{Os}(\mathrm{bipy})_{2}-$ $\left(\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{2}\right)_{5}\right) \mathrm{Cl}$, made from the interaction of $\mathrm{Os}(\mathrm{bipy})_{2} \mathrm{Cl}_{2}$ and $\mathrm{KS}_{2} \mathrm{CN}\left(\mathrm{CH}_{2}\right)_{5}\left(\text { bipy }=2,22^{\text {-bipyridyl }}\right)^{204}$.
8. Complexes of Cobalt, Rhodium and Iridium.

The stabilities of complexes of cobalt with dithioacid ligands
depend very much on the particular dithioacid ligand involved. Thus, whereas $\mathrm{Co}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}^{23}$ and $\mathrm{Co}\left(\mathrm{S}_{2} \mathrm{COR}\right)_{2}^{238}$ have only been briefly reported, bsing prepared from reaction of $C O(I I)$ salts with the appropriate dithioacid anion in strongly acid solutions, $\left(\mathrm{Co}(\mathrm{S}-\mathrm{S})_{3}^{238,239}\right.$ are isolated from solutions of pH2. 2 to 10.1), the phosphinodithioate complexes $\mathrm{Co}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}$ are well known and quite stable. These are prepared by reacition of CoCl_{2} with $\mathrm{NaS}_{2} \mathrm{PR}_{2}{ }^{5,25(b)}$ or $\mathrm{HS}_{2} \mathrm{PF}_{2}{ }^{27}$ and, for $\mathrm{R}=\mathrm{Ph}^{240}$ or $\mathrm{S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{PF}_{2}{ }^{27}$, are monomeric, tetrahedral highspin $3 \mathrm{~d}^{7}$ species. As with $\mathrm{M}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}(\mathrm{M}=\mathrm{Mn}$ or Fe$), \mathrm{Co}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}{ }^{6}$ is polymeric with dithioacid ligands bridging the cobalt atoms in
such a way that the environments of the cobalt atoms are tetrahedral, whilst $\mathrm{Co}\left(\mathrm{S}_{2} \mathrm{PEt}_{2}\right)_{2}^{6}$ is dimeric, again with tetrahedrally coordinated cobalt atoms and two bridging and two bidentate $\mathrm{S}_{2} \mathrm{PEt}_{2}$ groups.

The dithiocarbamate and xanthete complexes of Co(III), on the other hand, are much more stable than their phosphinodithioate analogues. $\mathrm{Co}\left(\mathrm{S}_{2} \mathrm{PEt}\right)_{3}$ decomposes even under nitrogen at room temperature to yield $\operatorname{Co}\left(\mathrm{S}_{2} \mathrm{PEt} \mathrm{P}_{2}\right)_{2}^{5} ; \mathrm{Co}_{2}\left(\mathrm{~S}_{2} \mathrm{PR}_{2}\right)_{3}{ }^{6}(\mathrm{R}=\mathrm{Me}$ or Ph$)$ decompose on mild heating whilst $\mathrm{Co}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{3}$ are indefinitely stable in air. $M(S-S)_{3}$ are prepared by the reaction of $\mathrm{MCl}_{\mathrm{n}}$ with $\mathrm{Na} \mathrm{S}-\mathrm{S}\left(\mathrm{M}=\mathrm{Co}, \mathrm{S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{CNR}_{2}^{239}\right.$ or $\mathrm{S}_{2} \operatorname{COR}^{208}, \mathrm{n}=2$; $M=\operatorname{Rh}$ or $\mathrm{Ir}, \mathrm{S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{CNR}_{2}^{203,241}, \mathrm{~S}_{2} \mathrm{PR}_{2}^{242}$ or $\mathrm{S}_{2} \mathrm{PF}_{2}^{27},-\Omega=3$) or for $\mathrm{Co}_{2}\left(\mathrm{~S}_{2} \mathrm{COR}\right)_{3}$ by. reaction of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$ with $\mathrm{KS}_{2} \mathrm{COR}$ to give first $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{S}_{2} \mathrm{COR}\right]_{3}$ which loses ammonia on heating to give the product ${ }^{243} \quad \operatorname{Co}\left(\mathrm{~S}_{2} \mathrm{PR}_{2}\right)_{3}$ are best prepared by reaction of $\mathrm{NaS}_{2} \mathrm{PR}_{2}$ with $\mathrm{Na}_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]^{5}$ whilst $\mathrm{Co}\left(\mathrm{S}_{2} \mathrm{PF}_{2}\right)_{3}$ is obtained from the oxidation of $\mathrm{Co}\left(\mathrm{S}_{2} \mathrm{PF}_{2}\right)_{2}$ with $\left(\mathrm{S}_{2} \mathrm{PF}_{2}\right)_{2}^{27}$.

All the complexes $\operatorname{Co}(S-S)_{3}$ have been shown both by their electronic spectra ${ }^{6,123}$ and by x-ray studies ${ }^{10,11}$ to have the sulphur atoms arranged in a distorted octahedron around the cobalt atom, as has been described for $M(S-S)_{3}(M=F e$ and $C r)$. Also, $\mathrm{Co}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{3}^{208}$ are stererchemically non-rigid on the nom.r. time scale (in contrast to $R h\left(S_{2} \mathrm{CNR}_{2}\right){ }_{3}{ }^{209}$ which are rigid up to $200^{\circ} \mathrm{C}$), and this has again been attributed to a metal centred inversion of optical isomers occurring via a trigonal twist mechanism ${ }^{208}$. Exceilent support for the theory that an interconversion of optical isomers is occurring is available because, on account of the high activation energy $\left(\Delta G^{\dagger}\right)$, the optical isomers can be obtained
in an optically pure state by reaction of $\mathrm{NaS}_{2} \mathrm{CNR}_{2}$ with optically active $K[$ CoEDTA $]$ or $K\left[\right.$ CoPDTA] ${ }^{244}$. The racemisation of $\mathrm{Co}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{3}$ may then be followed by the more usual technique of monitoring the $10 s 3$ of optical activity of a solution of one of the isomers with time, and this produces an activation energy for the racemisation of $\mathrm{Co}\left(\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{2}\right)_{5}\right)_{3}{ }^{2 \prime} \mathrm{~S}^{4}$ of 99.5 kJ mole e^{-1}, very close to that obtained from n.m.r. data for $\operatorname{Co}\left(\mathrm{S}_{2} \mathrm{CNBz}_{2}\right)_{3}$ (99.1 KJ mole e^{-1}) 208 .

Finally, oxidation of $\left.\mathrm{M}_{2} \mathrm{~S}_{2} \mathrm{CNHe}_{2}\right)_{3}(\mathrm{M}=\mathrm{Co}$ or Rh$)$ with BF_{3} in air leads to the formation of $\left[\mathrm{M}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{3}\right] \mathrm{Br}_{4}$ which, like the ruthenium analogue are diamagnetic and probably polymeric ${ }^{210}$. b) Compounds containing other ligands.

Being a coordinatively unsaturated fifteen electron system, $\mathrm{Co}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}$ readily reacts with nitric oxide (a three electron donor) to form the square-pyramidal $\operatorname{CoNO}\left(\mathrm{S}_{2} \mathrm{CNMe} \mathbf{2}_{2}{ }_{2}^{245}\right.$ in which the NO group is at the apex and the Co-N-O angle is $135^{\circ} 246,24$? As in $\mathrm{FeNO}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}$; there is some disorder of the oxygen atoms in the crystal out for the cobalt complex, the oxygen atom lies alternately over the two $C-S$ bonds of one dithiocarbamate 1 igand ${ }^{247}$. $\mathrm{Co}\left(\mathrm{S}_{2} \mathrm{PF}_{2}\right)_{2}$ also reacts with NO to form an eighteen electron system but in this case the tetrahedral $\mathrm{Co}(\mathrm{NO})_{2}\left(\mathrm{~S}_{2} \mathrm{PF}_{2}\right)$ is the product, which also arises from the reaction of $\mathrm{Co}\left(\mathrm{S}_{2} \mathrm{PF}_{2}\right)_{3}$ with nitric oxide ${ }^{27}$. $\operatorname{Co}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}$ react with pyridine $5,26(\mathrm{~b})$ or $2,2^{\text {l-bipyridyl }}{ }^{248}$ in dimethyl formamide to yield $\operatorname{Co}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2} \mathrm{~L}_{2}\left(\mathrm{~L}=\right.$ pyridine; $\mathrm{L}_{2}=2$, 2'bipyidyl).

On account of the inertness of the eighteen electron trischelates, $M(S-S)_{3}(M=C o, R h$ or $I r)$, few reactions have been carried out between them and donor ligands, although mixtures of $\mathrm{Co}^{\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{3}}$ and $\mathrm{Co}\left(\mathrm{S}_{2} \operatorname{COE} t\right)_{3}$ have been shown to produce $\operatorname{Co}\left(\mathrm{S}_{2} \mathrm{CNE}_{2}\right)_{2}\left(\mathrm{~S}_{2} \operatorname{COE} t\right)^{249}$.

Other cobalt complexes of mixed sulphur ligands include $\left[\mathrm{Co}(\mathrm{bi})_{2}(\mathrm{~s}-\mathrm{s})\right]^{2-},\left[\mathrm{Co}(\mathrm{bi})(\mathrm{s}-\mathrm{S})_{2}\right]^{-}(\mathrm{bi}=\mathrm{bisbiuretate}$, $\mathrm{S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{CNR}_{2}$ or $\mathrm{S}_{2} \mathrm{COR}$) prepared from $\mathrm{K}\left[\mathrm{Co}(\mathrm{bi})_{2}\right]$ and $\mathrm{Na}(\mathrm{S}-\mathrm{S})^{249}$, and $\mathrm{Co}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}\left(\mathrm{~S}_{2} \mathrm{C}_{2}\left(\mathrm{CF}_{3}\right)_{2}\right)$, a low-spin, distorted octahedral complex of $\mathrm{Co}(\mathrm{IV})$, prepared from the irteraction of CxCl_{2}, $\mathrm{NaS}_{2} \mathrm{CNR}_{2}$ and $\mathrm{NaS}_{2} \mathrm{C}_{2}\left(\mathrm{CF}_{3}\right)_{2}^{231}$. The anionic $\left[\mathrm{Co}(\mathrm{CN})_{2}\left(\mathrm{CO}_{3}\right)_{2}\right]^{3-}$ complex reants with $\mathrm{NaS}-\mathrm{S}$ to give anionic cis $-\left[\mathrm{Co}(\mathrm{CN})_{2}\left(\mathrm{~S}-\mathrm{S}_{2}\right]^{-}\right.$ $\left(S-S=S_{2} C N R_{2} \text { or } S_{2} C O R\right)^{250}$.

Interesting differences are observed in the reactions of Rh(I) complexes with different dithioacid ligands; for example, $\left\{\operatorname{RhCl}(\mathrm{CO})_{2}\right\}_{2}$ reacts with $\mathrm{NaS}_{2} \mathrm{CNR}_{2}$ to afford the monomeric $\operatorname{Rh}(\mathrm{CO})_{2}\left(\mathrm{~S}_{2} \mathrm{CNR}_{2}\right): \complement^{〔}$, whilst with $\mathrm{CsS}_{2} \mathrm{PF}_{2}$, the chlozide bridges are replaced by $\mathrm{S}_{2} \mathrm{PF}_{2}$ bridges producing the dimeric $\left\{\mathrm{Rh}(\mathrm{CO})_{2}\left(\mathrm{~S}_{2} \mathrm{PF}_{2}\right)\right\}_{2}^{251}$ - which reacts with triphenylphosphine to give monomeric $\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)$ $\left(\mathrm{S}_{2} \mathrm{PF}_{2}\right)^{251}$ A similar compound $\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{S}_{2} \mathrm{CNMe}\right)^{233}$ may be prepared by the interaction of stoichiometric amounts of trans $\mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ and $\mathrm{NaS}_{2} \mathrm{CNMe}_{2}$, whilst excess of the latter reagent gives $\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{3}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)^{233}$, a $\mathrm{Rh}(\mathrm{III})$ complex with one bidentate and two unidentate dithiocarbamate ligands. Reaction of $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ with excess $\mathrm{NaS}_{2} \mathrm{CNMe}_{2}$ yields $\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{3}\left(\mathrm{PPh}_{3}\right)^{233}$, with two kifentate and one unidentate dithiocarbamate ligands whilst if $1: 1$ ratios of the reactants are used, the $R h(I)$ complex, $\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ i.s isolated ${ }^{233}$. The reaction of stoichionetric
 dimeric $\left\{\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{3}\right)\right\}_{2}^{252}(7)$, which is thought to contain bridging $\mathrm{S}_{2} \mathrm{PPh}_{2}$ ligands acting as five electron donors.

Some other interesting rhodium complexes, $\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)_{3} \mathrm{PPh}_{3}$ and $\left[\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{BF}_{4}$, have been prepared by the reaction of dithioacid anions with a solution containing $\left[\mathrm{Rh}_{4}\right]^{2+}$ in the presence of $\mathrm{PPh}_{3}{ }^{253}$.

The only non-binary dithioacid complexes of Eridium that
have beeil reported are cis- $\mathrm{IrH}_{2}(\mathrm{~S}-\mathrm{S})\left(\mathrm{EPh}_{3}\right)_{2}(E=P$ or As, $\mathrm{S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{CNR}_{2}{ }^{254}, \mathrm{~S}_{2} \mathrm{COR}^{254}$ or $\mathrm{S}_{2} \mathrm{PR}_{2}^{255}$), prepared by the action of $\mathrm{Na}(\mathrm{S}-\mathrm{S})$ on $\mathrm{TrH}_{3}\left(\mathrm{EPh}_{3}\right)_{2}$.

9. Complexes of Nickel, Palladium and Platinum.

a) Binary compounds.

Since NiSO_{4} is often used in the extraction of dithioacids during their preparations ${ }^{41,256}$, nickel complexes of almost all dithioacid ligands have been reported. However, they are more usually prepared by reaction of $\mathrm{Ni}(\mathrm{II})$ salts with the appropriate free dithioacid or its sodium salt. The complexes so formed are all of stoichiometry $\mathrm{Ni}(\mathrm{S}-\mathrm{S}){ }_{2}\left(\mathrm{~S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{CNR}_{2}^{257}, \mathrm{~s}_{2} \mathrm{COR}^{243}, \mathrm{~s}_{2} \mathrm{PR}_{2}^{169}\right.$ or $\mathrm{S}_{2} \mathrm{PF}_{2}{ }^{27}$). Many of these complexes have been studied by x-ray diffraction and all of them have planar NiS_{4} skeletons. In general, the atoms whicil make up the chelate rings (C or P) are coplanar with this skeleton but in $\mathrm{Ni}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}{ }^{258}$, the phosphorus atoms are slightly out of plane. The degree of interaction between
molecules, in the solid state, varies from none for $\mathrm{Ni}\left(\mathrm{S}_{2} \mathrm{CNE}_{2}\right){ }_{2}{ }^{259}$, via weak intermolecular hydrogen bonding interactions ($\mathrm{CH}_{2} \cdots \mathrm{M}$) in $\mathrm{Ni}\left(\mathrm{S}_{2} \mathrm{CNPr}_{2}\right)_{2}^{260}$, to fairly strong Ni-S interactions which give the nickel atom a distorted octahedral environment in $\mathrm{Ni}\left(\mathrm{S}_{2} \operatorname{COEt}\right)_{2}{ }^{261}$. $\mathrm{Ni}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}$ have also been prepared :yy insertion of CS_{2} into the $\mathrm{Ni}-\mathrm{N}$ bonds of $\mathrm{Ni}\left(\mathrm{NR}_{2}\right)_{4}{ }^{262}$ but it is interesting to note that CS_{2} Will not ingeri in to the Ni-O bonds of alkoxy complexes of nickel to form xanthates ${ }^{262}$.

Square-planar dithioacid complexes of $\mathrm{Pt}(\mathrm{II})$ and $\mathrm{Pd}(\mathrm{II})$ may also be prepared, by the action of $\mathrm{Na}(\mathrm{S}-\mathrm{S})$ on $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right]$ or PdCl_{2} to give $\mathrm{M}(\mathrm{S}-\mathrm{S})_{2}\left(\mathrm{~S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{CNR}_{2}^{203}, \mathrm{~S}_{2} \mathrm{COR}^{243}, \mathrm{~S}_{2} \mathrm{PR}_{2}^{169}\right.$ or $\mathrm{S}_{2} \mathrm{PF}_{2}^{27}$). $\mathrm{NaS}_{2} \mathrm{CNR}_{2}$ also give $\mathrm{Pt}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}$ with $\mathrm{K}_{2}\left[\mathrm{PtCl}_{6}\right]$ but in this case, it may ba shown conductimetrically that the displacenent of chloride ions occurs in a stepwise manner ${ }^{263}$.

The dithioacid complexes of these metals are diamagnetic in the solid stiate and the $\mathrm{Pd}(I I)$ and $\mathrm{Pt}(I I)$ complexes remain so in solution. The $\mathrm{Ni}(\mathrm{II})$ complexes, however, become paramagnetic on dissolution in strongly coordinating solvents and this has been attributed to solvent addition to the complexes forming distorted octahedral complexes in which the energy separation of the $d_{z}{ }^{2}$ and $d_{x}{ }^{2}-y^{2}$ orbitals is less than the energy required to pair two electrons in the $d_{z} 2$ orbital and thus each of these orbitals holds one unpaired electrcis ${ }^{264}$.

Anionic $\left[\mathrm{M}(\mathrm{S}-\mathrm{S})_{3}\right]^{-}$have also been prepared, by the action of $\mathrm{KS}_{2} \mathrm{COEt}$ on NiCl_{2} in the presence of a large cation ($\mathrm{M}=\mathrm{Ni}$, $\left.S-S=S_{2} \operatorname{coE} t\right)^{265}$, by the reaction of $\operatorname{Pd}\left(S_{2} \mathrm{PF}_{2}\right)_{2}$ with $\left[\operatorname{Pr}_{4} \mathrm{~N}\right]\left[\mathrm{S}_{2} \mathrm{PF}_{2}\right]$ $\left(M=P d, S-S=S_{2} \mathrm{PF}_{2}\right)^{27}$ or by the interaciion of [$\left.\mathrm{Ph}_{4} \mathrm{As}\right]\left[\mathrm{S}_{2} \operatorname{COR}\right]$ with $\mathrm{Pt}\left(\mathrm{S}_{2} \mathrm{COR}\right)_{2}\left(\mathrm{M}=\mathrm{Pt}, \mathrm{S}-\mathrm{S}=\mathrm{S}_{2} \operatorname{COEt} \text { or } \mathrm{S}_{2} \mathrm{CO}^{\mathrm{i}} \mathrm{Pr}\right)^{266}$. The nickel
complex has been shown to be octahedral with two unpaired electrons whilst $\left[\mathrm{Pd}\left(\mathrm{S}_{2} \mathrm{PF}_{2}\right)_{3}\right]^{-27}$ and $\left[\mathrm{Pt}\left(\mathrm{S}_{2} \mathrm{COR}\right)_{3}\right]^{-60}$ are diamagnetic square-planar anions containing one bidentate and two unidentate dithioacid ligands (c.f. Au ($\left.\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{3}{ }^{59}$).

Some dithioacid complexes of nirkel, palladium and platinum
in higher oxidation states have been prepared but, apart from $\mathrm{Ni}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}{ }^{i} z^{267}\right.$, detected atlow temperature by its e.s.r. spectrum in solutions of $\mathrm{Ni}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2}$ with an 80 -fold excess of $\left(\mathrm{S}_{2} \mathrm{CNE} \mathrm{t}_{2}\right){ }_{2}$, they are all ionic complexes with the metal in oxidation state +4 . This interesting complex of $\mathrm{Ni}\left(\right.$ III) has a low spin d^{7} electronic configuration and, presumably on account of the Jahn-Teller distortion that asises fron this configuration is a square-pyramidal complex ${ }^{267}$.

The diamagnetic, low-spin, d^{6} complexes $\left[M\left(S_{2} \mathrm{CNR}_{2}\right)_{3}\right] x$ ($M=N i, P d$ or $P t, X=C 1, \mathrm{Br}$ or I_{3}) are prepared by the action of halogens on $M\left(S_{2} C N R_{2}\right)_{2}(M=N i)^{76,268}$, reaction of $N i X_{2}$ with $\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}$ at elevated temperatures $(\mathrm{M}=\mathrm{Ni})^{76,268}$ or by oxidation of $M\left(S_{2} C N R_{2}\right)_{2}(M=N i, P d \text { or } P t)^{269}$ with $M^{\prime}\left(S_{2} C N R_{2}\right) X_{2} \quad\left(M^{\prime}=C u\right.$ or $\left.A u\right)$. The crystal structure of $\left[\mathrm{Ni}\left(\mathrm{S}_{2} \mathrm{CNBu}_{2}\right)_{3}\right] \mathrm{Br}$ indicates that the complex is a genuine example of a distorted octahedral coniplex of Ni (IV) rather than a complex of $\mathrm{Ni}(\mathrm{II})$ in which oxidation of the ligard to give a coordinated tetrabutylthiuram disuphide unit has occurred ${ }^{270}$.
b) Complexes contairing other ligands.

Apart from reactions of NiX_{2} with dithioacid ligands in the presence of triphenylphosphine, which yield $\mathrm{NiX}\left(\mathrm{PFh}_{3}\right)(\mathrm{S}-\mathrm{S})$ ($\mathrm{X}=\mathrm{Cl}$ or $\mathrm{Br}, \mathrm{S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{CNR}_{2}^{271}$ or $\mathrm{S}_{2} \mathrm{COR}^{272}$), all non binary dithioacid complexes of elements of the nickei group are prepared by addition of neutral moleculesto $M(S-S)_{2}$, either with or without
simultaneous oxidation. Thus, $\mathrm{M}_{\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2} \text { react with halogens }}$ to give cis and trans oxidative addition products, $\mathrm{MX}_{2}\left(\mathrm{~S}_{2} \mathrm{CNR}_{2}\right)_{2}$ $(M=P d \text { or } P t, X=B r \text { or } I)^{273}$ although at low temperatures the reaction with iodine gives $\mathrm{NiI}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}$ which disproportionate in ethanol to give $\mathrm{Ni}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}$ and $\left.\left[\mathrm{Ni} \mathrm{i}_{2} \mathrm{CNR}_{2}\right)_{3}\right] \mathrm{I}_{3}{ }^{274}$. The reactions in which oxidation does not occur are of two kinds; for nickel, stepwise andition to form five and six coordinate products is the most usual reaction pathway, whereas for palladium and platinum, on account of the strongly antibonding character of the $d_{x}{ }^{2}-y^{2}$ 'metal' orbital, reactions involving the stepwise cleavage of metal sulphur bonds tend to occur.

(i) Nitrogen donors.

Although there appears to be no reaction when $\mathrm{Ni}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}$ is treated with pyridine ${ }^{265}$, heterocyclic bases form high-spin trans $-\mathrm{NiL}_{2}(\mathrm{~S}-\mathrm{S})_{2}\left(\mathrm{~L}=\right.$ pyridine, $\mathrm{S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{COR}^{275}$ or $\mathrm{S}_{2} \mathrm{PR}_{2}^{276 ;}$ $L=$ thiophene, $S-S=S_{2} P R_{2}{ }^{5}$) when reacted with $\mathrm{Ni}(\mathrm{S}-\mathrm{S})_{2}$. These reactions are thought to occur in a stepwise manner but none of the five coordinate intermediates have been isolated although there is some spectroscopic evidence for the existence of $\mathrm{Ni}\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)_{2} \mathrm{py}$ in solution ${ }^{277}$. Quinoline, on the other hand, only forms $1: 1$ adducts with $\mathrm{Ni}\left(\mathrm{S}_{2} \mathrm{PEt}_{2}\right)_{2}^{278}$. Tertiaryaliphatic amines do not react with $\mathrm{Ni}(\mathrm{S}-\mathrm{S})_{2}$ but primary amines form both 1:1 and $1: 2$ adducts with $\mathrm{Ni}(\mathrm{S}-\mathrm{S})_{2}\left(\mathrm{~S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{COR} \text { or } \mathrm{S}_{2} \mathrm{PR}_{2}\right)^{279}$ and this has led to the use of $\mathrm{Ni}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}$ as paramagnetic shift reagents in interpreting the ${ }^{1}$ Hn.m.r. spectrum of $\mathrm{NH}_{2}{ }^{\mathbf{i}} \mathrm{Pr}^{280}$. The reactions of secondary amines depend very much on the nature of the dithioacid ligand present in the metal complex; thus, $N H R_{2}^{\prime}$ react with $\mathrm{Ni}(\mathrm{S}-\mathrm{S})_{2}\left(\mathrm{~S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{CNR}_{2}\right.$ or $\left.\mathrm{S}_{2} \mathrm{COR}\right)$ to give $\mathrm{Ni}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}^{\prime}\right)_{2}$ by attack
on the ligand ${ }^{281}$ whilst with $\mathrm{Ni}\left(\mathrm{S}_{2} \mathrm{PEt}_{2}\right)_{2}$, $1: 1$ square-pyramidal adducts are formed ${ }^{279}$. In the reaction of $\mathrm{Ni}\left(\mathrm{S}_{2} \mathrm{PEt}_{2}\right)_{2}$ with ammonia, both addition and displacement of $\mathrm{S}_{2} \mathrm{PEt}$ occur, the product being $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{S}_{2} \mathrm{PEt}_{2}\right]_{2}^{5}$.

Bidentate nitrogen donors also react with $\mathrm{Ni}(\mathrm{S}-\mathrm{S})_{2}$, to produce cis $-\mathrm{Ni}_{2}\left(\mathrm{~S}_{2} \mathrm{COR}\right)_{2}(\mathrm{~N}-\mathrm{N})(\mathrm{N}-\mathrm{N}=2,2$-bipyridyl, pyrazine or 1,10 -phenanthroline $)^{282}$, or coordination polynsers $\left(S-S=S_{2} P R_{2}\right.$, $N-N=2,2^{\prime}-$ bipyridyl or pyrazine) ${ }^{283}$. Solvent molecules are often clathrated by cis- $\mathrm{Ni}\left(\mathrm{S}_{2} \mathrm{COR}\right)_{2}(\mathrm{~N}-\mathrm{N})$ on cyrstallisation, but they may be removed by pumping 282 .

The reactions of nitrogen donors with $M(S-S)_{2}(M=P d$ or $P t)$
have been less extenzively studied; but, as for the $\mathrm{Ni}(\mathrm{II})$
complexes, $M(S-S)_{2}\left(S-S=S_{2} C N R_{2}\right.$ or $\left.S_{2} C O R\right)$ react with secondary amines $\left(\mathrm{NHR}_{2}\right)$ to give $\mathrm{M}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}{ }^{281}$. A brief report of the reactions of $M\left(S_{2} \operatorname{COE} t\right)_{2}(M=P d$ or $P t)$ with pyridine indicates that compounds $M\left(S_{2} \operatorname{COEt}\right)_{2} \mathrm{py}_{2}$, with unidentate xanthate ligands occur in solution, but these could not be isolated ${ }^{284}$.

(ii) Phosphorus donors.

The reaction between $\mathrm{Ni}\left(\mathrm{S}_{2} \mathrm{COEt}\right)_{2}$ and PPh_{3} to produce the square-pyramidal $\mathrm{Ni}\left(\mathrm{S}_{2} \mathrm{COEt}\right)_{2}\left(\mathrm{PPh}_{3}\right)^{275}$ represents the only example of adduct formation by $\mathrm{Ni}(\mathrm{S}-\mathrm{S})_{2}$ with phosphorus donor ligands, but reactions of $M(S-S)_{2}(M=P d$ or $P t)$ with phosphines have been more extensively studied.

In general, interactions of $M(S-S)_{2}(M=P d$ or $P t$, $S-S=S_{2} C N R_{2}^{18,19}, S_{2} C O R^{18,19}, S_{2} \mathrm{PR}_{2}^{15,16}$ or $\mathrm{S}_{2} \mathrm{PF}_{2}^{27}$) with tertiary phosphines (L) lead to the stepwise displacement of a dithioacid ligand giving first $M(S-S)_{2} L$ winich contain both unidentate and bidentate dithioacid iigands (1:1 adduct), followed by

```
[M(S-S)L}\mp@subsup{L}{2}{}]S-S (1:2) adduct
```

i.e.

For $S-S=S_{2} C O R$, the $1: 2$ adducts react further to give $\mathrm{ML}_{2}\left(\mathrm{~S}_{2} \mathrm{CO}\right)$ and $R S_{2} C O R$ by attack of ${ }^{-} S_{2} C O R$ on the coordinated xanthate ligand ${ }^{18,19}$ (see page 4). All these $1: 1$ and $1: 2$ complexes undergo interconversions both inter - and intra-molecular in origin which give rise to interesting temperature variable n.m.r. spectra ${ }^{16}$

A related study on reactions of $\left(3^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Pt}(\mathrm{S}-\mathrm{S})(\mathrm{S}-\mathrm{S}=$ $\mathrm{S}_{2} \mathrm{CNR}$ or $\mathrm{S}_{2} \mathrm{COR}$) with tertiary phosphines (L) shows that, although the final products in each case are $\left[\left(3^{3} C_{3} H_{5}\right) P t L 2\right][S-S]$, the intermediate ($1: 1$) complexes can have either a $3^{1}-\mathrm{all} y \mathrm{l}$ group and bidentate dithio ligand or a unidentate dithio ligand and an 3^{3}-allyl group, and which of these occurs depends upon the dithioacid ligand and the position of any substituents on the all yl group ${ }^{285}$.

Complexes of Ruthenium (II)

Introduction

Fnllowing the work carried out on the reactions of $M(S-S)_{2}$ ($M=P d$ or Pt, $S-S=S_{2} C N R_{2}^{19}, S_{2} C O R^{19}$ or $S_{2} P R_{2}^{15,16}$) with tertiary phosphines, in which stepwise displacement of a (S-S) ligand occurs (see page 41), it was considered of interest to extend this work to cover complexes of ruthenium, and this chapter details the results of this investigation. A short survey of some of the chemistry of halo- and hydrido- complexes of ruthenium containing phosphorus donor ligands is included in order that the results presented may be better understood ${ }^{286}$.

The reactions of RuCl_{3} with tertiary phosphines give several different products, depending not only on the particular phosphine used for the reaction but also on the reaction conditions. Thus, shaking RuCl_{3} with triphenylphosphine in methanol (1:2 molar ratio) produces $\mathrm{RuCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{MeOH}^{287}$, whereas if excess PPh_{3} is employed, the product is $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{4}{ }^{287}$. However, if the reaction is carried out under reflux conditions, $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}^{287}$, a square-pyranidal complex with trans basal chloride ions and the sixth position blocked by an ortho-hydrogen atom from one of the phenyl rings of a basal phosphine group, is formed ${ }^{288}$. Similar compounds RuCl ${ }_{2}(\mathrm{~L})_{n}$ $\left(L_{2}=R_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PR}_{2}^{289}\right.$ or o-phenylenebisdimethylarsine ${ }^{290}$, $n=4$) are similarly prepared but complexes of this type containing monotertiary phosphines (not PPh_{3}) have only recently been prepared, by the reaction of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ or 4 with excess of the phosphorus ligand in non-polar solvents $\left(L=\mathrm{PMe}_{2} \mathrm{Ph}^{291}, \mathrm{PMePh}_{2}{ }^{291}\right.$ or $\mathrm{P}(\mathrm{OPh})_{3}{ }^{292}$, $\mathrm{n}=4 ; \mathrm{L}=\mathrm{PEtPh}_{2}{ }^{291}$ or $\mathrm{PEt}_{2} \mathrm{Ph}^{291}, \mathrm{n}=3$). In polar solvents, these compounds $\left(\mathrm{L} \neq \mathrm{P}\left(\mathrm{Or}_{3}\right)_{3}\right)$
rearrange rapidly to the triply bridged cationic species [$\mathrm{Ru}_{2} \mathrm{Cl}_{3} \mathrm{~L}_{6}$]C1 ${ }^{291}$ which are also formed from the long-term reaction of RuCl_{3} and L in refluxing ethanol ${ }^{289}$. Short term reactions between RuCl_{3} and L in $\mathrm{EtOH} / \mathrm{HCl}$ mixtures produce mer - $\mathrm{RuCl}_{3} \mathrm{~L}_{3}{ }^{293}$ ($\mathrm{L} \notin \mathrm{P}(\mathrm{OPh})_{3}$) which again give $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{3} \mathrm{~L}_{6}\right] \mathrm{Cl}$ on warming in polar solvents ${ }^{293}$.

The dimeric cationic species are fairly stable to reaction with other Lewis bases (although reactions with CO under pressure or in 2-methoxyethanol give $\mathrm{Ru}(\mathrm{CO})_{2} \mathrm{~L}_{2} \mathrm{Cl}_{2}{ }^{294}$ and $\mathrm{RuCOL}_{3} \mathrm{Cl}_{2}{ }^{295}$ respectively) but heating $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{3}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{6}\right] \mathrm{Cl}$ in methylacetate produces $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{3}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{6}\right]\left[\mathrm{RuCl}_{3}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{3}\right]$, in which the anion has a meridional configuration ${ }^{297}$, whilst, if the same compound is heated in n-propylpropionate, $\mathrm{Ru}_{2} \mathrm{Cl}_{4}$ (PEt $_{2} \mathrm{Ph}_{5}{ }_{5}^{236}$ (1) results, in which the anion replaces a phosphine group in the co-ordination sphere.

(1)

$L^{\prime}=P B u_{3}$
(2)

A related compound which formally contains $R u(I I)$ and $R u(I I I)$, $\mathrm{Ru}_{2} \mathrm{Cl}_{5}\left(\mathrm{PBu}_{3}\right)_{4}$ (2) has been obtained, along with the doubly bridged $\left\{\operatorname{RuCl}_{3}\left(\mathrm{PBu}_{3}\right)_{2}\right\}_{2}$, from the reaction of RuCl_{3} with PBu_{3} in $1: 2.2$ ratios ${ }^{298}$. An interesting feature of the crystal structures of $\mathrm{Ru}_{2} \mathrm{Cl}_{4}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{5}{ }_{5} 99$ and $\mathrm{Ru}_{2} \mathrm{Cl}_{5}\left(\mathrm{PBu}_{3}\right)_{4}{ }_{4} 00$ is the observation that the bridging $\mathrm{Ru}-\mathrm{Cl}$ bonds are significantly shorter when trans to chloride than when trans to a phosphine, a reflection of the greater trans-influence of tertiary phosphines than of chloride in both $R u(I I)$ and $R u(I I I)$ complexes. A similar effect is responsible for the different rates of replacement
of the chloride ions in $\mathrm{RuCl}_{2} \mathrm{CO}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ (3). The chloride ion trans to phosphine is replaced relatively easily by shaking with a 20 -fold excess of NaI in acetone, the maximum amount of RuIClCO (PMe $_{2} \mathrm{Ph}_{3}$ (ca. 85%) being reashed after eleven hours, whilst conversion to the diiodo complex under the same conditions takes six weeks, indicating the much lower trans-effect of $C O$ than of $\mathrm{PMe}_{2} \mathrm{Ph}$ in ruthenium chemistry ${ }^{295}$.

(3)

Many reactions of these halo-ruthenium phosphine compiexes, particularly those involving direct excisange of phosphines ivith other Lewis bases, have been studied, but since the results presented concern reactions in which replacement of chloride ion occurs, this review will be confined to reactions in which halide ion is replaced, either with or without simultaneous loss of all or some of the phosphine groups.

The reactions of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ with either β-diketones in the presence of triethylamine, sodium carboxylates or $\mathrm{Na}(S-S)$ yield
 which for the oxygen donor ligands have cis-stereochemistry, whereas in the reaction of $\mathrm{RuCl}_{3}\left(\Lambda s \mathrm{Ph}_{3}\right)_{2} \mathrm{MeOH}$ with $\mathrm{NaS}_{2} \mathrm{PPh}_{2}$, all the arsine ligands are replaced and $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)_{3}$ is the sole pioduct ${ }^{302}$. If the reactions between $\mathrm{RuCl}_{2}\left(\mathrm{PPH}_{3}\right)_{3}$ and carboxylate ions are carried out in the presence of hydrogen or any other source of hydride ion, the on!y products are $\mathrm{RuH}(\mathrm{OCOR})\left(\mathrm{PPh}_{3}\right)_{3}{ }^{303}$ and the reaction between $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ or $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{3}\left(\mathrm{PMePh}_{2}\right)_{6}\right] \mathrm{Cl}$ and $\mathrm{T} 1 \mathrm{C}_{5} \mathrm{H}_{5}$ produces $\left(3^{5}-\mathrm{C}_{5} \mathrm{H}\right) \mathrm{PuClL}$
$\left(L=\mathrm{PPh}_{3} \text { or } \mathrm{PMePh}_{2}\right)^{304}$.
Reduction of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ with NaBPh_{4} in benzene produces RuHCl $\left(\mathrm{PPh}_{3}\right)_{3}{ }^{305}$ which can also be prepared by reaction of RuCl_{3}, HCHO and $\mathrm{PPh}_{3} 306$ and this is thought to be the active catalyst when $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ is used to catalyse the hydrogenation of unsaturated substrates ${ }^{305}$. The cis-dihydrido species, $\mathrm{RuH}_{2} \mathrm{~L}_{l_{2}}$ may be prepared either from $\mathrm{Et}_{3} \mathrm{Al}$ reduction of RuCl_{3} in the presence of triphenylphosphine $\left(\mathrm{L}=\mathrm{PPh}_{3}\right)^{307}$, or from the reaction of $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{3}\left(\mathrm{PMePh}_{2}\right)_{6}\right] \mathrm{Cl}$ with hydrazine, PMePh_{2} and hydrogen under pressure $\left(L=P M e P h_{2}\right)^{308}$, whilst reaction of $\left\{\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right\}_{2}$ with $\mathrm{Et}_{3} \mathrm{~N}$ and hydrogen in benzene yields $\left.\mathrm{Ru}_{4} \mathrm{P}_{4} \mathrm{PP}_{3}\right)_{3}^{309,310}$ which undergoes various interesting reactions; e.g. with $\mathrm{NOCl}^{\prime} \mathrm{RuH}_{4}\left(\mathrm{PPh}_{3}\right)_{3}$ gives $\mathrm{Ru}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{3}{ }^{309}$ whilst with NO or SO_{2} the products are $\mathrm{RuL}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{~L}=\mathrm{NO} \text { or } \mathrm{SO}_{2}\right)^{309}$. The interesting reaction of cis- $\mathrm{RuH}_{2}\left(\mathrm{PPh}_{3}\right)_{4}$ with CS_{2} has recently been reported to produce cis-Ru(S $\left.\mathrm{S}_{2} \mathrm{CH}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ by insertion of CS_{2} into the Ru-H bonds ${ }^{310}$. $\mathrm{RuH}_{2} \mathrm{~L}_{4}$ ($\mathrm{L}=\mathrm{PEt}_{2} \mathrm{Ph}, \mathrm{PMe}_{2} \mathrm{Ph}, \mathrm{PMePh}_{2}$ or $\mathrm{PPh}_{2} \mathrm{OMe}$) have been shown to be stereochemically non-rigid on the n.m.r. time scale and the mechanism for the exchange of the environments of the phosphine groups and of the hydride ions is said to involve a pseudotetrahedral transition state in which the hydride ions exchange via face and edge tunnelling ${ }^{311}$.

Finally, it is interesting to note that the only complexes of Ru(IV) containing phosphorus donor ligands that have been isolated are the unusual mer-Ru $\left(\mathrm{NPR}_{3}\right) \mathrm{Cl}_{3}\left(\mathrm{PR}_{3}\right)_{2}\left(\mathrm{R}_{3}=\mathrm{Ph}_{2} \mathrm{Et}, \mathrm{PhEt} 2\right.$: $\mathrm{Ph}_{2} \mathrm{Me}$ or Et $\left.{ }_{3}\right)$ which are formed by attack of PR_{3} on a comordinated nitride ligand ${ }^{312}$. Results and discussion

1. Preparations of $\mathrm{Ru}(\mathrm{S}-\mathrm{S})_{2} \underline{L}_{2}$.

Although there has recently been an increasing interest in the
chemistry of ruthenium as well as in the chemistry of complexes of sulphur-containing ligands with various metals, research into ruthenium complexes containing dithioacid ligands has been confined to relatively few papers and most of these have been concerned with complexes containing N, N-dialkyldithiocarbamato groups. Thus, to recap, complexes such as $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNRR}^{1}\right)_{3} \quad\left(\mathrm{R}=\mathrm{R}^{1}=\mathrm{Me}, \mathrm{Et}, \mathrm{n}_{\mathrm{Bu}}{ }^{203}\right.$; $\left.R=\mathrm{Me}, \mathrm{R}^{1}=\mathrm{PhCH}_{2}^{208}\right),\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{PhCH}_{2}\right)_{2}\right)_{2}(\mathrm{CO})_{2}\right] \mathrm{Cl}^{235}, \mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2} \mathrm{CO}$ $(\mathrm{R}=\mathrm{Me}, \mathrm{Et})^{235}, \mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}(\mathrm{CO})_{2} \quad\left(\mathrm{R}=\mathrm{Me}, \mathrm{PhCH}_{2}\right)^{235}$, $\left.\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2} \quad(\mathrm{R}=\mathrm{Me}, \mathrm{Et}, \mathrm{Ph})^{233}, \mathrm{Ru}_{\mathrm{L}} \mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{2} 313$, $\operatorname{Ru}\left(\mathrm{S}_{2} \mathrm{CNRR}^{1}\right)_{2}\left(\mathrm{~S}_{2} \mathrm{C}_{2}\left(\mathrm{CF}_{3}\right)_{2}\right) \quad\left(\mathrm{R}=\mathrm{R}^{1}=\mathrm{Me}, \mathrm{Et} ; \quad \mathrm{R}=\mathrm{Me}, \mathrm{R}^{1}=\mathrm{Ph}\right)^{231}$ and $\operatorname{RuNO}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{3} \quad(\mathrm{R}=\mathrm{Me}, \mathrm{Et})^{223}$ have been reported (for details see pages $28-32$) but the latter is the only example to date of a ruthenium compound containing a 'dangling' dithioacid group. Related 1,2-dithiolene complexes of ruthenium of type $\mathrm{Ru}_{\left(\mathrm{S}_{2} \mathrm{C}_{2}\left(\mathrm{CF}_{3}\right)_{2}\right)(\mathrm{CO})_{\mathrm{n}}\left(\mathrm{ER}_{3}\right)_{3-n},}$ ($n=1,0 ; E=P, A s$) have also been recently reported 314,315 .

In contrast, apart fiom brief reforences to the syntheses of $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{3} \quad\left(\mathrm{R}=\mathrm{Et},{ }^{205} \mathrm{Ph}^{302}\right)$, no investigation of ruthenium dialkyl (or diaryl) phosphinodithioates: : has been made.

By analogy with earlier palladium and platinum studies ${ }^{15,16,19,}$ our first attempts to synthesise a range of ruthenium dithioacid compounds were made either by reacting tertiary phosphines directly with $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{3}\right)_{3}$ or by refluxing an ethanolic solution of $\mathrm{RuCl}_{3} \cdot \mathrm{nH}_{2} \mathrm{O}$, $\mathrm{NaS}_{2} \mathrm{PR}_{2}$ and $\mathrm{PMe}_{2} \mathrm{Ph}$. In both cases, the main product was $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{3}\right)_{3}$ which provides an effective demonstration of the substitutional inertness of the $R u(I I I)\left(d^{5}\right)$ co-ordination sphere in this instance. This contrasts with the behaviour of $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{3}$ towards NO, which reacts to give RuNO $\left(S_{2} \mathrm{CNR}_{2}\right)_{3}$ even at low temperatures ${ }^{223}$. However, this can be rationalised in terms of the loss of entropy in going from reactants to product being more than compensated for by the

UNIVERSITY OF EDINBURGH THESIS:
Author (surname, initials):
Degree: Year:
This thesis is an unpublished typescript and the copyright is held by the author. All persons consulting this thesis, or having copies made, must sign the Copyright Declaration below.
Copying regulations:
(1) This thesis may be copied in whole or in part for the use of individuals and for libraries wishing to add this thesis to their stock. Copying must be done by Edinburgh University Library.
(2) This thesis must not be copied, either in whole or in part, without the applicant obtaining the author's written permission. If permission is granted, then copying musitbedone by Edinburgh Diversity Library. (The bibliography/list of works eonsutted may bo copied without the author's permission, provided the copying is dene by Edinburgh University Library.)
(3) This thesis may be copied only in so far as the-copying does not contravene the 1956 Copyright Acct, -copying must be done byEdinburgk University Library.
Copyright Declaration: I undertake fully to observe the author's copyright in this thesis, not to publish the whole or any part of it without the author's written permission, and not to allow any other person to use any copy made for me.

reduction in enthalpy of the system produced by the greater strength of the Ru-N bond than of the Ru-S bond, and the more favourable eighteen electron configuration of the product. Since tertiary phosphines are only two electron donors, the products of reactions of Ru(S. $\left.\mathrm{PR}_{2}\right)_{3}$ with them would only be severiteen electron systems (like $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{3}$) and the reduction in enthalpy of the system would not be nearly as great as in the formation of Ruivo $\left(S_{2} \mathrm{CNR}_{3}\right)_{3}$. This is evidently not sufficient to compensate for the loss of entropy by the systems, at least at the temperatures at which the reactions were attempted, and hence no reaction occurred.

Therefore, we attempted to prepare complexes of ruthenium containing both phosphine and dithioacid ligands from reactions of halo-complexes of ruthenium which already contained phosphines with alkali metal salts of dithioacid ligands. As previously pointed out (page 44) this method had already been shown to be successful in the preparation of $\mathrm{Ru}(\mathrm{S}-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ from $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ and $\mathrm{Na}(\mathrm{S}-\mathrm{S})$ $\left(S-S=S_{2} C N R_{2} \text { or } S_{2} C O R\right)^{233}$ and proved to be extendable to other related systems. Thus, when $\mathrm{RuCl}_{2}\left(\mathrm{PPl}_{3}\right)_{n}(n=3 \text { or } 4)^{287}$, $\mathrm{RuCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{MeNO}_{2}{ }^{315}, \mathrm{RuCl}_{2}\left(\mathrm{PEtPh}_{2}\right)_{3}^{291},\left[\mathrm{Ru}_{2} \mathrm{Cl}_{3}\left(\mathrm{PMeFh}_{2}\right)_{6}\right] \mathrm{Ci}^{289}$ or mer $-\mathrm{RuCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}^{293}$ are gently refluxed in ethanol with an excess of $\mathrm{NaS}_{2} \mathrm{PR}_{2}(\mathrm{R}=\mathrm{Me}, \mathrm{Et}$ or Ph$)$ for ca. two hours, orange solutions are formed. Cooling the orange solutions, arter filtration to remove any sodium chloride formed, causes orange crystals of composition $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2} \mathrm{~L}_{2}\left(\mathrm{~L}=\mathrm{PPh}_{3}, \mathrm{PPh}_{2} \mathrm{Me}, \mathrm{PMe}_{2} \mathrm{Ph}\right.$ or PEtPh 2$)(\mathrm{A})$ to be deposited in high yield.* Similar products are formed using acetone or methanol as solvent, except that reaction of $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{3}\left(\mathrm{PMePh}_{2}\right)_{6}\right] \mathrm{Cl}$ with $\mathrm{NaS}_{2} \mathrm{PMe}_{2}$

Shorter reaction times with stoichiometric amounts of $\mathrm{NaS}_{2} \mathrm{PR}_{2}$ give paramagnetic species which have not been characterised, but they are probably similar to some of the $\mathrm{Rh}(I I I)$ and $\mathrm{O}_{S}(I I I)$ complexes reported in Chapters 3 and 4.
in methanol aiso produces a red solid, believed to be of composition $\mathrm{Ru}_{2} \mathrm{Cl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{5}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)$ which is similar to the complexes obtained by pyrolysis of $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{3}\left(\mathrm{PR}_{3}\right)_{6}\right]\left[\mathrm{S}_{2} \mathrm{PR}_{2}\right]^{317}$ (c.f. the pyrolysis of $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{3}\left(\mathrm{PEt}_{2} \mathrm{Ph}_{6}\right] \mathrm{Cl}\right.$ in n-propylpropionate (see page 43) $)^{296}$. In this instance. the dimer is readily separated from $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMePh}_{2}\right)_{2}$ by the technique of dry column chromatography ${ }^{318}$. For $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ and $\mathrm{NaS}_{2} \mathrm{PPh}_{2}, \mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)_{2}-$ $\left(\mathrm{PPh}_{3}\right)_{2}$ is only obtained in a pure form in the presence of excess PPh_{3}; with no added PPh_{3}, analytical and molecular weight data (see experimental section) indicate that a mixture of $\mathrm{Ru}_{j}\left(\mathrm{~S}_{2} \mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ and $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)_{2} \mathrm{PPh}_{3}$ is formed (other reactions in which similar results occur inciude the formation of mono- and his- carbonyl dithiocarbamato complexes of ruthenium ${ }^{235}$ and of $\mathrm{HuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{n}$ ($n=3$ or 4$)^{287}$ by slight changes in the experimental conditions). However, by reaction in the presence of excess sulphur (an effective tertiary phosphine scavenger), pure $R u\left(S_{2} \mathrm{PPh}_{2}\right)_{2} \mathrm{PPh}_{3}$ can be isolated. $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2} \mathrm{~L}_{2}\left(\mathrm{~L}=\mathrm{PPh}_{3}, \mathrm{PMe}_{2} \mathrm{Ph}\right.$ or $\left.\mathrm{P}(\mathrm{OPh})_{3}\right)(\mathrm{E})$ are prepared in a similar fashion to (A) by reaction of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}, 287$ mer- $\mathrm{RuCl}_{3}{ }^{\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}}{ }^{293}$ or $\mathrm{RuCl}_{2}\left(\mathrm{P}(\mathrm{CPh})_{3}\right)_{4}^{292}$ with $\mathrm{NaS}_{2} \mathrm{CNie}_{2}$.

Compounds A and B have been fully characterised by elemental analyses (Tables 2.2) and the usual spectroscopic techniques (see later), and the monomeric formulation has been confirmed by osmometry and by an x ray analysis of $R u\left(\mathrm{~S}_{2} \mathrm{FEt}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ (see Appendix 2). The compounds are non electrolytes and diamagnetic (by Evans' method) ${ }^{319}$, and exhibit sharp ${ }^{1} \mathrm{H}$ n.m.r. resonances. However, exposure of solutions of A to air rapidly produces broadering of the n.m.r. signals and the growth or a weak e.s.r. signal, both of which are. attributed to facile oxidation to paramagnetic ruthenium (III) species.

The rate of oxidation which can be substantially reduced by addition of excess tertiary phosphine is also dependent on the nature of L, a qualitative order being $\mathrm{PPh}_{3}>\mathrm{PMePh}_{2}>\mathrm{PMe}_{2} \mathrm{Ph}$. The solvent medium is also important, since studies indicate that increasing the percentage of $\mathrm{CDCl}_{3} \operatorname{in} \mathrm{CDC1}_{3} / \mathrm{CS}_{2}$ mixtures increases the rate of oxidation. After several weeks, sharp resonances are again seell in the n.m.r. spectra of compounds A, but, since identical
 chapter 4), they cannot arise from metal containing species and, since for $\mathrm{L}=\mathrm{PMe}_{2} \mathrm{Ph}$, one of the signals (a doublet at $\tau 8.03$, $J_{\mathrm{PH}}=13 \mathrm{~Hz}$) corresponds to $\mathrm{PhMe}_{2} \mathrm{PS}$, substantial decomposition of the complexes probably occurs.

In the reaction of $\mathrm{RuCl}_{2}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)_{4}$ with excess $\mathrm{NaS}_{2} \mathrm{PR}_{2}$, the product formed depends critically upon both reaction time and solvent medium. Thus, in refluxing ethanol for one hour, reaction with excess $\mathrm{NaS}_{2} \mathrm{PMe}_{2}$ gives a sample of $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}\left(\mathrm{OPh}_{3}\right)_{2}\right.$. However, if refluxing is continued for a further hour, a mixture of products is obtained which proved impossible to separate by chromatographic or sublimation techniques. However, the mass spectrum of the mixture reveals the parent ion and fragmentation pattern peaks expected for $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\operatorname{POEt}(\mathrm{OPh})_{2}\right)_{2}$ together with a peak at $\mathrm{m} / \mathrm{e}^{780}$ (${ }^{102} \mathrm{Ru}$ isotope) which can only arise from the species $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right) \overline{2}_{2}$ $\left(\mathrm{P}_{(\mathrm{OEt}}^{\mathrm{O}}\right)_{2} \mathrm{OPh}_{2}$ since there is no way of obtaining a fragment of this mass number by degradation of $\operatorname{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{POEt}(\mathrm{OPh})_{2}\right)_{2}$. Consiste:1t. with this interpretation, the ${ }^{1} H$ n.m.r. spectrum of the mixture shows two sets of ethyl resonances of approximate intensity 3:1 (the ratio varied from sample to sample) attributable to the mono- and bis- ethoxy phosphite complexes respectively. The experimental carbon and hydrogen percentages for the mixture are also in good
agreement with calculated data hased on this ratio.
Further refluxing (24 hours) gives a yellow solution from
which no solid product could be isolated but a mass spectrum of the resultant oil shows peaks attributable to $\mathrm{Fu}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OEt})_{3}\right)_{2}$, together with a number of other tertiary phosphite compounds (see experimental section). However, if the reaction between
$\mathrm{RuCl}_{2}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)_{4}$ and excess $\mathrm{NaS}_{2} \mathrm{PMe}_{2}$ is carried out in refluxing methanol, even for comparatively short reaction times, a pure sample of $\operatorname{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{2}$ can be isolated and phenol and trimethylphosphite can be identified in the filtrate. All these phosphite compounds are more resistant to oxidation in solution than the corresponding tertiary phosphine complexes.

Muetterties et al ${ }^{320}$ have reported that triphenylphosphite, when co-ordinated to ruthenium, does not appear to undergo transesterification by alcohols, whereas such reactions readily occur with the free ligands. Therefore, at first sight, the transesterification of the tertiary phosphite groups in $\left.\mathrm{Ru}_{2} \mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)_{2}$ appears surprising. However, since the starting material has four phosphites per ruthenium and the product only two, then two must be released during the reaction, presumably as free tertiary phosphite. This free triphenylphosphite may then be transesterified givings in the case where methanol is solvent, trimethylphosphite. The trimethylphosphite, being a stronger nucleophile than its triphenyl-analogue ${ }^{321}$, (as well as less bulky), can then replace the co-ordinated $P(O P h)_{3}$ groups to give $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{2}$. This conclusion is supported by the observation that $\operatorname{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)_{2}$ may be recovered urichanged after refluxing in degassed methanol for $2!$ hours. Presumaioly the

In a recent paper ${ }^{322}$ Roundhill et al suggest that transesterification of tertiary phosphites occurs when the phosphites are co-ordinated to platinum. However, since in each case where transesterification occurs, there is free phosphite present in the system, a cetter explanation (in view of Muetterties work ${ }^{320}$) might be that the free phosphite is transesterified and then this replaces a bound phosphite which is, in turn, transesterified etc.
ease of formation of the $\mathrm{P}(\mathrm{OMe})_{3}$ complex, compared with the P(OEt) ${ }_{3}$ complex, is a reflection of the greater nucleophilicity of the methoxide ion compared to the ethoxide ion.

Finally, reaction of $\left\{\mathrm{RuCl}_{2} \text { (diene) }\right\}_{n}$ with $\mathrm{NaS}_{2} \mathrm{YMe}_{2}$ in dimethyl formamide or ethanol gives $\mathrm{Ru}($ diene $)\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}$ (diene $=\mathrm{C}_{7} \mathrm{H}_{8}$ or $\mathrm{C}_{8} \mathrm{H}_{12}$), analogous to $\mathrm{Ru}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}$ which is prepared by a similar method ${ }^{234}$ (see page 32).
2. Reactions of $\mathrm{Ru}(\mathrm{S}-\mathrm{S}) 2_{2} \mathrm{I}_{2}$ complexes.

All the compounds of type (A) readily react with carbon monoxide under very mild conditions to give the monocarbonyl species
$\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2} \mathrm{LCO}$ (C). For $\mathrm{L}=\mathrm{PPh}_{3}, \mathrm{AsPh}_{3} ; \mathrm{R}=\mathrm{Me}$, the same compounds are also formed by prolonged interaction of cis $-\operatorname{RuCl}_{2}\left(\mathrm{CO}_{2} L_{2}{ }^{287}\right.$ with $\mathrm{NaS}_{2} \mathrm{PMe}_{2}$. In contrast, in agreement with earlier work ${ }^{233}$, attempted carbonylation of the corresponding $\operatorname{Ru}\left(S_{2} C N R_{2}\right)_{2}\left(\mathrm{PR}_{3}^{\prime}\right)_{2}$ compounds $\left(\mathrm{PR}_{3}^{\prime}=\mathrm{PMe}_{2} \mathrm{Ph}, \mathrm{PPh}_{3}\right)$, even under pressure, gives only unchanged starting material. Furthermore, attempts to displace the remaining L group from $R u\left(S_{2} P R_{2}\right)_{2} L C O$ to give $R u\left(S_{2} P R_{2}\right)_{2}(C O)_{2}$ have also proved unsuccessful. However, the dicarbonyl complexes $\mathrm{Ru}^{\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}(\mathrm{CO})_{2}}$ $(R=M e, P h)$ have been synthesised from $\mathrm{Cs}_{2}\left[\mathrm{RuCl}_{4}(\mathrm{CO})_{2}\right]^{323}, \mathrm{NaS}_{2} \mathrm{PMe}_{2}$ and from $\mathrm{Ru}_{3}(\mathrm{CO})_{12}^{*}, \mathrm{Ph}_{2} \mathrm{PS}_{2} \mathrm{H}$ combinations respectively. Similariy, reaction of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ with tetramethyltiuramisulphide gives the previously characterised $\quad \mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}(\mathrm{CO})_{2}$. A small amount of this product is also formed by prolonged reaction of cis- $\mathrm{RuCl}_{2}(\mathrm{CO})_{2}\left(\mathrm{PPL}_{3}\right)_{2}$ with $\mathrm{NaS}_{2} \mathrm{CNMe}_{2} \quad$ Although $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2}(\mathrm{CO})_{2}$ does not react vith PR_{3}, the corresponding $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}(\mathrm{CO})_{2}$ are readily sonverted to

$$
\mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PR}_{2}\right)_{2}\left(\mathrm{PR}_{3}^{\prime}\right) \mathrm{CO} \text {. Thus, it appears that the products } \mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PR}_{2}\right)_{2} \mathrm{LCO}
$$ are thermodynamically very stable, being readily formed from either

$$
\mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PR}_{2}\right)_{2} \mathrm{~L}_{2} \text { or } \mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PR}_{2}\right)_{2}(\mathrm{CO})_{2} \text { whereas with }(\mathrm{S}-\mathrm{S})=\mathrm{S}_{2} \mathrm{CNR}_{2} \text { no }
$$

evidence has been found for the mixed species. For $L=P M e_{2} P h$, reactions of $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ and carbon monoxide give, in addition of $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right) \mathrm{CO}$, two other complexes which both analyse for $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}\left(\mathrm{PM} \mathrm{e}_{2} \mathrm{Ph}\right)_{2} \mathrm{CO}$. Compounds of this type have not been observed with other tertiary phosphines. A detailed spectroscopic analysis of these compounds, together with proposed structures and a possible general mecha:ism for these carbonylation reactions are presented later in this chapter. All the $R u(S-S)_{2} L_{2}$ compounds undergo ligand exchange reactions with other phosphorus ligands of greater basicity. Thus, for $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2} \mathrm{~L}_{2}$ where $\mathrm{L}=\mathrm{PPh}_{3}$ or PMePh_{2}, reaction with $\mathrm{PMe}_{2} \mathrm{Ph}\left(\mathrm{L}^{\prime}\right)$ gives $R u\left(S_{2} P R_{2}\right)_{2} L_{2}^{\prime}$; similarly, both L groups are displaced by L^{\prime} when $L=\mathrm{PPh}_{3}, \mathrm{~L}^{\prime}=\mathrm{PMePh}_{2}$ and also with $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ and excess $\mathrm{PMe}_{2} \mathrm{Ph}, \quad \mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{2}\right.$ is exclusively formed. These results can be readily rationalised on the basis that the compounds $\operatorname{Ru}(S-S)_{2} L_{2}^{\prime}$ are both sterically and electronically favoured compared with the mixed ligand complexes $R u(S-S)_{2} L L^{\prime}$. However, when the phosphine complexes are treated with $\mathrm{P}(\mathrm{OFh})_{3}$, steric effects become more important. Thus, $\operatorname{Ru}\left(S_{2} \mathrm{PR}_{2}\right)_{2}\left(\mathrm{PMe} \mathrm{P}_{2} \mathrm{Fh}\right)_{2}$ and $\mathrm{P}(\mathrm{OPh})_{3}$ give only the mixed ligand complex $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)\left(\mathrm{P}(\mathrm{OPh})_{3}\right)$
whereas with $\mathrm{Ru}(\mathrm{S}-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{2} \quad\left(\mathrm{~S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{PMie}_{2}, \mathrm{~S}_{2} \mathrm{CNM} \mathrm{C}_{2}\right)$, both $\mathrm{Ru}(\mathrm{S}-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{P}(\mathrm{OPh})_{3}\right)$ and $\mathrm{Ru}(\mathrm{S}-\mathrm{S})_{2}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)_{2}$ can be isolated, the amount of each depending on the conditions employed. This is presumably because there is a fine balance between the large difference in basicity of PPh_{3} and $\mathrm{P}(\mathrm{OPh})_{3}$ (which will favour the bis-phosphite complex) and the greater steric crowding in the bis-phosphite complex compared with tine mixed phosphine-phosphite species.

On account of the lability of ruthenium-olefin bonds, the complexes $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}$ diene (diene $=\mathrm{C}_{7} \mathrm{H}_{8}$ or $\mathrm{C}_{8} \mathrm{H}_{12}$) have proved very useful as
starting materials for exchange reactions and react with CO or PPh_{3} to give $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{~L}_{2}\left(\mathrm{~L}=\mathrm{CO}\right.$ or $\left.\mathrm{PPh}_{3}\right)$. The diene complexes also react with ditertiary phosphines to give $\operatorname{Ru}\left(S_{2} \mathrm{FM}_{2}\right)_{2}$ ($\mathrm{P}-\mathrm{P}$) ($\mathrm{P}-\mathrm{P}=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$ (diphos) or $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPH}_{2}$) which, because of the insolubility of trans $-\mathrm{RuCl}_{2}(\mathrm{P}-\mathrm{P})_{2}^{289}$ are only obtained in low yield from the reactions of these compounds with $\mathrm{NaS}_{2} \mathrm{PMe}_{2}$. With o-phenylenebisdimethyl-arsine (diars), $\mathrm{Ru}^{\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)}$ gives an off white compound which analyses for $R u\left(S_{2} \mathrm{PMe}_{2}\right)_{2}(\text { diars })_{2}$ after refluxing in ethanol, but recrystallisation of this compound from toluene either in the presence or absence of elemental sulphur gives orange $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}$ (diars). Unfortunately, $\mathrm{Ru}^{\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)}$ (diene) do not react with triphenylarsine and since attempts to prepare $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)_{2}\left(\mathrm{AsPh}_{3}\right)_{2}$ from $\mathrm{RuCl}_{3}\left(\mathrm{AsPh}_{3}\right)_{2} \mathrm{MeOH}^{-287}$ or $\mathrm{Me}_{4} \mathrm{~N}\left[\mathrm{RuBr}_{4}\left(\mathrm{AsPh}_{3}\right)_{2}\right] 2 \mathrm{Me}_{2} \mathrm{CO}^{316}$ and $\mathrm{NaS}_{2} \mathrm{PPh}_{2}$ only gave rise to the formation of $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)_{3}$, we have not succeeded in preparing any complexes of ruthenium which contain both dithioacid ligands and triphenylarsine, apart from
cis-Ru($\left.\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}(\mathrm{AsPh})_{3} \mathrm{CO}$ (see above).
3. Spectrosconic Properties of Dithioacid Complexes.
(a) Infrared Spectra:- The infra-red (ir) spectra of all the complexes reported are rather complicated, showing absorptions due to the tertiary phosphine or phosphite groups, as well as the phosphinodithioate ligands. However, recent work in this laboratory ${ }^{15}$, indicates that for platinum and palladium (II) diphenylphosphinodithioate complexes, there appears to be an empirical i.r. mothod of distinguishirg between bidentate, ionic and unidentate co-ordination of the $\mathrm{S}_{2} \mathrm{PPh}_{2}$ group. Thus, bidentate so-ordination is characterised by two bands at 603, $570 \mathrm{~cm}^{-1}$; ionic, $650,560 \mathrm{~cm}^{-1}$ and unidentate, $645,540 \mathrm{~cm}^{-1}$. Similarly, platinum and palladium (II) dimethylphosphinodithioates
have characteristic bands at $570-585 \mathrm{~cm}^{-1}$ (bidentate); $610 \mathrm{~cm}^{-1}$ (ionic) and $600 \mathrm{~cm}^{-1}$ (unidentate). In this instance, the lower energy band (ca $500 \mathrm{~cm}^{-1}$) is masked by strong ligand Vibrations ${ }^{16}$.

An examination of Table 2.3 reveals that all the $R u\left(S_{2} P_{2}\right)_{2} L_{2}$, $\operatorname{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right) 2^{\mathrm{LL}}{ }^{\mathrm{\prime}}$ and $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}(\mathrm{~L} \mathrm{~L})$ complexes contain only i.r. absorptione characteristic of bidentate $\mathrm{S}_{2} \mathrm{PR}_{2}$ co-ordination. Similarly, in spite of complications arising from the presence of carbonyl bending modes ($\delta_{C O}$) in the region $600-500 \mathrm{~cm}^{-1}$, all the compounds of type $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2} \mathrm{LCO}$ and $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}(\mathrm{CO})_{2}$ show only 'bidentate' $\mathrm{S}_{2} \mathrm{PR}_{2}$ co-ordination. The latter also have two ν_{co} bands
 in addition to the 'bidentate' bands, there are, absorptions at 645, $540 \mathrm{~cm}^{-1}\left(\mathrm{~S}_{2} \mathrm{PPh}_{2}\right)$ and $\mathrm{ca} 600 \mathrm{~cm}^{-1}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)$, indicative of unidentate co-ordination, although the presence of a carbcayl bending vibratic: in this region is a complicating factor. In the i.r. spectrum of $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}$ (diars) $_{2}$, the only band in the $700-500 \mathrm{~cm}^{-1}$ region is a strong peak at $600 \mathrm{~cm}^{-1}$ witl: a shoulder at $595 \mathrm{~cm}^{-1}$, which suggests that both $\mathrm{S}_{2} \mathrm{PMe}_{2}$ groups are unidentate. This observation, which is supported by n.m.r. data (see later) together with the rest of the data in Table 2.3 clearly indicate the generality of these empirical methods for distinguishing between different types of $\mathrm{S}_{2} \mathrm{PR}_{2}$ co-ordination in platinum metal complexes.
(b) Mass Spectra:- The complexes of formula $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}\left(\mathrm{PR}_{3}^{\prime}\right)_{2}$ are all of high melting point and decompose at low enough temperatures to make it impossible to obtain mass spectra for these complexes. However, the phosphine/phosphite, bisphosphi'se, diphos and diene compounds are more volatile and excellent mass spectra may ke recorded
at ca 440K. These consist of well-defined parent ion peaks together with fragmentation patterns e.g. the spectrum of
 of methyl groups and oxygen atoms from the phosphite groups.

The carbonyl-containing compourds, $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2} \mathrm{LCO}$ and $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}{ }^{\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{CO}}$, are also more volatile than their bis-phospinine parent compounds and thus give reasonable mass spectra. For $L=$ tertiary phosphine, parent ion peaks together with fragmentation patterns corresponding to loss of carbonyl, loss of tertiary phosphine and loss of both carbonyl and phosphine groups are observed. There are also metastable ions corresporiding to the loss of carbonyl groups and in some cases; doubly positively charged species $\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2} \mathrm{~L}\right]^{2+}$ are observed. For the $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{CO}$ compounds, exactly the sare parent ion and fragmentation pattern is observed as for $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right) \mathrm{CO}$ due to ready loss of a $\mathrm{PMe}_{2} \mathrm{Ph}$ group. The phosphite complexes containing a carbonyl group give more complicated mass spectra e.g. the spectrum of $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OPh})_{3}\right) \mathrm{CO}$ (Table 2.5) which shows successive loss of carbonyl, phenoxy and, $\mathrm{S}_{2} \mathrm{PM}_{2}$ groups. (c) ${ }^{1}{ }_{\mathrm{H}}^{\mathrm{n}} \mathrm{m}, \mathrm{m} \cdot \mathrm{r}$. spectra.
i) Complexes of formula $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2} \mathrm{~L}_{2}:-\quad$ For $\mathrm{L}=\mathrm{PMe} \mathrm{Ph}_{2}$ or $\mathrm{PMe}_{2} \mathrm{Ph}$, the room temperature resonance arising from the methyl groups on the phosphines ($\mathrm{a} \mathrm{H}_{\mathrm{n}} \mathrm{PP}^{\prime \prime \prime}{ }_{\mathrm{n}}$ second order type spectrun $\mathrm{n}=3$ or 6^{324}) consists of a sharp doublet with a broad hump situated between the doublet (see Figure:2.1b, page 57). Comparison with other similar ruthenium tertiary phosphine complexes is of interest. Thus, for trans- $\mathrm{RuCl}_{2} \mathrm{CO}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3}\right.$, the ${ }^{1} \mathrm{H}$ n.m.r. spectrum consists
of a 'virtually' coupled 1:2:1 triplet from the trans phosphines and a doublet arising from the cis-phosphine, due to the fact that in this compound, $J_{p p^{\prime}}(t r a n s)$ is very large and $J_{p p}{ }^{\prime}(c i s)$ is effectively zero ${ }^{325}$. However, in some complexes, where the cis-phosphines are in equivalent chemical environments e.g. $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{3}{ }^{\left.\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{6}\right] \mathrm{Cl}}\right.$ and cis- $\mathrm{RuCl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{4}{ }^{291}\right.$, the methyl ${ }^{1} \mathrm{H}$ n.m.r. signal is a pseudo-triplet, very similar in shape to those observed here for $R u\left(S_{2} \ddot{P R}_{2}\right)_{2} L_{2} \quad\left(L=P M e_{2} P h, \mathrm{PMPPh}_{2}\right)$. This however is not true in every case, e.g. the cis-phosphines in cis- $\mathrm{RuH}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{4}$ (which are also in equivalent chemical environments) give rise to a single sinarp doublet ${ }^{308}$ (i.e. $J_{P P^{\prime}}$ is effectively zero): Thus, the pseudo-triplet pattern could arise either from cis-phosphines with a relatively large $J_{p p}$ or trans phosphines with a relatively low 324 $J_{\mathrm{PP}^{\prime}}{ }^{\prime}$ and hence no definitive conclusion about stereochemistry can be drawn from these peak contours at room temperature.

However, on cooling the $\mathrm{PM} e_{2} \mathrm{Ph}$ complex, the methyl resonance signal broadens and at 250 K , consists of two pseudo-triplets separated by ca 13 Hz (Figure 2.1 c , page 57); raising the temperature reverses the process. The best explanation for these observations is that the complex has a cis-configuration and at lower temperatures, rotation about the ruthenium-phosphorus bond is slow and the inequivalence of the chemical environments of the two methyl groups (a and b) is seen in the n.m.r. spectrum (Figure 2.2 page 58). This non-equivalence has also been noted for the trans phosphines of cis- $\mathrm{RuCl}_{2} \mathrm{CO}\left(\mathrm{PMe}_{2} \mathrm{PK}_{3}\right)^{325}$. If $\mathrm{A}\left(i=\mathrm{PMe}_{2} \mathrm{Ph}\right)$ had a trans-configuration, then the two methyl grouns on the one $F M e_{2} P h$ ligand would be in identical chemicial environments, giving rise to one resonance, irrespective of the rate of rotation about the ruthenium-phosphorus bond.

Fig. 2.1

bl

Methyl regicn of ${ }^{1} \mathrm{H}$ n.m.r. spectrum of $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMP}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{PH}_{2}\right)_{2}$ in $\mathrm{CD} \mathrm{Cl}_{3}$
at different temperatures.
a) 338 K
b) 301 K
c) 253 K

Fig. 2.2

Diagrammatic representation of cis - configuration for $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PNe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}{ }^{\text {. }}$

The process by which the phosphine methyl groups of cis-Ru(S $\left.\mathrm{SR}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ exchange at higher temperatures cannot, however, be simply an increase in the rate of rotation about the Ru-P bonds since this does not lead to coalescence behaviour, but rather to a gradual decrease in the separation of the two phosphine methyl resonances until they coincide (see for example:-
 (page 66)). Hence, the dynamic process which equilibrates the environments of the phosphine methyl groups is probably the same as that which equilibrates the environments of the $\mathrm{S}_{2} \mathrm{PMe}_{2}$ methyl groups at higher temperatures, namely an interconversion of the
 For $L=F M e P_{2}$, the similarity of the shape of the pseudo-triplet to that for $L=\mathrm{PMe}_{2} \mathrm{Ph}$, and for $L=P(O M e)_{3}$, the close similarity of the observed second-order spectrum with that obtained for cis- $\mathrm{Pt} X_{2}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{2}{ }^{326}$ is further evidence for cis-stereochemistry in these compounds.

However, full confirmation of cis stereochemistry for all these tertiary phosphine and phosphite complexes comes from an examination of the low temperature ${ }^{1} H$ n.m.r. spectra of the methyl groups of the $\mathrm{S}_{2} \mathrm{PMe}_{2}$ ligands. For cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{~L}_{2}$, two types of inequivalent dithioacid methyl groups (c and d in Figure 2.2. page 58) are present, which should give two signals, each split into a doublet by the $\mathbf{3 1}_{\mathbf{p}}$ nuclei, whereas for trans stereochemistry, only one doublet should be observed. Experimentally, the low temperature, ${ }^{1} \mathrm{H}$ n.m.r. spectra of all the bisphosphine and bis-phosphite compounds consist ef two doublets,
indicative of cis stereochemistry, at least at low temperature.*
(see Figure 2.1c, page 57 and Table 2.6).
However, on warming to room temperature or above, these two doublets first coalesce and then sharpen to a single doublet (with a very similar J_{PH}) (Figure 2.1a, page 57 and Table 2.6). This process, which occurs at different rates for different L, is completely reversible. At first sight, these observations are consistent with either a reversibie cis-trans isomerism or a rapid interconversion of the two possible optical enantiomers of the cis compounds at elevated temperatures. There are several reasons why the latter explanation is preferred. First the shape of the resonance due to thr methyl groups on the phosphines remains aimost unchanged throughout the temperature changes whereas cis-trans isoinerism should produce large changes in $\mathrm{J}_{\mathrm{PP}}{ }^{\prime}$ and hence in the shape of this resonance ${ }^{324}$. In general, it has been found that the more stable isomers of ruthenium complexes have a cis-configuration and that quite often or heating, the trans isomer undergoes an irreversible conversion to the cis isomer ${ }^{287,328}$. This is the reverse of the behaviour found in these complexes. Furthermore, the related $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}(\mathrm{CO})_{2}$ complexes, which have a cis configuration in both solid and solution state (two $\mathcal{V}_{\text {co }}$), show no evidence for formation of the trans isomer at higher temperatures (no change in i.r. spectra).

* X-ray analysis has confirmed the cis-configuration for $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PEt}\right)_{2}$ ($\left.\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ (see Appendix 2), and the related compounds $\mathrm{Ru}\left(\mathrm{HCS}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}{ }^{310(\mathrm{~b})}$ and $\mathrm{Ru}(\mathrm{pyS})_{2}\left(\mathrm{PPh}_{3}\right)_{2} \quad$ (pyS = pyridine -2 - thiolato) also possess cis stereochemistry in the solid state.

Finally, the high temperature doublet is approximately halfway between the positions of the doublets at low temperature, irrespective of L (Table 2.6). This phenomenon is characteristic of a process such as rapid inversion which averages the two chemical environments of the methyl groups c and d but not. of an interconversion of geometrical isomers where it is extremely unlikely that the chemical shift of the methyl groups of the trans isomer will always coincide with the mean of those of the cis isomer.

Therefore, all the evidence suggests that the variation in ${ }^{1} H_{\text {n.m.r }}$. spectra of these complexes cis-Ru(S $\left.\mathrm{PR}_{2}\right)_{2} L_{2}$ with temperature is due to the facile interconversion of optical isomers and the mechanism of this process is discussed in detail later in this chapter.

The chemical shifts of the methyl resonances of the $\mathrm{S}_{2} \mathrm{PMe}_{2}$ ligands are also of interest in that the position of the lower field doublet remains almost unaltered by changing L whereas that of the higher field doublet is very sensitive to changes in L, varying from〒8.08 ($L=P\left(\mathrm{OMe}_{3}\right)$ to $\tau 8.94\left(\mathrm{~L}=\mathrm{PPh}_{3}\right)$ Tahle 2.6). A possible explanation of this is that the lower field doublet arises from the methyl groups anti to the phosphorus ligands (d in Figure 2.2, page 58) and the higher field doublet from the methyl groups (c) syn to the phosphorus ligands. Then, the syn methyl groups are more influenced by the ring currents of the phenyl rings on the phosphorus ligand, causing them to be more shielded than the anti methyl groups which accounts for their higher field position. Furthermore, increasing the number of phenyl groups on the tertiary phosphine leads to increased shielding of the syn methyls, making them resonant at even
higher fields. Similar effects have been observed in the compounds $\left[\mathrm{M}(\mathrm{S}-\mathrm{S})\left(\mathrm{PR}_{3}\right)_{2}\right] \mathrm{BPh}_{4}\left(\mathrm{M}=\mathrm{Pt}\right.$ or $\mathrm{Pd} ; \quad \mathrm{S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{CNR}_{2}$ or $S_{2} C O R$) where the R and R^{1} resonances are shifted ca.0. 2-0.4. τ upfield with respect to their positions in the corresponding PF_{6}^{-}and Cl^{-}salts 16,19, as well as in recent studies on the interaction of benzene with arsenic, antimony and bismuth dithiocarbamates ${ }^{329}$. For $L=P(O P h)_{3}$, cie higher field doublet resonates at $\tau 8.35$. This is lower than that in the PPh_{3} complex, presumably because the phenyl groups are further away from the sym methyl groups and hence produce less efficient shielding.
(ii) Complexes of formula RuíS $\left.{ }_{2} \underline{\mathrm{PMe}}_{2}\right)_{2}(\mathrm{~L}-\mathrm{L})$.

In all of these tris-chelate complexes $\left(\mathrm{L}-\mathrm{L}=\mathrm{C}_{7} \mathrm{H}_{8},-\mathrm{C}_{8} \mathrm{H}_{12}\right.$, $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}$, diphos or diars), the stereochemistry of the molecules is confined by steric factors to be cis and, although for $L-L=C_{8} H_{12}$, the resonances from the diene protons are difficult to see and for $L-L=$ diphos, only the phenyl resonances are clearly seen on account of the complicated nature of the ${ }^{1} H n_{0} m, r$ signals arising from a $\mathrm{PH}_{2} \mathrm{H}_{2}^{\prime} \mathrm{P}^{\prime}$ spin system, the resonances arising from (L-L) in the other complexes are easily distinguished and are all consistent with cis stereochemistry (Table 2.6). Thus, for $L-L=C_{7} H_{8}$, signals arising from the three distinct sets of protons (Figure 2.3, page 63) are seen and are assigned as arising from $\mathrm{H}_{2}, \mathrm{H}_{3}, \mathrm{H}_{5}$ and H_{6} at $\tau 6.15, \mathrm{H}_{1}$ and H_{4} at $\tau 5.9$ and H_{7} and H_{8} at $\tau 8.7$; for $L-L=$ diars, a poorly resolved $A A^{\prime} B B^{\prime} 330$ type spectrum arising from the phenylprotons is observed, centred at $\tau 2,40$, whilst the methyl groups of the diarsine give rise to two sharp singlets at $\tau 8.24$ and $\tau 3.60$; and for $\mathrm{L}-\mathrm{L}=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}$, apart from the phenyl resonances, a sharp triplet at $\tau 5.03$ is seen which arises from the

Fig. 2.3

Diagrammatic representation of $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)$.
splitting of the methylene proton resonance by the two chemically equivalent ${ }^{31} \mathrm{P}$ nuclei. As for $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{~L}_{2}$; the methyl groups on the $\mathrm{S}_{2} \mathrm{PMe}_{2}$ ligands give rise to two doublets at low temperatures; however, in contrast to the behaviour of $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{~L}_{2}$, the resonances remain sharp on warming up to 373 K in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$. Above. this temperature, for $L-L \notin$ diene, the signals begin to broaden but since the boiling point of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ is 403 K , the condition in which fast exchange of the envirorments of the $\mathrm{S}_{2} \mathrm{PMe}_{2}$ methyl groups is occuring, is never reached (Table 2.6).

Finally, $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}$ (diars) $_{2}$ gives rise to a well resolved $A A^{*}{ }^{\prime} B^{\prime} 330$ type set of resonances in the phenyl region (Figure 2.4, page65) as well as a sharp singlet from the diars methyl groups ($\mathcal{\text { f }}$.02) and a sharp doublet from the methyl groups of the $\mathrm{S}_{2} \mathrm{PMe}_{2}$ ligands ($\tau 8,46$). This spectrum is invariant from 233 K to 333 K and this is best explained if the two $\mathrm{S}_{2} \mathrm{PMe}_{2}$ groups are both unidentate and mutually trans, since if they were cis, two resonances would be expected from the methyl groups of the diarsine ligands.
(iii) Complexes of formula $R u\left(S_{2} P_{2}\right)_{2} \xrightarrow{L C O}$ and $R u\left(S_{2} P_{2}\right) L L^{\prime}$.

In all the $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right) \mathrm{LCO}$ complexes, the methyl $\operatorname{group}(s)$ of the phosphorus ligand produce a single doublet at high temperature in the ${ }^{1} H$ n.m.r. spectrum, an observation consistent with either cis or trans stereochemistry. However, in the low temperature spectrum of $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right) \mathrm{CO}$, two doublets from the phosphine methyl groups are seen which, on warming gradually move together without broadening until they are coincident.

Fig. 2.4

Diagrammatic representation and low field ($A A^{\prime}$ BB' $^{\prime}$) type ${ }^{1}{ }_{H}$ n.m.r. spectrum of trans $-\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}(\text { diars })_{2}{ }^{\text {. }}$

Abstract

The only type of mechanism that could give rise to this behaviour is one in which the chemical environments of the two methyl groups on one phosphine become more equivalent at higher temperatures, without there being any exchange of methyl group $=$ between the two environments (since no coalescence phenomenon is observed).

One such mechanism could arise from the fact that at low temperatures (when rotation about the metal-phosphorus bond is slow) there will be one or more preferred, discrete orientations of the phosphine moiety with respect to the rest of the molecule. These preferred orientaticns will be determined by a combination of steric and electronic factors. Since there is no symmetry element of the molecule that incorporates the metal-phosphorus bond, then, under these conditions, the environments of the two methyl groups on one phosphine will be different and two different signals will therefore be seen in the ${ }^{1}{ }_{H}$ nom.r. spectrum.

Now, when the orientation of the phosphine ligand differs from that preferred, each methyl group will be in a different chemical environment from that in the preferred configuration. Thus, as the temperature is raised and the rate of rotation about the metal-phosphorus bord is increased, each methyl group will spend less time in its preferred environment and more in other environments.

In this instance, there is probably only one preferred rotamer since further cooling does not give rise to additional signals which is what would be expected if, when no rotation is possible, the phosphine group could take up more than one preferred configuration.

Its chemical shift will then be an average of the chemical shifts of each environment, weighted according to the amount of time spent in each environment. When, at higher temperatures, the phosphine group is rotating freely, each methyl group will spend an equal amount of tinc in all environments, hence, the average environment of each is the same and a single resonance is expected.

It is important to note that exchange of the environments of the methyl groups does not cccur in this process since, although at different times, each may occupy the same position relative to the non-phosphine part of the molecule, their environment with respect to the orientation of the other methyl group and the phenyl group attached to the phosnhorus atom will always be different.

For the compounds $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2} L L^{\prime \prime}$, the methyl groups on the phosphine exhibit a single sharp doublet which is temperature independent except for $R=P h ; L=\mathrm{PMe}_{2} \mathrm{Ph} ; \quad \mathrm{L}^{\prime}=\mathrm{P}$ (OPh) ${ }_{3}$ (Table 2.6). However, as for the $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{~L}_{2}$ compounds, examination of the $\mathrm{S}_{2} \mathrm{PMe}_{2}$ methyl resonances provides an unequivocal demonstration of cis stereochemistry. If the complexes $\mathrm{Ru}^{\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{LL}^{\prime \prime} \text { or } \mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe} \mathbf{2}_{2}\right)_{2} \mathrm{LCO}, ~}$ had a trans configuration, the methyl groups of the $S_{2} \mathrm{PMe}_{2}$ ligands would occupy two different environments, either syn to the ligand L or syn to L^{\prime} (or $C O$), which would give rise to two signals, each split into a doublet by coupling with a ${ }^{31} p$ nucleus, For a cis configuration, all four methyl groups will be in different chemical environments (Figure 2.5, page 68) and foiur resona;ces (each
a doublet) should appear in the ${ }^{1}{ }_{H} n_{0} m . r$. spectrum.

Fig. 2.5

Diagrammatic representation of cis-configuration for $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PM} \mathrm{e}_{2}\right) 2^{\mathrm{LL}}$
a) $\mathrm{L}=\mathrm{PMe}_{2} \mathrm{Ph}, \mathrm{L}^{\prime}=\mathrm{P}(\mathrm{OPh})_{3}$;
b) $L=P(O M e)_{3}, L^{\prime}=\mathrm{CO}_{3}$
c) $\mathrm{L}=\mathrm{PPH}_{3}, \mathrm{~L}^{\prime}=\mathrm{P}(\mathrm{OPh})_{3}$

At low temperature, the ${ }^{1} \mathrm{H}$ n.m.r. spectra of all these complexes (with the exception of $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)\left(\mathrm{P}(\mathrm{OPh})_{3}\right)$ and $\left.\left.\mathrm{Ru}_{2} \mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OMe})_{3}\right) \mathrm{CO}\right)$ consist of four doublets arising from the $\mathrm{S}_{2} \mathrm{PMe}_{2}$ groups. For $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe} \mathrm{F}_{2} \mathrm{Fh}\right)\left(\mathrm{P}(\mathrm{OPh})_{3}\right)$ the two higher field doublets are superimposed (Table 2.5). These two resonances presumably arise from the methyl groups sym to the phosphine and syn to the phosphits ligands (e and f respectively - Figure 2.5a, page 68). In this instance, although the $\mathrm{PNe}_{2} \mathrm{Ph}$ group has fewer phenyl rings than $\mathrm{P}\left(\mathrm{OFh}_{3}\right)_{3}$, those on the phosphite are further removed from the methyl group f by the presence of the oxygen atoms, thus producing similar shielding effects and hence identical chemical shifts for e and f... This conclusion is supported, in part, by the observation that the chemical shifts of the methyl groups (c) in the bis - $\mathrm{PMe}_{2} \mathrm{Ph}$ and bis $-\mathrm{P}(\mathrm{OPh})_{3}$ complexes are fairly close, being $\mathcal{T} 8.14$ and 8.35 respectively.

For $\operatorname{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OMe})_{3}\right) \mathrm{CO}$, the two lower field doublets are superimposed (i.e. g and h in Figure 2.50, page68). This is not unexpected since the chemical shifts of the low field doublets in the bis - $\mathrm{P}(\mathrm{OMe})_{3}$ and bis - carhonyl compounds occur at $\tau 8.89$ and 7.86 respectively (Table 2.5). In support of this interpretation, heteronuclear phosphorus-hydrogen spin decoupling experiments confirm that two methyl groups attached to different phosphorus atoms are accidentally superimposed.

The methyl resonances of the dithio ligands of the cis -
 temperature invariant up to ca 330 K (although measurements on cis - $\left.\mathrm{Ru}_{2} \mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)(\mathrm{CO})$ at higher temperatures in chlorobenzene indicate similar behaviour to that described below for

$$
\left.\left.\mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right) \mathrm{P}\left(\mathrm{OPh}_{3}\right)\right) \text {. However, those of the } \mathrm{Ru}_{2} \mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{LL}^{l}
$$

compounds show marked changes at lower temperatures. For example, on warming $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{P}(\mathrm{OPh})_{3}\right)$, the four methyl doublets present at low temperature (Figure 2.6a, page 71) begin to broaden, the inner two coalescing at ca 280K (Figure 2.6b page 71) and the outer two continuing to broaden until at 320K, the spectrum consists of a slightly broadened doublet superimposed on a broad signal which represents the coslesced peak of the outer doublets (Figure 2.6c, page 71). At even higher temperatures (in chlorobenzene), the spectrum consists of two doublets situated halfway between the original inner and outer doublet positions respectively (Figure 2.6 d , page 71) (Table 2.5). This behaviour is attributed to the facile interconversion of optical isomers at higher temperatures, the different coalescence temperatures for the two pairs of doublets being due to their different separations. At this juncture, it is of interest to consider which resonances in the low temperature spectrum of this compound correspond to which methyl groups of the complex because such information will be important when the detailed mechanism of the inversion process is considered. According to the theory propounded earlier in which the ring currents of the phenyl rings on L (or L^{\prime}) shield the methyl groups nearest to them, the methyl resonances of $R u\left(\mathrm{~S}_{2} \mathrm{PM}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{P}(\mathrm{OPh})_{3}\right)$ are assigned as h, g, f and e respectiveiy. (Figure 2.5 c , page 68) in ascending order of chemical shift (Figure 2.6a pas' 71). This is based on the fact that methyl groups e and g are closer to the PPh_{3} group (which has the greater shielding effect) than are f and h. These conclusions are supported by the fact that irradiating the phosphorus spectrum at 40481983 Hz collapges the doublets labelled e and g whereas irradiation at 40482100 Hz decouples f and h.

b)
c)

Fig. 2.6

Methyl region of ${ }^{1} \mathrm{H}$ n.m. $\mathrm{r}_{\text {. . spectrum of }} \mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{P}(\mathrm{OPh})_{3}\right)$
at different temperatures.
(a) 233 K in $\mathrm{CH}_{2} \mathrm{C}_{2}$; (b) 283 K in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (c) 310 K in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$;
(d) 363 K in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$.

This confirms that the methyl groups giving rise to resonances e and g are attalhed to the same phosphorus atom whereas those giving rise to resonances f and h are attached to the other phosphorus atom. Thus at higher temperature, the chemical environments of groups h, e and of g, f are interchanged but there is no exchange between any of the other environments. * A possible interpretation of these observations is presented later in this chapter.
(iv) Complexes of Formula $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2} \underline{\mathrm{O}}_{2} \underline{L}_{2}\right.$.

It was reported earlier ${ }^{233}$ that the ${ }^{1} H$ n.m.r. spectrum of $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Me}_{2} \mathrm{CO}$ shows $\mathrm{S}_{2} \mathrm{CNMe}_{2}$ methyl resonances at $\tau 7.18$ and 7.30 (with an intensity ratio of 1:2). The authors concluded that the structure was trans, attributing the mechyl group splitting to different orientations of the methyl groups, which they suggested is probably caused by steric effects emanating from the bulky PPh_{3} groups. However, on repeating this experiment, (in both cold and refluxing acetone), a crystalline yellow solid, analysing for $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Me}_{2} \mathrm{CO}$ was formed, whose n.m.r. spectrum contains two methyl resonances of the same intensity at $\tau 7.06$ and $7.25 ;$ there is also a peak at $\tau 7.86$ (acetone). This spectrum is consistent with a cis - configuration. Similarly, for $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2} \mathrm{PMe}_{2} \mathrm{Ph}_{2}$, prepared from mer $-\mathrm{RuCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3}\right.$, the

Homonuclear double resonance experiments at low temperature, in which irradiation at the resonant frequency of one of the lines of doublet h causes partial collapse of the corresponding line in
doublet e but no collapse of doublets f and g, confirm that exchange is orly occurring between methyl groups e, h and $f, g .{ }^{331}$
low temperature ${ }^{1}$ H nom.r. spectrum consists of two pseudo-triplets ($\mathrm{PMe}_{2} \mathrm{Ph}$ groups) änd two singlets ($\mathrm{S}_{2} \mathrm{CNM} \mathrm{C}_{2}$ groups) which is indicative of a cis - configuration. On warming, the two pseudo triplets move together without broadening until at 263 K they are coincident whilst the methyl double亡 coalesces to a singlet at ca 300K. A similar behaviour is observed at 318 K for the bis - PPh complex (Table 2.6). For these compounds, the coincidence of the pseudo-triplets at higher temperatures is again attributed to the free rotation around the Ru-P bonds. However, the process equilibrating the methyl groups at higher temperatures is probably due to facilecon bond rotation rather than inversion of optical isomers. This conclusion is based on the results of a kinetic line shape analysis on the compound $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{P}(\mathrm{OPh})_{3}\right)$ which reveals different rates of exchange for the two sets of methyl groups. This is discussed in more detail later in this chapter.

Finally, the reaction of cis $-R u\left(S_{2} \mathrm{CNMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ with excess $\mathrm{PMe}_{2} \mathrm{Ph}$ in ethanol gives two products which both analyse for $\operatorname{Ru}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{2}\right)_{2} \quad$ The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of the more soluble species (71% vield) is identical to that obtained from mer $\mathrm{RuCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ and $\mathrm{NaS}_{2} \mathrm{CNMe}_{2}$ (i.e. the cis isomer). However, the $\mathbf{1}_{\mathrm{H}}$ n.m.r. spectrum of the minor product (21%), which is temperature invariant up to 315 K , has a single, sharp peak at $\tau 7.20$ ($\mathrm{S}_{2} \mathrm{CNMe}_{2}$ groups) and a broader peak or the same intensity at $\tau 8.27$ ($\mathrm{PMe}{ }_{2} \mathrm{Ph}$ groups), indicative of a trans configuration, with $J_{P H} \simeq-J_{P_{H}}$ and a large valva of $J_{P P}{ }^{\prime}$: On further heating, this compound rearranges irreversibly to the cis isomer. Therefore, in this instance, there is evidence for the irreversible trans - cis isomerism found elsewhere 287,328 , and on this evidence, it is also possible to interpret the ${ }^{\mathbf{1}} \mathrm{H}$ n.m.r. spectrum of
$\left.\left.\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNMe}\right)_{2}\right)_{2} \mathrm{PPh}_{3}\right)_{2}$ observed earlier ${ }^{233}$ as a $50 / 50$ cis/trans mixture of isomers with the trans methyl resonance accidentally superimposed on one of the cis methyl resonances.
4. Mechanism of Inversion of Optical Isomers of $\mathrm{Ru}\left(\mathrm{S}_{2} \underline{P M e}_{2}\right)_{2} \underline{L}_{2}$ -

A great deal of interest has bsen shown in recent years in the mechanisms of interccnversions of optical iscmers of metal complexes and a compsensive review of the publications in this field has recently appeared ${ }^{332}$. Most of the results which have been presented pertain to tris-chelate complexes although complexes of general formula cis-M(chelate) $2_{2} X_{2}$ have also been studied ${ }^{332}$. In ruthenium chemistry, the only stereochemically labile complexes for which optical inversions have been reported are $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CMMeBz}\right)_{3}{ }^{208}$ (see page 29) añd $\mathrm{RuH}_{2}(\mathrm{~L})_{4}^{311}$ (page 45).

Apart from the tunnelling of hydride ions in $\mathrm{RuH}_{2} \mathrm{~L}_{4}$, two main first-steps have been postulated for the inversion of optical isomers. First, an ertension of the normal vibrations of a molecule can lead to a twist of one half of the molecule with respect to the other half about an imaginary C_{3} axis, as has been noted for $M\left(S_{2} C N R_{2}\right)_{3}(M=F e, M n$ or CO) (see chapter i); or second, rupture of a metal - ligand bond to give rise to a square-pyramidal or trigonal-bipyramidal transition state may occur, followed by some form of rearrangement of the transition state, and recombination to give the optical isomer, as in Al(acac)(hfac) 2 (acac $=$ acetylacetonate, hfac $=$ hexafluoroacetyl-acetonate ${ }^{333}$).

In Table 2.7, the activation parameters for the inversion of the optical isomers of $\operatorname{Ru}\left(S_{2} \mathrm{PMe}_{2}\right)_{2} L_{2}$, as calculated by full line-shape analyses, are given and a detailed example of how these parameters are obtained from variable temperature ${ }^{1} \mathrm{H}$ n.m.r. and computer simulated spectra is included in Appendix 1. The results are
presented graphically in Figure 2.7 (page 76). For cis $\left.-\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{PPR}_{3} \mathrm{OPh}\right)_{3}$), where four methyl groups are present at low temperature, inversion rates and activation parameters were determined by separate line-shape analyses on the exchange of the inner methyl doublets (g and f) and the outer doublets e and h (Figure 2.6, page 71). The close similarity of the calculated values for these rates and activation parameters (see Table 2.7) indicates that the same process is responsible for the interchange of the chemical environments of these two sets of methyl protons. For cis $-\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right) \mathrm{CO}$, the activation parameters given in the Table were calculated by using rate data obtained from the exchange of both the inner and outer doublets respectively, which again suggests that a common kinetic process is in operation.

From Table 2.7, several otner points of interest emerge which must be considered when contemplating possible mechanisms of inversion. For example, the rate and associated activation parameters are dependent upon the solvent medium in which the measurements are made. For cis $-\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$, measurements in $\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Ci}$ and CDCl_{3} respectively (Figure 2.8, page 77) show an increasing inversion rate accompanied by a substantial decrease in ΔH^{\ddagger} and ΔS^{\ddagger} values, particularly on changing from $\mathrm{C}_{6} \mathrm{H}_{6}$ to $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}\left(\right.$ or CDCl_{3}). In addition, measurins the rate of imversion (by line shape analysis) at 301 K for $\mathrm{CS}_{2} / \mathrm{CDCl}_{3}$ solutions of cis - $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMC}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ in which the CDCl_{3} component is increased from 0 to ca. 40% reveals a first order dependence on CDCl_{3} concentration (Figure 2.9, page 78). Solvent dependences have been noted in the inversion of other complexes by bond rupture

Arrhenius plots $\left(\log _{10} \mathrm{k}\right.$ vs. $\left.1 / \mathrm{T}\right)$ for various cis $-\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{I}_{2}$.

Arrhenius plots $\left(\log _{10} \mathrm{k}\right.$ Vs. $\left.1 / \mathrm{T}_{\mathrm{T}}\right)$ for $\mathrm{cis}-\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ in various solvents.

mechanisms but in general they are relatively insignificant; producing small changes in ΔS^{\ddagger} and negligible changes in ΔH^{\ddagger}. They are attributed to the different charge separations and degrees of solvation in passing from the ground state of a molecule to the transition state with a dangling ligand ${ }^{333}$. However, the mechanism for exchange of the phosphine methyl groups in ($\mathrm{PhMe}_{2} \mathrm{P}$) $\mathcal{C l} \mathrm{M}_{1}\left(\mathrm{OOCH}_{3}\right)_{2}(\mathrm{M}=\mathrm{Pt}, \mathrm{Pd})$ has been postulated as involving a solvent assisted rupture of the $M-0$ bond of a bridging carboxylate group followed by rotation of one half of the molecule about the other bridging ligand and reformation of the M-O bond with expulsion of solvent ${ }^{334}$.

In a given solvent $\left(\mathrm{CDCl}_{3}\right)$, the inversion rate is also dependent on the group L, the relative order being
 $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2} \sim$ diars $>\mathrm{CO} \sim \mathrm{C}_{7} \mathrm{H}_{8} \sim \mathrm{C}_{8} \mathrm{H}_{12}$, which is qualitatively the same as the order found for the rates of oxidation of cis $-\operatorname{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{~L}_{2}$ in solution (page $\mathrm{l}_{4} 9$).

Finally, for the compounds cis $-\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}\left(\mathrm{PMe} \mathrm{Ph}_{2}\right)_{2}(\mathrm{R}=\mathrm{Me}$ or Ph$)$, the two pseudo-triplets arising from the $\mathrm{PM} \mathrm{P}_{2} \mathrm{Ph}$ methyl groups at low temperature in CDCl_{3} are separated by 13 Hz and 8 Hz and these coalesce at ca 278 K and 273 K respectively. From this data, the free energies of activation for the processes which average the methyl protons are estimated to be 57.4 and 58.6 k. Tmol^{-1} respectively. Although the value of ΔG_{278}^{\neq}for this process for cis $-R u\left(S_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ is different from that obtained by line shape analysis for the exchange of the $\mathrm{S}_{2} \mathrm{PMe}_{2}$ methyl groups, $\left(63.4 \mathrm{KJmol}^{-1}\right)$ the coalescence approach assumes a small line width compared with the separation of the peaks ${ }^{334}$. In this case, the assumption is invalid since the line width of each
pseudo-triplet is ca. $12 . \mathrm{OHz}$ which is comparable with their separation (13.0 Hz). This fact coupled with the observation that fast rotation around the metal phosphorus bond does not lead to coalescence phenomena (see page 66) indicates that there is probably only one kinetic exchange process occurring (inversion of optical enanticmers) and this exchanges both the phosphine methyi groups, and the methyl groups of the $\mathrm{S}_{2} \mathrm{PMe}_{2}$ ligands.

The possible mechanisms for the inversion process in cis - Ru($\left.\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{~L}_{2}$ will now be considered, starting with intramolecular twisting mechanisms.
(a) Bailar (or trigonal) Twists ${ }^{335}$:- In this mechanism, the three atoms comprising one face of these octahedral complexes are rotated through 120° about the imaginary three-fold axis (i-C \mathbf{C}_{3}) which passes through that face, whilst keeping the opposite face fixed. In the complexes cis - $\operatorname{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{LL}^{\prime}$, there are four such axes as illustrated in Figure 2.10 (page 81) and diagrams of the complex as viewed along those axes are given in Figure 2.11 (page $8 \overline{22}$. The positions of the methyl groups e, f, g and h shown in these Figures are consistent with the detailed assigninents made earlier for $L=\mathrm{PPh}_{3}, L^{\prime}=P(C P h)_{3}$ (page 72) and the starting configuration arbitarily chosen is designated cis $-\Delta$ on the basis of rules suggested by the recent IUPAC cormission ${ }^{336}$.

The problem is now to consider the effect of a trigonal twist around each axis in turn (clockwise and anticlockwise) in order to determine if such a process gives the optical isomer and also interchanges only the chemical environments of the methyl groups e, h and g, f respectively. Examination of Figure 2.11a (page 82)

Fig. 2.10

Labelling of the four imaginary C_{3} axes $\left(i-C_{3}\right)$ for the cis $-\Delta-\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{LL}$ ' complex.
$\mathrm{i}_{-C_{3}}(1)$ axis through plane of atoms S_{1}, L, S_{2}.
$\mathrm{i}_{-1} \mathrm{C}_{3}$ (2) " \quad " $\quad \mathrm{n} \quad \mathrm{n} \mathrm{L}^{\prime}, L, \mathrm{~S}_{1}$
i_{3} (3) " " n " " $\mathrm{S}_{3}, L, L^{\prime}$.

c)
cis $-\Lambda^{4}$
terically impossibte since S_{3} would be trans $\mathrm{to}^{3} \mathrm{~s}_{4}$.

Sterically impossible
since S_{1} would be trsns
to S_{2} and S_{3} would be
lians to S_{6}
Fig. 2.11
and Table 2.8 shows that the rotation about the $i-C_{3}(1)$ axis in a clockwise direction gives the trans isomer whereas an anticlockwise twist gives the cis - isomer. However, the $\mathrm{C}_{2} \mathrm{PMe}_{2}$ methyl groups will finish in the same chemical environment as they started and hence this twisting motion predicts inversion without any scrambling of methyl resonances. Rotation about $i-C_{3}(2)$ or $i-C_{3}(3)$ in a clockwise direction is inpossible because it leads to a configuration in which a $\mathrm{S}_{2} \mathrm{PM}_{2}$ group would have to span trans positions. Anticlockwise rotation about these axes gives the optical isomer together with scrambling of all methyl groups. Hence, if this were the inversion mechanism, a single methyl resonance should be observed at elevated temperatures and careful experiments with cis - $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{P}(\mathrm{OPh})_{3}\right)$ and cis - $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right) \mathrm{CO}$ (see pages 69 and 70) show that this is not the case. Finally, rotation about i-C $C_{3}(4)$ is sterically impossible in an anticlockwise direction but in a clockwise direction gives the cis $-\Lambda$ isomer and only partial scrambling of methyl groups. Thus, groups e, f and g, h respectively are interchanged (Figure 2. 11d, page 82 and Table 2.8). However, examination of Figure 2.5 (page 68) shows that for $L=L^{\prime}$, groups e and f and groups g and h are chemically equivalent and, therefore, if this were the inversion mechanism, the ${ }^{1} \mathrm{H}$ n.m.r. spectra of the compounds cis $-\operatorname{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{~L}_{2}$ should be temperature invariant. This is not the case and therefore a mechanism involving a trigonel twist about this axis is also rejected. (b) Ray Dutt (or rhombic) Twist ${ }^{337}$:- For Gis - $\left.\mathrm{Ru}^{-2} \mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{~L}_{2}$, this inversion mechanism may be visualised as follows:- the two L groups remair fixed while the two chelate rings rotate in their planes in different directions through an angle of 90° about axes which are perpendicular to their respective planes and pass through
the ruthenium ion. For cis - $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{~L}_{2}$ this does not produce any scrambling of the methyl resonances and so this twisting mechanism can also be discarded.

Final rejection of a trigonal or rhombic twist mechanism comprising rotation about one or seyaral of these axes is based on a consideration of steric effects on the expected trigonal prismatic cransition state. If a twisting mechanism is important, the activation energy for the process should be dependent on the size of L, being higher the bulkier the ligand ${ }^{338}$. However, the results given in Table 2.7 reveal no apparent correlation with the size of L e.g. the bis $-\mathrm{PPh}_{3}$ complex has a smaller activation energy than the bis - Phic ${ }_{2} \mathrm{Ph}$ complex which is smaller then the bis $-\mathrm{P}(\mathrm{OPh})_{3}$ compound. The large dependence of rate and associated activation parameters on solvent composition is also not compatible with a twist mechanism ${ }^{339}$.

Therefore, it is necessary next to consider inversion mechanism arising from initial cleavage of a ruthenium-ligand bond.
(c) Cleavage of a ruthenium-phosphorus bond:- Since the activation energies for the optical isomerism of the compounds cis $-\mathrm{Ru}^{\left(\mathrm{S}_{2} \mathrm{Prie}_{2}\right)_{2} \mathrm{~L}_{2}}$ depend on the ligand L, it seems reasonable, at first sight, to postulate that the inversion mechanism might involve dissociation of a phosphorus ligand to give a square pyramidal or trigonal bipyramidal intermediate followed by recombination as the optical isomer. Ho:vever, if this were the mechanism; the. ${ }^{1} \mathrm{H}$ n.m. r . spectrum of a mixture of two complexes containing different L groups should show scrambling of all the methyl resonances of the ${ }^{-} \mathrm{S}_{2} \mathrm{PM}_{2}$ groups. This is not the case for a mixture of cis - $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ and

unchanged ${ }^{1} \mathrm{H}$ nom.r. spectral patterns of the two components.
Furthermore, the ${ }^{1} \mathrm{H}$ n.m.r. spectrum of a mixture of
cis - $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}{ }^{\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}}$ and free $\mathrm{PMe}_{2} \mathrm{Ph}$ in CDCl_{3} at
ca 330 K indicatesno exchange of free and bound phosphine. Thus, cleavage of a rutheniun-phosphorus bond may be eliminated as a possible first step in the inversion process.
(d) Complete dissoriation of a dithioacid ligand:- If this was an important process, a mixture of the two compounds cis $=\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{FR}_{2}\right)_{2} \mathrm{I}_{2}$ and cis - $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}^{1}\right)_{2} \mathrm{~L}_{2}$ should give some of the mixed ligand species, cis - $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)\left(\mathrm{S}_{2} \mathrm{PR}_{2}{ }^{1}\right) \mathrm{L}_{2}$ under exchange conditions. This does not occur and therefore, the racemisation mechanism cannot involve complete dissociation of a dithioacid ligand.
(e) Cleavage of a ruthenium-sulphur bond:- In the symmetrical complexes cis $-\operatorname{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2} \mathrm{~L}_{2}$, there are two types of ruthenium-sulphur bond; those which are trans to another sulphur atom and those trans to a phosphorus ligand. If optical isomerism occurred via a cleavage of a ruthenium sulphur bond trans to another sulphur atom, then the activation energy for the reaction would be relatively insensitive to changes in L. Thus, if a rond rupture mechanism is correct, it must involve cleavage of a ruthenium-sulphur bond, which is trans to a phosphorus ligand. This statement can be rationalised on the basis that the larger trans influence (the extent to which a ligand weakens the bond trans to itself in the equilibrium state of a complex $)^{340}$ of the phosphorus ligands, as compared with the $\mathrm{S}_{2} \mathrm{PR}_{2}$ groups, should preferentially weaken the ruthenium-suiphur bonds trans to them. This suggestion is supported by the bond length in cis - $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PEt}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ (Appendix 2) where the Ru-S bonds trans ro the $\mathrm{PMe}_{2} \mathrm{Ph}$ groups are ca. $0.2 \AA$ longer than those trans to another
sulphur atom.
Since a first order dependence on solvent concentration is found for the inversion of cis - $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$, it follows that, if the first step of the inversion process is rate determining, that step must involve an $\mathrm{S}_{\mathrm{N}}{ }^{2}$ attack on the complex by a molecule of solvent to form a seven co-ordinate transition state. Furthermore, since the activation parameters (Table 2.7) for che inversion of cis - $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{P}(\mathrm{OPh})_{3}\right)$ are of the same order of magnitude as those for cis - $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}$, it is probable that the mechanism of inversion for these two compounds is the same. Thus, the mechanism which is postulated for cis - $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{LL}^{\prime}$ must obey the principle of microscopic reversibility, not only for the case where $L=L^{\prime}$, but also for complexes in which L and $L^{\prime \prime}$ are different. Thus, no mechanism which involves an attack by solvent on the complex to form a seven co-ordinate intermediate, rupture of a Ru-S bond then reattack by the dangling sulphur ligand followed by expulsion of solvent to give the optical isomer, can be correct since for $L \neq L^{\prime}$; if the Ru-S bond which is originally trans to L were the one to break in the second step, the Ru-S bond formed in the third step would be that of the sulphur atom which ends up trans to L^{\prime} in the optical isomer, hence violating the principle of microscopic reversibility.

Thus, the mechanism must involve at least five steps; the first two, as before, involve the formation of a seven co-ordinate transition state and rupture of a metal sulphur bond trans to L (say) then, at this point an exchange of bidentate and unidentate sulphur ligands similar to that found in $\mathrm{Pt}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right) 2^{\mathrm{L}}$ must occur ${ }^{16}$. i.e.

This is then followed by reattack of the free sulphur atom in such a position that, when the solvent is expelled, it (the S atom) becomes trans to L. There are two main ways in which this can occur; one (Figure 2.12a, page 88) involves attack of a solvent molecule (Y) in a position close to the Ru-S bond to be broken, so that the solvent simply takes the place of the dissociating sulphur atom in the co-ordination srhere; the other involves a pentagonal-bipyramidal intermediate in which the leaving sulphur atom and the attacking solvent molecule are in the two axial positions (Figure 2.12b, page 88). As can be seen in Figure 2. 12, (page 88), L and L^{\prime} in this seven co-ordinate transition state may be next to one another in the plane of the pentagon or they may be separated by a sulphur atom and after cleavage of the Ru-S bond, either L or L^{\prime} may be trans to the co-ordinated solvent moiecule (if any of the sulphur atoms talces up the position trans to Y, the mechanisms which ensue can all be showr to disobey the principle of microscopic reversibility). From Figure 2.12a it is clear that only the environments of methyl groups e and h and of f and g are exchanged (as required for cis $-\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{P}(\mathrm{OPh})_{3}\right)$) and that this only occurs if the positions of S_{2} and S_{4} are interchanged, the other two sulphur atoms remaining in their original positions. Thus, the last mechanism in Figure 2.12b may be discarded because it averages the environments of different methyl groups than observed experimentally for cis $-\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{P}(\mathrm{OPh})_{3}\right)$ (see page 72$)$.

These mechanisms are also consistent with many of the other experimental observations. Thus, the solvent attack on the complex is consistent with the first order dependence on CDCl_{3} concentration in $\mathrm{CS}_{2} / \mathrm{CDCl}_{3}$ mixtures, although this does not necessarily mean that

Fig. 2.12
Possible solvent (Y) assisted bond-rupture mechanisms for inversion of cis - Ru(S $\left.\mathrm{SN}_{2} \mathrm{H}_{4}\right)_{2} \mathrm{LL}{ }^{\prime}$
(a) cis fttack by solvent (b) trans attack by solvent.
the first step is rate determining, since if any later steps (apart from the last) were rate determining, a first order dependence on solvent would still be seen ${ }^{341}$. On changing to a less solvating medium such as benzene, the first step should be slower and the overall inversion rate should decrease, as is observed experimentally. Also, since the main factor influencing the rate of sub-step(i) (apart from the choice of solvent) should be the steric size of the ligands, being slower the bulkier the ligands, and since a direct correlation between inversion rate and bulk of L is not observed, it is evident that step (i) alone is probably not rate determining. Since a good correlation is found between the rates of inversion of cis - $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PM}_{2}\right)_{2} \mathrm{~L}_{2}$ and the trans-influence of L as established independently by ${ }^{1}{ }_{H}$ n.m. r. and i.r. studies ${ }^{342}$, viz $\mathrm{PPh}_{3}>\mathrm{PMePh}_{2}>\mathrm{PMe}_{2} \mathrm{Ph}>\mathrm{P}(\mathrm{OMe})_{3} \underset{\sim}{\sim} \mathrm{P}(\mathrm{OPh})_{3}>\mathrm{CO}$, it is likely that step (iii) also contributes to the determination of the rate of inversion since this step involves the rupture of a Ru-S bond trans to L, whose strength is directly influenced by L. The anomalous position of $\mathrm{P}(\mathrm{OMe})_{3}$ in the order of inversion rates is probably best explained by its small steric size making step (i) easier and speeding up the inversion process. Thus, it appears that both steps (i) and (iii) contribute to the rate expressions for this reaction and it remains to determine the relative contributions of these two steps.

From Table 2.7, the activation parameters for
cis $-\operatorname{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PDh}_{3}\right) \mathrm{CO}$ in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ are $\Delta \mathrm{H}^{\ddagger}, 119.3 \mathrm{kJol}^{-1} ; \Delta \mathrm{s}^{\ddagger}, 125 \mathrm{KJ}^{-1} \mathrm{~mol}^{-1}$.

- There is a $1: 1$ correlation between trans influence and trans effect in six co-ordinate complexes ${ }^{342}$.

Since the second step of any of the mechanisms postulated for the inversion is likely to involve rupture of the weakest Ru-S bond in the molecule (that originally trans to PPh_{3} in cis - $\left.\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right) \mathrm{CO}\right)$, it is likely that the rate of this step sinculd not vary greatly with L ! , although a smail decrease in rate might be expected in changing L^{\prime} from PPh_{3} to $C C$ on account of the smaller size of the $C O$ group. However, since the overall
 cis - $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}$, the rate of step (iii) must be considerably slower* and hence the observed activation parameters for cis - $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right) \mathrm{CO}$ must correspond quite closely to those for step (iii) alone. This indicates that step (iii) is characterised by large positive ΔH^{\ddagger} and ΔS^{\ddagger} values, which are consistent with the exchange of unidentate and bidentate $\mathrm{S}_{2} \mathrm{PM}_{2}$ ligands occurring by a dissociative mechanism 339 to form a five co-ordinate transition state in which the two unidentate $\mathrm{S}_{2} \mathrm{PMe}_{2}$ ligands are mutually trans (4), (c.f. one isomer of $V O\left(S_{2} P R_{2}\right)_{2}{ }^{p} y_{2}$ (page 15)), the breaking of a Ru-S

(4)
bond trans to L being rate determining.

This rules out an intermediate in which L^{\prime} is trans to Y ince in this case, the rate of step (iii) should be insensitive to changes in L^{\prime}.

For ligands of higher trans influence than CO , it is reasonable to assume that ΔH^{\ddagger} for this process would be much lower but that the value of $\Delta S^{\boldsymbol{\dagger}}$ should not be very different since ΔS^{\ddagger} depends on the breakdown of the solvation sphere of the molecule by the dangling $\mathrm{S}_{2} \mathrm{PMe}_{2}$ groups. Thus, the inversion rates for cis $-\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{~L}_{2}$ in CDCl_{3} must have an appreciable contribution from sub-step (i) since ΔS^{\ddagger} for these complexes are close to zero. Since the first step is associative, a large negative $\Delta \mathrm{S}^{\boldsymbol{\ddagger}}$. should be associated with it and thus if there are contributions from both steps (i) and steps (iii), the positive ΔS^{\dagger} from step (iii) and the negative $\Delta S^{\boldsymbol{\mp}}$ from step (i) will cancel one another out.

The overall rate decrease, accompanied by substantial increases in ΔH^{\ddagger} and ΔS^{\ddagger} which are observed when cis - $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ is examined in $\mathrm{C}_{6} \mathrm{H}_{6}$ rather than CDCl_{3} (or $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$) (Table 2.7) is explicable on the basis that in such a poor solvating medium, step (i) not only becomes considerably slower because it is no longer a solvent assisted process, but also becomes dissociative in nature. However, the similarity of the high temperature n.m.r. spectra of cis $-\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{P}(\mathrm{OPh})_{3}\right)$ in $\mathrm{C}_{6} \mathrm{H}_{6}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ (two methyl doublets) is consistent with retention of the same overall mechanism (Figure 2.13(b), page 92).

It only remains to explain the activation parameters found for the tris-chelate complexes $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}(\mathrm{~L}-\mathrm{L})$. The high positive values of ΔH^{\ddagger} and ΔS^{\ddagger} found for $R u\left(S_{2}{ }^{\text {PMe }}\right)_{2}$ diphos (Table 2.7) (and presumably for the other tris chelate complexes although insufficient data could be obtained for an frrhenius plot) could be explained by either sub-step (i) or sub-step (iii) being slow and therefore rate-determining. That is, either the chelating ligands have low trans influences, thus making step (iii) slow, or they
a)

Fig. 2.13

Postulated mechanisms of inversion for $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{LL}^{\prime}$
a) in a polar solvent
b) in a non-polar solvent
prevent the solvent from entering the co-ordination sphere for steric reasons, thus making step (i) dissociative and slow. The literature available on the trans-influences of these ligands is somewhat erratic since, although dienes all appear to have low trans-influences, diphos can have a high or a low trans-influence, depending upon how it is measured. Diars, on the other hand, is generally considered to have a high trans-influerice ${ }^{342}$. However, examination of the seven co-ordinate transition state in the last mechanism in Figure 2.12b, (page 88) shows that L and L^{\prime} are separated by a sulphur atom, and this is not, of course, sterically possible if L and L^{\prime} are joined as opposite ends of a chelate. Thus, it appears that this mechanism (Figure $2.13 a$, page 92) best fits the observations that we have made and it should be pointed out that the seven co-ordinate transition state in which L and L^{\prime} are not adjacent in the plane of the pentagonal-bipyramid is the least sterically hindered of the possible transition states postulated. Finally, support for the fact that the six co-ordinate intermediate with a unidentate $\mathrm{S}_{2} \mathrm{PMe}_{2}$ ligand in fact has the stereochemistry postulated comes from the carbonylation under mild conditions of cis $\left.-\mathrm{Ru}_{2} \mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$. The product from this reaction has the formula $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Fh}\right)_{2} \mathrm{CO}$ and has been shown to have the same stereochemistry as that of the intermediate postulated $\left(L=L^{\prime}=\mathrm{PMe}_{2} \mathrm{Ph} ; \quad \mathbf{Y}=\mathrm{CO}\right.$) (see later). Unfortunately, however, this does not show exchange of bidentate and unidentate sulphur ligands on the n.m.r. time scale even at 323 K . The reason for this is not clear although it may be that a six co-ordinate complex in whicn all co-ordination sites are occupied by fairiy strong donor ligands is generally less labile than one in which one of the sites is occupied by a loosely co-ordinated solvent molecule.

This might also explain why step (iii) (a non solvent assisted rupture of an Ru-S bond trans to L) has a comparable rate to step (i) (a solvent assisted rupture of an Ru-S bond trans to L) in the postulated mechanism, when $L=L^{\prime} \neq C 0$.
5. $\mathrm{C}=\mathrm{N}$ bond rotation in cis - $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2} \mathrm{~L}_{2}\right.$

For cis - $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2} \mathrm{I}_{2}\left(\mathrm{~L}=\mathrm{PMe}_{2} \mathrm{Ph}, \mathrm{PPh}_{3}\right.\right.$ or $\left.\mathrm{P}(\mathrm{OPh})_{3}\right)$, the low temperature $\mathbf{1}_{\mathrm{H}}$ n.m.r. spectra consist of two $\mathrm{S}_{2} \mathrm{CNMe}_{2}$ methyl singlets which coalesce at higher temperatures (see page 72 and Table 2.6). The rates and activation parameters at 298 K for this process are given in Table 2.9. The room temperature ${ }^{1} \mathrm{H}$ n.m.r. spectrum of cis $-\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{P}(\mathrm{OPh})_{3}\right)$ consists of three methyl singlets of relative intensity 1:2:1; indicating accidental superposition of two of the methyl resonances. At higher temperatures, the highest field singlet at $\tau 7.37$ and one of the superimposed resonances at $\tau 7.13$ coalesce to give a singlet at $\tau 7.23$ ($\mathrm{Tc}=313 \mathrm{~K}$) whilst the lowest field signal at $\tau 6.86$ and the remaining resonance at $\tau 7.13$ broaden considerably and move towards each other (see Table 2.6). Thus, the high field pair of singlets and the low field pair of singlets are undergoing exchange and the rates and activation parameters at 298 K for these exchange processes are given in Table 2.9). These data clearly show that although the rates are fairly similar at 298K, the activation parameters are very different. This can only mean that the kinetic processes exchanging these two sets of methyl signals are independent of each other and the best explanation of this is that these n.m.r. changes are produced by fast rotation about the $\mathrm{C}-\mathrm{O}$ bonds of the $\mathrm{S}_{2} \mathrm{CNMe}{ }_{2}$ groups syn to PPh_{3} and syn to $\mathrm{P}(\mathrm{OPh})_{3}$ and not by a facile inversion process. In support of this conclusion, the two sets of activation parameters found for cis - $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}$ $\left(\mathrm{PPh}_{3}\right)\left(\mathrm{P}\left(\mathrm{OPh}_{3}\right)\right.$ are reasonably similar to those found for the
bis- PPh_{3} and bis- $\mathrm{P}(\mathrm{OPh})_{3}$ complexes respectively. The large difference in ΔS^{\ddagger} values for the $C-N$ bond rotation process is probably caused by substantial differences in the degree of solvation of the complexes which might arise as a consequence of replacing phenyl with phenoxy groups.

Finally, further heating of cis $-\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{P}(\mathrm{OPh})_{3}\right)$ to $403^{\circ} \mathrm{K}$ in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ causes both exchangi:ng sets of methyl groups to give rise to sharp singlets which do not, however, show any sign of broadening or coalescence phenomena with one another. Thus, the activation energy for the inversion of this complex is very high, which is probably due to the much greater strength of the Ru-S bonds in $\mathrm{S}_{2} \mathrm{CNMe}_{2}$ complexes than in $\mathrm{S}_{2} \mathrm{PR}_{2}$ complexes ${ }^{16}$.
6. Mechanism of carbonylation of cis $-\mathrm{Ru}^{\left.\left(S_{2} \mathrm{PR}_{2}\right)_{2}{ }^{(\mathrm{PM}} \mathrm{e}_{2} \mathrm{Ph}_{2}\right)}$ -

When cis - $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}{ }^{\left(\mathrm{PM} e_{2} \mathrm{Ph}\right)} 2$ (A) $(\mathrm{R}=\mathrm{Me}, \mathrm{Ph})$ is carbonylated in refluxing ethanol or acetone for a prolonged period, a mixture
of cis - $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right) \mathrm{CO}$ (C) and $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{CO}$
is always formed although these can be separated by dry column chromatography. However, when D is redissolved, partial rearrangement to C slowly occurs whereas if the reaction of A and $C O$ is carried out in the presence of excess sulphur, only C is formed. Conversely reaction of A and $C O$ in the presence of excess $\mathrm{PMe}_{2} \mathrm{Ph}$ gives pure D . In addition, another complex of formula $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \dot{\mathrm{Ph}}_{2}\right)_{2} \mathrm{CO}$ may be isolated if the carbonylation reaction is carried out in the cold for a very short time (ca one minute). In solution, E slowly and irreversibly gives first C and then some of D. This process can be monitored ty both ${ }^{1} \mathrm{H}$ n.m.r. (since all the compounds have different spectra) or by observing the change in $\mathcal{V}_{\text {cO }}$ position since for $R=M e ; V_{C O}(E)=1967 \mathrm{~cm}^{-1} ;{V_{C O}}(C)=1945 \mathrm{~cm}^{-1} ; \nu_{C O}(D)=1940 \mathrm{~cm}^{-1}$ (all
measured in CHCl_{3}). Measurement of the rate of loss of the carbonyl band intensity for E gives a rate constant for this rearrangement reaction of $1.7 \times 10^{-4} \mathrm{sec}^{-1}$ at $323 \mathrm{~K}\left(\mathrm{t}^{1 / 2}=65 \mathrm{mins}\right)$ and also confirms that the process is first order with respect to E.

Thus, these observations are consistent with the carbonylation mechanism shown below: - viz. facile formation of followed by a slower conversion to C which then undergoes a partial reversible rearrangement to. D.

(A)

slow

$\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph} \mathrm{CO}(\mathrm{C})+\mathrm{PMe}_{2} \mathrm{Ph} \rightleftharpoons \mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{CO}\right.$
(c)
(D)

It now only remains to determine the structures of D and E in order to establish the stereochemical pathway of the mechanism.

Assuming that ruthenium (II) retains its usual six-co-ordinate stereochemistry ${ }^{+}$, and we therefore have unidentate and bidentate $S_{2} \mathrm{PR}_{2}$ groups, there are four possible isomers for compounds of formulae $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{CO}$ (Figure 2.14, page 97). For $R=M e$, the room temperature ${ }^{1} H$ n.m.r. spectrum of D consists of

A reasonable assumption since to our knowledge only one ruthenium (II) seven coordinate compound has been claimed io. $\mathrm{RuCl}_{2}(\mathrm{CO})_{2}\left(\mathrm{MeC}\left(\mathrm{CH}_{2} \mathrm{SEt}\right)_{3}\right){ }^{343}$.

This is suggested by the io. spectra of D and E (see earlier) (cf. $\mathrm{Ru}(\mathrm{NO})\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{3}^{223}$.

II

III

IV

Fig. 2.14
 and unidentate $\mathrm{S}_{2} \mathrm{PR}_{2}$ co-ordination.
two doublets (from the $\mathrm{S}_{2} \mathrm{PMe}_{2}$ groups) and a 1:3:3:1 quartet for the $\mathrm{PMe}_{2} \mathrm{Ph}$ groups (i.e. two overlapping 1:2:1 'virtuallycoupled' triplets as is seen for $R=F h$) Table 2.6). At higher temperatures, these collapse to a single triplet although a detailed observation of this process is obsc:eed (for $R=M e$) by the increased tendency to rearrange to compound C at these higher temperatures. In contrast, the two $\mathrm{S}_{2} \mathrm{PMe}_{2}$ doublets are almost temperature invariant, except for a slight broadening at ca 330 K which again is obscured because of the facile rearrangement to C at this temperature. Examination of Figure 7 reveals that this $n_{0} m_{0} r_{\text {. }}$ spectrum corresponds to that expected for structure I i.e. trans $\mathrm{PMe}_{2} \mathrm{Ph}$ groups wiin slow exchange of uni/bidentate $\mathrm{S}_{2} \mathrm{PR}_{2}$ groups. Assignment of this structure tc D would also account for the similarity in the position of $\mathcal{V}_{C O}$ to that observed for C (Table 2.3) since in each case, the carbonyl group is situated trans to a sulphur atom of a bidentate dithioacid ligand.

The ${ }^{1}{ }_{H}$ n.m.r. spectrum of $E(R=M e)$, which is temperature invariant from 220 to 320 K , (although over longer periods, it slowly converts to a mixture of C and D), consists of fourteen lines (Figure 2.15, page 99). By means of heteronucleur spin decoupling experiments it can be shown that the four phosphorus atoms in the molecule are all in inequivalent chemical environments and this is confirmed by measuring the proton noise decoupled ${ }^{31} \mathrm{P} n_{0} \mathrm{n}_{0} r_{\text {. }}$ spectrum of the complex (Figure 2.16; page 100). The decoupling studies (see Figure 2.15, page 99) also indicate that the 14 line ${ }^{1}{ }_{H}$ n.m.r. spectrum is comprised of 8 doublets (with four of the doublets

$$
\begin{aligned}
& J_{P_{1} P_{2}}=0.0 \mathrm{~Hz} \\
& J_{P P_{2}}=7.6 \mathrm{~Hz} \\
& J_{P_{3}}^{1}=0.0 \mathrm{~Hz} \\
& J_{P P_{4}}=10.0 \mathrm{~Hz} \\
& J_{2,}^{2}=14.9 \mathrm{~Hz} \\
& J_{24}=12.5 \mathrm{~Hz} \\
& J_{P_{3} P_{4}}=32
\end{aligned}
$$

Fig. 2.16
31_{p} n.m.r. spectrum of $\left.\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}{ }^{(\mathrm{PMe}} 2^{\mathrm{PH}}\right)_{2} \mathrm{CO}(\mathrm{E}) \quad$ Chemical shifts are in p.p.m. to high frequency of $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$.

partially superimposed)*. Thus, all the methyl groups are in inequivalent chemical environments, and there is restricted rotation (even at 320 K) about the Ru-P bonds. This n.m.r. evidence is, in fact, compatible with a seven co-ordinate complex with only bidentate dithioacid grouns. However, addition of methyl iodide to a dichloromethane solution of E produces an immediate ircrease in conductivity. A similar increase is observed for $\mathrm{Pt}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{PMe}_{2} \mathrm{Ph}$ (where uni/bidentate co-ordination is well established) ${ }^{16}$ and compound D , but with $\mathrm{Pt}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}$ and $R u\left(S_{2} \mathrm{PMe}_{2}\right)_{2}{ }^{(\mathrm{PMe}} 2^{\mathrm{Ph})}{ }_{2}$ there is no change. This conductivity increase is attributed to the formation of the complex
$\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)\left(\mathrm{MeS}_{2} \mathrm{SNf}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{CO}\right]$ I by methylation of the unco-ordinated sulphur atcm. Furthermore, the ${ }^{1} \mathrm{H}$ n.m.r. spectrum of the conducting solution is not significantly different from that of E, except for extra signals at $\tau 6.46$ (-SMe group) and $\tau 7.93$ (excess MeI) which strongly suggests that MeI is not reacting with a bound sulphur atom of a labile seven-co-ordinate species. Examination of Figure 2.14 (page 97) indicates that neither structure I (already assigned to D) not structure IV (which has a plane

The irradiution frequencies given in Figure 2.15 (page 99) are different from the frequencies of the phosphorus nuclei obtained from the Fourier transform spectrum (Figure 2.16, page 100) because the former are obtained from the HA100 spectrometer (with Schl umberger FS30 frequency synthesiser attachment) whereas the laiter are directly measured on the XL100 machine, and these have slightly different reference frequencies.
of symmetry making the $\mathrm{PMe}_{2} \mathrm{Ph}$ groups equivalent) fit the ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathbf{P}_{\mathrm{P}}$ n.m.r. data. However, II and III are both possibie structures since in both cases, hindered rotation about the ruthenium-phosphorus bonds is reasonable on steric grounds and furthermore, the ruthenium atom is noientially a chiral centre and thus, no matter how rapid the rotation about the Ru (S bond of the unidentate $\mathrm{S}_{2} \mathrm{PMe}_{2}$ ligand, the two Me grcups will always remain inequivalent. However, III would be expected to have a $\nu_{C O}$ band in a similar position to that found in compounds C and D since the $C O$ group is trans to a sulphur atom of a bidentate ${ }^{-} \mathrm{S}_{2} \mathrm{PR}_{2}$ ligand whereas II should have a higher $\ddot{\gamma}_{\mathrm{CO}}$ since the CO group is trans to a stronger π-acceptor 1 igand and hence back donation into the π^{*} orbitals of the $C O$ group will be reduced. The latter is experimentally the case (Table 2.3) and hence structure II is preferred. The analagous compounds $\mathrm{Ru}(\mathrm{OCOR})_{2}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{CO}$ have recently been prepared ${ }^{344}$ and are also thought (i.r. evidence) to have structures similar to II.

The heteronuclear decoupling information given in Figure 2.15, (page 99) determines which sets of methyl protons in E are attached to phosphorus atoms 1 to 4 (which are labelled in the order they occur in the ${ }^{31}$ P n.m.r. spectrum (Figu:e 2.16, page 100). Assuming structure II is more feasible than III, then these phosphorus atoms can be assigned as fillows:- P_{1} and P_{2} belong to the S_{2} FMe $_{2}$ groups and P_{3} and P_{4} to the $P M e_{2} \mathrm{Ph}$ groups. This assignment is based on the chemical shift positions of the ${ }^{31} p$ nuclei compared with those in $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}(\mathrm{CO})_{2}$ and $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{2}\right)_{2}$ (Figure 2.16, page 100) together with the fact that the lower field methyl doublets (which correspond to the $\mathrm{S}_{2} \mathrm{PMe}_{2}$ methyl resonances) are decoupled by irradiating at frequencies corresponding to phosphorus atoms
P_{1} and P_{2}. In $R u\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right) \mathrm{CO}$, the separation between the methyl dithioacid group syn to $\mathrm{PMe}_{2} \mathrm{Ph}$ and that syn to CO is 33 Hz , which is close in value to the separation of the methyl groups 1 and 1^{\prime} attached to $P_{1}(44 \mathrm{~Hz})$. In contrast, those attached to $P_{2}\left(2\right.$ and $\left.2^{\prime \prime}\right)$ are only separated by $6 H z$. We therefore assign P_{1} to the phosphorus atom of the bidentate $S_{2} \mathrm{PMe}_{2}$ group and P_{2} to the unidentate $S_{2} \mathrm{PMe}_{2}$ group. Finally, since P_{3} couples to P_{1} whereas \mathbf{P}_{4} does not (Figure 2.16, page 100) it seems likely that P_{3} is more nearly trans to P_{1} than is P_{4} and therefore P_{3} and P_{4} are assigned accordingly (see Figure 2.14, page 97, structure JI).

The stereochemical pathway of the carbonylation mechanism is given in Figure 2.17 (page 104). Thus, E is formed by cleavage of the weakest Ru-S bond i.e. that trans to a PMe ${ }_{2} \mathrm{Ph}$ group. This is consistent with the bond lengths found in cis - $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PEt}_{2}\right)_{2}{ }^{\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}}$, where the Ru-S bonds trans to the $\mathrm{PMe}_{2} \mathrm{Ph}$ groups are ca $0.2 \AA$ longer than those trans to another sulphur atom (Appendix 2). This, incidentally, is another reascn why structure II rather than III is preferred for E since to form the latter, the Ru-S bond trans to a sulphur atom must be broken. Next, steric repulsions, together with the favourable energy change associated with the conversion of unidentate to bidentate $\mathrm{S}_{2} \mathrm{PMe}_{2}$ comordination, results in the expulsion of a $\mathrm{PMe}_{2} \mathrm{Ph}$ group and the formation of C. Firally, the high affinity of $\mathrm{PMe}_{2} \mathrm{Ph}$ for ruthenium (II) ${ }^{321}$ is demonstrated by its attack on the Ru-S bond trans to $\mathrm{PMe}_{2} \mathrm{Ph}$ to give D. The inability of cis - Ru(S $\left.\mathrm{PR}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right) \mathrm{CO}$ to give cis - $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}(\mathrm{CO})_{2}$ is presumably a reflection of the fact that the favourable steric change is more than offset ty the unfavourable electronic change of replacing a Ru-PMe ${ }_{2} \mathrm{Ph}$ bond with a

(A)
(E) $\left.\right|_{\mathrm{den}}$

(D)
(C)

Fig. 2.17

Proposed mechanism for carbonylation of cis - $\mathrm{Ru}^{\left(\mathrm{S}_{2} \mathrm{FR}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}, ~}$

Ru-CO bond. This rationale is supported by the fact that cis - $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}{ }^{(\mathrm{CO})_{2}}$ reacts with excess $\mathrm{PMe}_{2} \mathrm{Ph}$, even in the presence of $C O$ to give D and with excess PPh_{3} to give cis - $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right) \mathrm{CO}$. The failure to observe compounds of type D or E with ligands other than $\mathrm{PMe}_{2} \mathrm{Ph}^{*}$ is prubably due to the smaller trans effects (tertiary phosphites) and nucleophilicities (tertiary phosphines) towards ruthenium (II) of these other ligands compared to $\mathrm{PMe}_{2} \mathrm{Ph}^{26}$, although doubtless a similar mechanism of carbonylation is applicable. It is also reasonable to postulate a similar mechanistic scheme for formation of the mixed ligand species $\operatorname{Ru}\left(S_{2} \mathrm{PR}_{2}\right)_{2} L L^{\prime}$ although, again no intermediates of type E (or D) have been observed. Finally, the unsuccessful attempts to carbonylate the cis - $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNR}_{2}\right)_{2} \mathrm{~L}_{2}$ complexes are probably due to the stronger nucleophilicity of $\mathrm{S}_{2} \mathrm{CNR}_{2}$ compared to $\mathrm{S}_{2} \mathrm{PR}_{2}$ (see page 95), preventing formation of a compound of type E.
 carbonylation gives a transient species with $\mathcal{V}_{\mathrm{CO}} 1997 \mathrm{~cm}^{-1}$ (type El) but unfortunately, this could not be separated from starting material.

Experimental.
Microanalyses were by the National Physical Laboratory, Teddington, A. Bernhardt, West Germany and the University of Edinburgh Chemistry Department. Molecular weights were determined on a Perkin-Elmer Hitachi osmometer (model 115) at 37°. Infra-red spectra were recorded in the region $4000-250 \mathrm{~cm}^{-1}$ on a Perkin-Elmer 457 Grating Spectrometer using nujol mulls on carsium iodide plates. Solution spectra were run in potassium bromide cells. Mass spectra were obtained on an AEI MS9 mass spectrometer and conductivity measurements on a model 310 Portland electronics conductivity bridge. ${ }^{1}$ H n.m.r. spectra and solution magnetic moments (Evans method) ${ }^{319}$ were obtained on a Varian Associates HA-100 Spectrometer with variable temperature attachment. Accurate temperatures were determined using the separation of the two resonances of methanol (low temperature) and ethylene glycol (high temperature). Spectra were simulated using a computer progran based on that of Nakagawa ${ }^{345}$. The exchange process was considered for the purpose of computation as consisting of n two site exchanges wheren isthe multiplicity of the resonances being monitored. The single line simulated spectra were then superimposed with suitable weighting for intensities and the results plotted out on the line printer. Thus, a doublet is considered as two two site exchanges of intensity ratio $1: 1$. The experimental spectra were fitted to the computed spectra either by finding the best fit between the ratio of maximum to minimum heights in the doublets (above and below coalescence) or the width of the signal at half height (around coalescence). Spin-spin relaxation times $\left(T_{2}\right)$ were obtained for each compound by measurement of the peak width at half height under slow exchange conditions.

The same value of T_{2} was used for all linemshape calculations on a given compound because for $L=\mathrm{PMe}_{2} \mathrm{Ph}$ and $P(O M e)_{3}$, the widths at half height in the slow and fast exchange limits differed by less than 0.25 Hz . Lifetimes obtained by these fitting procedures were then used to construct Arrhenius plots $\left(\log _{10} k \mathrm{vs} 1 / \mathrm{T}\right)$ to which straight lines were fitted by the least squares method. Activation parameters and errors were then calculated as in Appendix 1. ${ }^{31}$ P n.m.r. spectra were recorded on a Varian XL100 spectrometer operating in the Pulse and Fourier Transform mode a't 40.5 M Hz . Heteronuclear decoupling experiments were carried out on the HA100 spectrometer using a second radio frequensy field provided by the Schlumberger FS30 frequency synthesiser. Melting points were determined with a Kơfler hot stage micrsscope and are uncorrected. Materials: - Ruthenium trichloride trihydrate (Johnson Matthey); triphenylphosphine, dimethy? phenylphosphine, triphenylphosphite, (BDH); methyldiphenylphosphine (strem); PEtPh 2 , 1,2 bisdiphenylphosphinomethane 347 and 1,2 bisdiphenylpnosphinoethane ${ }^{346}$ were made by standard literature methods; carbon monoxide (Air products); bicyclo(2,2,1)-hepta-2,5-diene (Koch-Light); 1,5 cyclooct adiene (Ralph Emanuel); o-phenylenebisdimethylarsine (Aldrich); $\mathrm{NaS}_{2} \mathrm{CNMe}_{2} 2 \mathrm{H}_{2} \mathrm{O}$ (Ralph Emanuel). Sodium diethyl ${ }^{347}$ - and dimethylphosphinodithioates ${ }^{119}$ were prepared by published methods and ammonium diphenylphosphinodithioate from $\mathrm{Ph}_{2} \mathrm{PS}_{2} \mathrm{H}$ and ammonia in benzene ${ }^{119}$. Operations involving free tertiary phosphines and phosphites (with the exception of $\mathrm{P}(\mathrm{OPh})_{3}$ and PPh_{3}) were carried out under nitrogen. The various ruthenium (II) and (III) tertiary phosphine and phosphite complexes which were used as starting materials were synthesised by published methods.

Dialkyl (aryl) phosphinodithioate Complexes cis - Bis(diphenylphosphinodithioato)bis(triphenylohosphine) ruthenium (II) $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3} \quad(0.10 \mathrm{~g})_{9} \mathrm{NH}_{4} \mathrm{~S}_{2} \mathrm{PPh}_{2}\left(\mathrm{O}_{2} 12 \mathrm{~g}\right)$ and $\mathrm{PPh}_{3}(0.20 \mathrm{~g})$ were shaken
in acetone (25 ml) for 30 min . and then the resulting red crystals filtered off, washed with water, acetone and n-pentane. (Yield $0.10 \mathrm{~g}, 85 \%$. However, if the reaction is carried out in the absence of excess PPh_{3}, the resulting red, crystalline precipitate gave a consistently low analysis for the bis-phosphine complex. Found: - $\mathrm{C}, 60.1$; $\mathrm{H}, 4.2 \% ; \quad \mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ requires $\mathrm{C}, 64.1$; $\mathrm{H}_{4} 4.5 \%$ and Bis(diphenylphosphinodithioato) (tripi:enylphospinine) rüth enium (II) 0.5 acetone requires $\mathrm{C}, 58.6 ; \mathrm{H}, 4.3 \%$. Furthermore, the molecular weight of the product in benzene, over a short period of time, decreased from 697 to 649, values indicative of the facile dissociation of $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{M}, 1123)$ to $\mathrm{Ru}^{\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)_{2} \mathrm{PPh}_{3}}$ (M.861) and free PPh, in solution. However, by refluxing a mixture of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3} \quad(0.10 \mathrm{~g}), \mathrm{NH}_{4} \mathrm{~S}_{2} \mathrm{PPh}_{2}(0.12 \mathrm{~g})$ and sulphur $(0.003 \mathrm{~g})$ in acetone, a purc sample of $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)_{2} \mathrm{PPh}_{3} \quad(0.06 \mathrm{~g}, 72 \%)$ was isolated. Found: - C,58.1; H,4.1\%.
cis - Bis(dimethylphosphinodithioato)bis(triphenylphosphine) ruthenium (II):$\mathrm{RuCl}_{3}\left(\mathrm{PPh}_{3} \mathrm{j}_{2} \mathrm{MONO}_{2} \quad(0.04 \mathrm{~g}): \mathrm{NaS}_{2} \mathrm{PMe}_{2}(\mathrm{O} .04 \mathrm{~g})\right.$ and $\mathrm{PPh}_{3}\left(\mathrm{O} . \mathrm{O}_{4} \mathrm{~g}\right)$ were shaken overnight in ethanol (10 ml). The resultant brown, crystalline precipitate was filtered off, washed with water, ethanol and n-pentane to give red-brown needles of the complex $(0.049,90 \%)$. The same compound was also prepared from $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3} \quad\{0.25 \mathrm{~g})$ and $\mathrm{NaS} \mathrm{PMe}_{2}(0.15 \mathrm{~g})$ in acecone solution $(0.21 \mathrm{~g}, 92 \%)$. Similarly, cis - Bis(diethylphosphinodithioato)bis(triphenylnhosphine) ruthenium (II) was prepared from $\mathrm{RuCl}_{2}\left(\mathrm{PFH}_{3}\right)_{3}(0.25 \mathrm{~g})$ and $\mathrm{NaS}_{2} \mathrm{FEt}$ (0.12 g). cis-Bis(dimethylphosphinodithioato)bis(ethyldiphenyiphosphine) ruthenium (II)

RuCl $_{2}\left(\text { PEtPh }_{2}\right)_{3}$ was shaken in ethanol for 12 hours with a three fold excess of $\mathrm{NaS}_{2} \mathrm{PMe}_{2}$ to give the orange crystalline complex (73%). The compounds in Table 2.1 were prepared by the following general
method. The starting materials were refluxed in ethanol for the time
shown and then the solution cooled and filtered. The crystals obtained were washed with water, ethanol, n-pentane and dried in vacuo $\left(40^{\circ}\right)$.

If $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{3}\left(\mathrm{PMePh}_{2}\right)_{6}\right] \mathrm{Cl}(0.60 \mathrm{~g})$ and $\mathrm{NaS}_{2} \mathrm{PMe}_{2}(0.30 \mathrm{~g})$ are refluxel in methanol (15 ml) for 24 hours, an orange crystalline solid is precipitated. Dissolution in a minimum volumn of benzene and chromatography on a dry alumina column gives an orange and a red band. Both bands may be extracted with diethylether, evaporated to dryness and recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathbf{n}$-pentane,
 gives $\mathrm{Ru}_{2} \mathrm{Cl}_{3}\left(\mathrm{PMePh}_{2}\right)_{5}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)(0.07 \mathrm{~g}, 11,0 \%) \quad$ Found: $-\mathrm{C}, 56.1, \mathrm{H} 5.0 \%$; Required C,56.1; H5.0\% . Cis-Bis(dimethylphosphinodithioato)bis(meihyldiphenylphosphine)
ruthenium (II) may also be prepared by the reaction of cis $-\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}-$ $\left(\mathrm{PPh}_{3}\right)_{2}(0.05 \mathrm{~g})$ with $\mathrm{PMePh}_{2}(0.10 \mathrm{ml})$ in refluxing ethanol (15 ml) for 12 hours. Cooling the solution gives orange crystals of the complex ($0.03 \mathrm{~g} ; 70 \%$)
cis-Bis(dimethylphosphinodithioato)his(dimethylphenylphosphine)
ruthenium (II) may be prepared in two other ways:- a)
cis $-\operatorname{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMPPh}_{2}\right)_{2} \quad(0.05 \mathrm{~g})$ and $\mathrm{PMe}_{2} \mathrm{Ph}(0.05 \mathrm{ml})$ were
refluxed in ethanol (20 ml) for 4 hours. Cooling the solution
and partial removal of solvent gave orange crystals of the complex
which were filtered off, washed with n-pentane and dried in vacuo
($0.02 \mathrm{~g} ; 48 \%$. b) cis $-\mathrm{Ru}_{2}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPi}_{j}\right)_{2} \quad(0.1 \mathrm{gg})$ and $\mathrm{PMe} \mathrm{Ph}(0.03 \mathrm{~m} .1)$
were refluxed in acetone for one hour. Removal of the solvent gave
an orange oil from which the product was obtained by recrystallisation
from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-pentane ($0.05 \mathrm{~g} ; 70 \%$)
Bis(dimethylphosphinodithioato) (bicyclo($2,2,1$)hepta-2,5-diene) ruthenium (II)
was also prepared by addition of $\left\{\operatorname{RuCl}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{8}\right\}_{n}(\mathrm{O} .26 \mathrm{~g})\right.$ to a hot solution of $\mathrm{NaS}_{2} \mathrm{PMe}_{2}(0.29 \mathrm{~g})$ in dimethylformamide (8 ml). After cooling and addition of water, the brown solid was filtered off and recrystallised from aqueous acetone as orange crystals ($0.17 \mathrm{~g}, 41 \%$). Bis (dimethylphosphinodithioato (cyclo-octa-1,5-diene) ruthenium (II) was prepared similarly from $\left\{\text { RuCl }_{2} \mathrm{C}_{8} \mathrm{H}_{12}\right\}_{\mathrm{n}}(0.28 \mathrm{~g})$ and $\mathrm{NaS}_{2} \mathrm{PME}_{2}\left(\mathrm{O}_{2} 29 \mathrm{~g}\right)$ as orange crystals.

Bis(dimethylphosphinodithioato) (1,2-bisdiphenyl phosphinoethane) ruthenium (II) was also prepared by refluxing $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)(\mathrm{O} .11 \mathrm{~g})$ with diphos (0.1 g) in degassed acetone for 24 hours. After cooling, the orange solution was concentrated and the orange crystals collected and recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{n}$-hexane (1.09, 58\%). Similarly, Eis(dimethylphosphinodithioato)(bisdiphenylphosphinomethane) ruthenium (II) was prepared by shaking $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)(\mathrm{O} .05 \mathrm{~g})$ with $\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CH}_{2}$ (0.1g) in ethanol (20 ml) under Nitrogen. The orange crystalline solid was filtered and dried ($0.13 \mathrm{~g}, 80 \%$); and trans-bia (dimethylnhosphinodithioato) bis(o-phenylenebisdimethylarsine) ruthenium (II) was prepared by refluxing $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)(0.05 \mathrm{~g})$ and diars (0.2 mls) in degassed ethanol (10 mls) for 10 minutes. The complex separated as pink crystals ($0.085 \mathrm{~g}, 97 \%$) but recrystallisation from boiling toluene gave orange crystals of his(dimethylphosphinodithioato) (o-phenylenebisdimethylarsine) ruthenium II in 100% yield.

Reaction of $\mathrm{RuCl}_{2}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)_{4} \quad(0.60 \mathrm{~g})$ and $\mathrm{NaS}_{2} \mathrm{PMe}_{2}(0.48 \mathrm{~g})$ in ethanol (25 ml) under reflux for 5 hours gave a yellow solution. The solution was fiitered hot, concentrated and allowed to crystallise overnight to give a yellow solid. Mass spectrum:- m/e $876,\left({ }^{102} \mathrm{Ru}\right.$ isotcpe $)\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{Me}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OPh})_{2} \mathrm{CEt}\right)_{2}\right]^{+} 828,\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OPh})_{2} \mathrm{OEt}\right)-\right.$ $\left(\mathrm{P}(\mathrm{CPh})(\mathrm{OEt})_{2}\right]^{+} ; 780,\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{CEt})_{2} \mathrm{OPh}\right)_{2}\right]^{+}$etc.

8.20 (12.5) $\mathrm{S}_{2} \mathrm{PMe}_{2} ; \tau 6.08,8.97$ (6.0) Et groups :
$\operatorname{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P} \mathrm{OPh}(\mathrm{OEt})_{2}\right)_{2} ; \tau 7.91,8.13\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right) ; \tau 5.93,8.80$ (6.0) Et groups - Intensity ratio 6:1.

Analysis:- Found: $=\quad \mathrm{C}, 42.9 ; \mathrm{H}, 4.0 \mathrm{ON} \quad \mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OPh})_{2} \mathrm{OEt}\right)_{2}$ requires $C, 43.9 ; \quad \mathrm{H}, 48 \%: \quad \mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PNe}_{2}\right)_{2}\left(\mathrm{POPh}(\mathrm{OE} \mathrm{t})_{2}\right)_{2}$ requires C,37.0; $11.5 .4 \%$ For 6:1 ratio, calculated anaiysis is C,42.9; H,4.9\%.

Reaction of $\mathrm{RuCl}_{2}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)_{4}$ with $\mathrm{NaS}_{2} \mathrm{PMe}_{2}$ in refluxing ethanol for 24 hours gives, on solvent removal, an oil with mass spectral
 732, $\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OEt})_{2} \mathrm{CPh}\right)\left(\mathrm{P}(\mathrm{OEt})_{3}\right)\right]^{+} ; 684,\left[\mathrm{RH}_{2}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OEt})_{3}\right)_{2}\right]^{+}$etc. cis-Bis (dimethylphosphinodithioato)bis(trimethylphosphite) ruthenium (II):$\mathrm{RuCl}_{2}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)_{4} \quad(0.50 \mathrm{~g})$ and $\mathrm{NaS}_{2} \mathrm{PMe}_{2}(0.30 \mathrm{~g})$ were refluxed in methanol (30 ml) for 3 hours. The resultant yellow solution was filtered hot, and after concentration, allowed to slowly crystallise at 273 K for 10 days. The orange crystals so formed were filtered and kashed with water, methanol and n-pentane ($0.06 \mathrm{~g}, 28 \%$). On further solvent removal from the filtrate, an oily white solid was deposited which on recrystallisation was identified as phenol (by its ${ }^{1}{ }_{H}$ n.m.r. spectrum). The ruthenium complex rapidly decomposed on air exposure to give a black solid.
cis - Bis(dimetnylphnsphinodithioato) (triphenylphosphine) (triphenylphosphite)
ruthenium (II) cis $-\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{O} .08 \mathrm{~g})$ and $\mathrm{P}(\mathrm{OPh})_{3}(0.05 \mathrm{rii})$
were refluxed in ethanol (15 ml) for 3 hours. The solution was cooled
and the precipitated orange solid washed with ethanol and n-pentane ($0.03 \mathrm{~g}, 35 \%$). The yellow filtrate was allowed to crystallise overnight to give a sample of cis $-\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{FMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)_{2} \quad(0.04 \mathrm{~g}, 45 \%)$.
cis - Bis(dimethylphosphinodithioato)(dimethylphenylphosphine)
(triphenylphosphite) ruthenium (II):- cis - $\mathrm{Ru}^{\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}}$ (0.20 g) was refluxed with $\mathrm{P}(\mathrm{OPh})_{3}(1.2 \mathrm{ml})$ in ethanol for 1 hour. Then, after concentration and standing for two days at 273 K , orange crystaiz were deposited which were filtered off and washed with ethanol and n-pentane: $(0.10 \mathrm{~g}, 39 \%)$.
cis - Bis(diphenylphosphinodithioato) (dimethylphenylphosphine)
(triphenylphosphite) ruthenium (II):- \quad cis $\left.-\mathrm{Ru}_{2} \mathrm{~S}_{2} \mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ $(0.20 \mathrm{~g})$ and $\mathrm{P}(\mathrm{OPh})_{3}(0.3 \mathrm{ml})$ were shaken in dichloromethane (20 ml) for 7 days. After filtration and addition of n-pentane, the resultant orange solution was concentrated until orange crysials were deposited. These were filtered $=f f$ and washed with n-pentane ($0.079,29 \%$) . cis - Bis(dimethylphosphinodithioato)carbonyl (triphenylphosphine) ruthenium (II):-
a) cis - $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2} \quad(0.10 \mathrm{~g})$ and $\mathrm{PPh}_{3}(0.40 \mathrm{~g})$ were carbonylated in refluxing ethanol for two hours. The resulting orange solution was evaporated to dryness and the residue recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ light petroleum $\left(\mathrm{bp} 60-80^{\circ}\right.$) to give orange crystals of the complex ($0.03 \mathrm{~g}, 41 \%$).
 in ethanol (25 ml) for two hours. Removal of solvent gave an orange oil which was redissolved in diethylether and after leaving at 273 K for 12 hours, orange crystals of the product were deposited $(0.03 \mathrm{~g}, 92 \%)$. c) cis $-\mathrm{RuCl}_{2}(\mathrm{CO})_{2}\left(\mathrm{PPH}_{3}\right)_{2}(0.13 \mathrm{~g})$ aria $\left.\mathrm{NaS}_{2} \mathrm{PMe}_{2} \because \mathrm{O}_{2} 26 \mathrm{~g}\right)$ were refil:xed in acetone (20 ml) for 60 hours. The resultant solution was filtered, evaporated to dryness and then chromatographed on a dry silica column ${ }^{22}$, using benzene as eluent. One orange band was observed and the central portion of the band was extracted with
diethylether. . The resulting yellow solution was evaporated to dryness and the residue recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ n-pentane to give orange crystals of the complex ($0.08 \mathrm{~g}, 73 \%$). cis - Bis(dimethylphosphinodithioato)carbonyl(triphenylarsine) rutheirium (II):- cis $-\mathrm{RuCl}_{2}(\mathrm{CO})_{2}\left(\mathrm{AsPh}_{3}\right)_{2}(0.06 \mathrm{~g})$ and $\mathrm{NaS}_{2} \mathrm{PMe}_{2}(0.09 \mathrm{~g})$ were refluxed in acetone (25 mi) for 4 days with no apparent reaction. The mixture was then shaken for 3 weeks to give an orange solution and a white precipitate. After filtration, the solution was evaporated to dryness and the resulting orange oil chromaciographed on a dry alumina colunn ${ }^{22}$ using benzene as eluent and washing off the orange band with diethylether. Evaporation of the sthereal solution and recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{n}$-pentane gave the orange complex $(0.03 \mathrm{~g}, 51 \%)$. cis - Bis(dimethylphosphincdithioato)carbonyl(methyldiphenylphosphine)
 carbonylated in cold $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for one minute. The yellow orange solution was evaporated to dryness and the product recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{n}$-pentane to give the orange crystalline complex ($0.03 \mathrm{~g}, 37 \%$) . Similarly, carbonylation of cis $-\mathrm{Ru}_{\mathrm{L}}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{2} \quad$ (0.05g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 10 minutes and recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /herane gave yellow crystals of cis - Bis(dimethylphosphinodithioato)carbonyl (trimethylphosphite) ruthenium (IJ) ($0.01 \mathrm{~g}, 25 \%$) whereas carbonylation of cis - Ru(S $\left.{ }_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)_{2} \quad(0.07 \mathrm{~g})$ in refluxing acetone for 4 hours gave after recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ n-pentane, yellow crystals of cis - Bis(dimethylphosphinodithioato) carbonyl(triphenylphosphite)
rutherium (II) $\{0.03 \mathrm{~g}, 60 \%$.
cis-Bis (dimethylphosphinodithioato) carbonyl (dimethylphenylphosphine) ruthenium (II) (C) and Bis(dimethylphosphinodithioato)carbonyl bis (dimethylphenylphosphine) ruthenium (II) (D)
 acetone for ca 1 hour and the resulting solution evaported to dryness.

The residue was chromatographed on a dry alumine column using benzene ant gave a yellow band (r,f. value ca 0.5) and an orange band (r.f. value ca 0.1) which were removed separately with diethyl ether, evaported to dryness and recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ n-pentane. The yellow band consisted of cis - $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right) \mathrm{CO} \quad(0.01 \mathrm{~g}, 6 \%)$ and the orange $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{CO}$ (configuration D) ($0.15 \mathrm{~g}, 80 \%$). If cis- $\left.\mathrm{Ru}_{2} \mathrm{SMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{2} \quad(0.10 \mathrm{~g})\right.$ and sulphur (0.05 g) were carbonylated in refluxing benzene for 6 hours, a t.l.c. of the resulting orange solution showed a single orange band together with a yellow band with the same r.f. value as sulphur. The solution was evaporated to dryness to give an orange oil. This was dissolved in diethylether and after filtering off excess sulphur, left overnight at 273 K when orange crystals of cis $-\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{Prif}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right) \mathrm{CO}$ $(0.05 \mathrm{~g}, 60 \%)$ were deposited.
cis- $\operatorname{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}(\mathrm{CO})_{2}(0.10 \mathrm{~g})$ was suspended in ethanol (50 ml), presaturated with carbon monoxide and $\mathrm{PM} \epsilon_{2} \mathrm{Ph}(0.14 \mathrm{ml})$ added. The solution was then refluxed in a stream of $C O$ for 2 hours to give an orange solution which on leaving overnight at 273 K gave only $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}{ }^{\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)} \mathrm{Cl}^{\mathrm{CO}}$ (D) (0.08g, 50\%).

Bis(dimethylphosphinodithioato) carbonyl bis(dimethylphenylpnosphine)
ruthenium (II) (E):- cis - Ru(S $\left.{ }_{2} \mathrm{PMe}_{2}\right)_{2}$ (PMe $\left._{2} \mathrm{Fh}\right)_{2}(\mathrm{O} .2 \mathrm{~g} \mathrm{~g})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ and carbon monoxide passed through the
solution for 45 secs. The resulting yellow solution was evaporated to dryness under vacuum at 273 K and the residue recrystallised by dissolving in a minimum amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and adding excess diethylether ($0.15 \mathrm{~g}, 80 \%$).
cis-Bis (diphenylphospainodithicato) carbonyl (dimethylphenylphosphine)
ruthenium (II) (C):- cis- $\mathrm{Ru}^{-}\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{2} \quad\right.$ (0.35 g) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$ and carbonylated for 1 hour at roon temperature. The yellow solution formed was evaporated to dryness and eluted from a dry silica column with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Two yellow bands were found and the first was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solution evaporated to dryness to give the crystalline product ($0.04 \mathrm{~g}, 13 \%$). The other band was removed with diethylether; the solution evaporated to dryness and the residue recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / 1$ ight petroleum (bp $40-60^{\circ}$) to give $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{CO}$ (mixture of isomers D and E) $(0.05 \%, 14 \%)$. Bis(diphenylphosphinodithioato)carbonyl bis(dimethylphenylphosphine) ruthenium (II) (D):- cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \quad(\mathrm{O} .3 \mathrm{Og})$ was carbonylated in refluxing ethanol (40 ml) for two hours to give a yellow solutinn. Concentration to dryness, followed by chromatography on a dry alumina column with henzene gave two bands. The first was eluted with diethylether, evaporated to dryness and the residue recrystallised from benzene/light petroleum (bp 100-120) to give a very small amount of cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PMe} \mathrm{Ph}_{2}\right) \mathrm{PO}$. The second (more intense) orange band was also eluted with diethylether and after. evaporation to dryness (in the cold) was recrystallised from benzene/n-pentane to give the required product $(0.10 \mathrm{~g}, 31 \%)$.

Bis(diphenylphosphinodithioato)carbonyl bis(dimethylphenylphosphine)
 carbonylated for one minute in $\mathrm{cold}_{\mathrm{CH}_{2} \mathrm{Cl}_{2} \text {. Then, pentane was }}$ added and the resulting orange solution evaporated to dryness and the orange solid collected without further purification ($0.21 \mathrm{~g}, 1 \mathrm{l}, \mathrm{\%}$). cis-Bis(dimethyl nhosphinodithioato)bis(carbonyl)ruthenium (II):a) cis $^{-C l_{2}}\left[\mathrm{RuCl}_{4}(\mathrm{CO})_{2}\right](0.50 \mathrm{~g})$ and $\mathrm{NaS}_{2} \mathrm{i}^{\mathrm{M} \mathrm{s}_{2}}(0.50 \mathrm{~g})$ were refluxed in ethanol (20 ml) far six hours to give a yellow solution. After filtration, this was cooled giving yellow crystals which were washed with water, ethanol and n-pentane ($0.14 \mathrm{~g}, 39 \%$). b) CO was passed through a solution of $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)(0.19)$ for three hours. The resulting yellow solution was concentrated and allowed to crystallise to give the complex ($0.065 \mathrm{~g}, 70 \%$) . cis-Bis (diphenylphosphinodithioato)bis(carbonyl)ruthenium (II):$\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ and excess $\mathrm{Ph}_{2} \mathrm{PS}_{2} \mathrm{H}$ were refluxed together in tetrahydrofuran for 18 hours. The resulting yellow solution was evaporated to dryness, the residue extracted with diethylether and crystallised at 273 K to give the yellow product.

N. N. - Dimethyldithiocarbamate Complexes

cis-Bisídimethyldithiocarbamato)bis(triphenylphosshine)ruthenium (II)
Acetone:- $\quad \mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3} \quad\left(\mathrm{O}_{2} 26 \mathrm{~g}\right)$ and $\mathrm{NaS}_{2} \mathrm{CMMe}_{2} 2 \mathrm{H}_{2} \mathrm{O}(0.15 \mathrm{~g})$ were
shaken in acetone (25 ml) for two days. The solution was then
filtered and the orange crystals washed with water, diethylether and dried in vacuo at 40°.
cis-Bis(dimethyldithiocarbamato)bis(dimethylphenylphosphineiruthenium (II):-
mer- $\mathrm{RuCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3} \quad(0.16 \mathrm{~g})$ and $\mathrm{NaS}_{2} \mathrm{CMMe}_{2} 2 \mathrm{H}_{2} \mathrm{O}(0.16 \mathrm{~g})$ were shaken in degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under nitrogen for eight hours. The resulting greenish-yeliow solution was filtered to remove any precipitated
sodium chloride and evaporated to dryness. Chromatography on a dry alumina column with benzene gave an intense yellow band (ca r.f. value 0.6) together with a number of weaker bonds of lower r.f. value. The yellow band was removed with diethyl ether, giving on removal of solvent the yellow product ($0.13 \mathrm{~g}, 88 \%^{\prime}$). trans-Bis(dimethyldithiocarbamato)bis(dimethylphenylphosphine) ruthenium (II):- cis- $\mathrm{Ku}\left(\mathrm{S}_{2} \mathrm{CNM} \mathrm{e}_{2}\right)_{2}^{\left(\mathrm{PDh}_{3}\right)_{2}} \quad(0.20 \mathrm{~g})$ was refluxed with $\mathrm{PMe}_{2} \mathrm{ph}(0.15 \mathrm{ml})$ in ethanol (20 ml) for 12 hours. The resulting yellow solution was filtered hot and allowed to crystallise. The first crop of yellow crystals were filtered off, washed with ethanol and n-pentane to give the desired product ($0.03 \mathrm{~g}, 21 \%$). The yellow filtrate later deposited more crystals shown to be cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}{ }^{\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}} \quad(0.10 \mathrm{~g}, 71 \%)$. cis-Bis(dimethyldithiocarbamato)bis(triphenylphosphite)ruthenium (II):$\mathrm{RuCl}_{2}\left(\mathrm{P}(\mathrm{OFh})_{3}\right)_{4} \quad(0.20 \mathrm{~g})$ and $\mathrm{NaS}_{2} \mathrm{CNHe}_{2} 2 \mathrm{H}_{2} \mathrm{O}(0.16 \mathrm{~g})$ were refluxed in ethanol (15 ml) for one hour. The resulting yellow solution was filtered hot and on cooling give yellow crystals of the product ($0.06 \mathrm{~g}, 41 \%$).
cis-Bis(dimethyldithiocarbamato)(triphenyl chosphine)(iriphenyiphosnhite)
ruthenium (II):- cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNH}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2} \quad(0.10 \mathrm{~g})$ and $\mathrm{P}(\mathrm{OPh})_{3}$ (0.04 ml) in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave an orange solution. Addition of ethanol and evaporation of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave the yellow crystalline product which was washed with etharol and n-pentane (0.07%, 69\%) . cis-Bis(cirethyldithiocarbamato)biscarbonyl ruthenium (II):a) $R u_{3}(\mathrm{CO})_{12}(0.20 \mathrm{~g})$ and tetramethylthiuramdisulphide $(0.40 \mathrm{~g})$ were refluxed in ethanol (15 ml) for 2 hours. On cooling, the yellow solution gave the yellow crystalline product ($0.20 \mathrm{~g}, 54 \%$).
b) cis- $\mathrm{RuCl}_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2} \quad(\mathrm{O} .10 \mathrm{~g})$ and $\mathrm{NaS}_{2} \mathrm{CNMe}_{2} \mathrm{HH}_{2} \mathrm{O}$ (0.20 g) were refluxed in ethanol (20 ml) for seven days. The resulting pale yellow solution was filtered, chromatographed on a dry alumina column with benzene and the yellow band extracted with diethylether. Removal of solvent and recrystallisation from hexane gave the product $(0.001 \mathrm{~g}, 2 \%)$.

Starting materials	Vol.EtOH	$\begin{aligned} & \text { Reaction } \\ & \text { Tine } \end{aligned}$	Yield	Product
$\underline{\text { mer- }} \mathrm{RuCl}_{3}\left(\mathrm{PMePh}_{2}\right)_{3}(0.20 \mathrm{~g})$ and	50 ml	4 h	$\begin{aligned} & 0.14 \mathrm{~g} \\ & (56 \%) \end{aligned}$	cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PMePh}_{2}\right)_{2}$
$\mathrm{NH}_{4} \mathrm{~S}_{2} \mathrm{PPh}_{2}(0.25 \mathrm{~g})$				
$\left[\mathrm{Ru}_{2} \mathrm{Cl}_{3}\left(\mathrm{PHiPh}_{2}\right)_{6}\right] \mathrm{Cl}(0.08 \mathrm{~g})$	20 ml	1 h	$\begin{aligned} & 0.05 \mathrm{~g} \\ & (62 \%) \end{aligned}$	$\underline{\text { cis- } \mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMePh}_{2}\right)_{2} \text {)}}$
and $\mathrm{NaS}_{2} \mathrm{PMe}_{2}(0.10 \mathrm{~g})$				
mer- $\mathrm{RuCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(0.5 \mathrm{~g})$	70 ml	3 h	$\begin{gathered} 0.70 \mathrm{~g} \\ (100 \%) \end{gathered}$	
and $\mathrm{NH}_{4} \mathrm{~S}_{2} \mathrm{PPh}_{2}(1 . \mathrm{Og})$				
$\text { mer- } \mathrm{RuCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(0.70 \mathrm{~g})$	70 ml	15 m	$\begin{gathered} 0.70 \mathrm{~g} \\ (100 \%) \end{gathered}$	$\underline{\text { cis- }} \mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$
and $\mathrm{NaS}_{2} \mathrm{PMe}_{2}(0.70 \mathrm{~g})$				
$\mathrm{RuCl}_{2}\left(\mathrm{p}(\mathrm{OPh})_{3}\right)_{4}(0.80 \mathrm{~g})$	20 ml	1 h	$\begin{aligned} & 0.25 \mathrm{~g} \\ & (46 \%) \end{aligned}$	$\mathrm{cls}-\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}\right)_{2} \mathrm{Cl}^{\left(\mathrm{P}(\mathrm{OH})_{3}\right)_{2}}$
and $\mathrm{NaS}_{2} \mathrm{PMe}_{2}(0.60 \mathrm{~g})$				
$\underline{\text { mer- } \mathrm{RuCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(0.50 \mathrm{~g})}$	25 ml	3 h	$\begin{aligned} & 0.39 \mathrm{~g} \\ & (71 \%) \end{aligned}$	$\left.\underline{\text { cis- }} \mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PEt}_{2}\right)_{2}{ }^{\left(\mathrm{PMe}_{2} \mathrm{Ph}\right.}\right)_{2}$
and $\mathrm{NaS}_{2} \mathrm{PEt}_{2}(0.90 \mathrm{~g})$				
$\left\{\mathrm{RuCl}_{2} \mathrm{C}_{7} \mathrm{H}_{8}\right\}_{\mathrm{n}}(0.2 \mathrm{~g})$	25 ml	5 h	$\begin{aligned} & 0.2 \mathrm{~g} \\ & (60 \%) \end{aligned}$	$\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)$
and $\mathrm{NaS}_{2} \mathrm{PNe}_{2}(0.4 \mathrm{~g})$				
trans RuCl_{2} (diphos) ${ }_{2}$ (0.2g)	25 ml	24 h	$\begin{aligned} & 0.06 \mathrm{~g} \\ & (39 \%) \end{aligned}$	$\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{5,}\right)$, diphos
and $\mathrm{NaS}_{2} \mathrm{PMe}_{2}(0.2 \mathrm{~g})$				

	Found of						Required \%			
Complex	Colour	$\cdots \mathrm{Mp}\left({ }^{\circ} \mathrm{C}\right)$	C	H	Others	M	C	H	Others	M
cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}$	Red	193-195	64.2	4.7	.		64.1	4.5		
cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PMePh}_{2}\right)_{2}$	Orange	116-118	60.1	4.4	-		60.1	4.6		
cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)_{2}{ }^{\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}}$	Orange	247-248	54.7	4.7	S, 14.8;P.14.2		54.7	4.8	S, 14.6;P, 14.2	
cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}$	Red-Brown	139-142	54.7	4.7			54.9	4.8		
	Orange	279-280(d)	47.8	5.0			47.9	5.1		
	Orange	212(d)	38.3	5.2	S,20.6;P. 19.6	$618^{\text {a }}$	38.3	5.4	S,20.6; P, 19.8	627
cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)_{2}$	Yellow	145-147	49.3	4.6		$973+5$	49.4	4.3		971
cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{2}$	Yellow	213-214	20.1	5.0		$599{ }^{\text {a }}$	20.0	5.0		599
cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PEtPh}_{2}\right)_{2}$	Orange.	158	48.7	5.6			49.3	5.4		
$\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}$ (diphos)	Orange	228-230	47.7	4.9	-	$749^{\text {b }}$	48.0	4.8		749
$\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)$	Orange	230-233 (d)	47.5	4.8			47.3	4.6		
$\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}$ (diars)	Orange	238-24.0(d)	28.6	4.3			26.4	4.4		
trans-Ru($\left.\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}(\text { diars })_{2}$	Pink	236-237(d)	31.3	4.9			31.2	4.8		
	Red	124-126	56.3	5.3	. 1		56.7	5.4		
	Red	156-157	42.7	6.1	S,18.9		42.2	6.1	S,18.7	
cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNMe}\right)_{2} \mathrm{C}^{\left(\mathrm{P}(\mathrm{OPh})_{3}\right)_{2}}$	Yellow	150-152	51.7	4.5	.		52.4	4.4		
cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNM} \mathrm{e}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Me}_{2} \mathrm{CO}$	Yellow	168-169	58.1		N,3.3		58.3	4.9	N,3.2	
cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNM} \mathrm{e}_{2}\right)_{2}{ }^{\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}}$,	Yellow	204-206	42.8	5.5	$N f .7 ; S, 20.6, P, 10.1$		42.8	5.5	N,4.5; S, 20.7P, 10.0	
$\underline{\text { trans- } \mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNMe}\right.} \mathrm{C}_{2} \mathrm{~S}^{\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}}$	Yellow		42.8		N,4.8		42.8	5.5	:	

Found \%

Required \%

Complex	Colour	$\mathrm{Mp}\left({ }^{\circ} \mathrm{C}\right)$	C	H	Others	M	C	H	Others	M
cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{P}(\mathrm{OPh})_{3}\right)$	Orange	182-184	51.1	4.5			52.0	4.6		
cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)\left(\mathrm{P}\left(\mathrm{OPh}_{3}\right)_{3}\right)$	Orange	124-125	44.4	4.7			45.0	4.8		
cis $-\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)\left(\mathrm{P}(\mathrm{OPh})_{3}\right)$	Orange	182-184	56.9	4.6			57.3	4.4		
cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNMe}\right)_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{P}(\mathrm{OPh})_{3}\right)$	Yellow	201-204	55.0	4.6	N,3.1		55.2	4.6	N,3.1	
cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{PH}\right) \mathrm{CO}$	Orange	194-195	51.6	4.0		$763 \pm 3^{\text {b }}$	51.7	4.1		766
cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right) \mathrm{CO}$	Orange	123-125	43.3	4.3		$\begin{aligned} & 720^{a} \\ & 638 \pm 3^{b} \end{aligned}$	43.1	4.2		641
cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMePh}_{2}\right) \mathrm{CO}$	Orange	161-163	37.3	4.4		$579 \pm 1 \mathrm{~b}$	37.3	4.3		579
cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}(\mathrm{PMe} \mathrm{S} \mathrm{Ph}) \mathrm{CO}$	Yellow	43-44	30.2	4.6		$\begin{aligned} & 478^{a} \\ & 517 \pm_{1} b \end{aligned}$	30.2	4.5		517
cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OPh})_{3}\right) \mathrm{CO}$	Yellow	193-194	40.0	3.9		$689 \pm 1 \mathrm{~b}$	40.1	3.9		689
cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMO}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OMe})_{3}\right) \mathrm{CO}$	Yellow	117-119	19.3	4.4		$502 \pm 1^{\text {b }}$	19.1	4.2		503
cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{AsPh}_{3}\right) \mathrm{CO}$	Orange	104-106	40,8	4.3		$687 \pm 2^{\text {b }}$	40.3	3.9		685
$\mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{CO}$	Yeliow	95-115 (ci)	53.9	4.7			5't. 5	4.7		
$\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{CO}^{\mathrm{d}}$.	Yellow	13ts-135 (d)	38.2	5.2			38.5	5.2		
$\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{CO}^{\mathrm{e}}$	Yellow	102-118 (d)	38.7	5.1			38.5	5.2		
cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{2}$	Yellow	89-90	47.8	3.2		$655 \pm 1^{\text {b }}$	47.6	3.1		655
cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}(\mathrm{CO})_{2}$	Yellow	159-160	17.9	3.0		$407 \pm 1^{\text {b }}$	17.7	2.9		407
cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}(\mathrm{CO})_{2}$	Yellow	230-231 ${ }^{\text {f }}$	24.5	3.1	$N, 7.2$		24.8	3.0	N,7.1	
$\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)$	Orange	167-170	29.9	4.6		$443 \pm 1{ }^{\text {b }}$	29.8	4.5		443
$\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)$	Orange	184-185	30.7	5.1		$459 \pm 1{ }^{\text {b }}$	31.3	5.2		459

d) Configuration n
a) Molecular weight measured osmometrically at $37^{\circ}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$
e) Configuration E
f) Sublimes at $170^{\circ} \mathrm{C}$

Infrared Spectra of Various Ruthenium Dithioacia Complexes

(shoulders are underlined)
$-_{\mathrm{S}_{2} \mathrm{PR}_{2}}$ bands $\left(\mathrm{cm}^{-1}\right)$

Complex

$$
\begin{array}{ll}
\text { cis- } \mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{FMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2} & 583 \\
\text { cis- } \mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMePh}_{2}\right)_{2} & 587 \\
\text { cis- } \mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} & 588 \\
\text { cis- } \mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)_{2} & 589 \\
\text { cis- } \mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{2} & 589 \\
\mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}(\mathrm{diphos}) & 585 \\
\mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right) & 589 \\
\mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}(\mathrm{diars}) & 580
\end{array}
$$

$$
\text { trans }-\mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}(\text { diars })_{2}
$$

$$
\text { cis- } \mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{P}(\mathrm{OPh})_{3}\right) \quad 589
$$

$$
\text { cis- } \mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right) \mathrm{CO}: \quad 570
$$

$$
\mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{CO}^{\mathrm{D}}
$$

$$
\mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{CO}^{\mathrm{C}}
$$

$$
\text { cis- } \mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right) \mathrm{CO}
$$

$$
\underline{\text { cis- } \mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMePh}_{2}\right) \mathrm{CO}} 581
$$

$$
\text { cis- } \mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{CMe})_{3}\right) \mathrm{CO}
$$

$$
\underline{\text { cis- } \mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}(\mathrm{CO})_{2}} 582
$$

$$
\mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)
$$

$$
\operatorname{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right) \quad 501
$$

$$
\underline{\text { cis- } \mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2} \quad 606,572,568}
$$

$$
\text { ci.s- } \mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PMePh}_{2}\right)_{2} \quad 609,570
$$

$$
\text { cis- } \mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PPh}_{2}\right)_{2}\left(\mathrm{FMn}_{2} \mathrm{Ph}\right)_{2}
$$

$$
\text { cis- } \mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)\left(\mathrm{P}(\mathrm{CPh})_{3}\right) 609,572,568
$$

$$
\text { cis- } \mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right) \mathrm{CO} \quad 610,570
$$

$$
\mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PFh}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{CO}^{\mathrm{b}}
$$

$$
\mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PM}_{2} \mathrm{Ph}\right)_{2} \mathrm{CO}^{\mathrm{C}}
$$

$$
\underline{\text { cis- }} \mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{2}
$$

610,570
611,570
607,565
608,568

TABLE 2.4

Main peaks in the Mass Spectrum of $\mathrm{Ru}^{\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{2}}$

Mass No. of Ru^{102} peak 3

Probable Ion

600
585
569
507
492
476

461

445

383
377 (metastable)

352

$$
\begin{aligned}
& {\left[\mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{2}\right]^{+} } \\
& {\left[\mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)\left(\mathrm{P}(\mathrm{OMe})_{2} \mathrm{O}\right)\right]^{+} } \\
& {\left[\mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)\left(\mathrm{P}(\mathrm{OMe})_{2}\right]^{+}\right.} \\
& {\left[\mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OMe})_{3}\right) \mathrm{P}\right]^{+} } \\
& {\left[\mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OMe})_{2} \mathrm{O}\right) \mathrm{P}\right]^{+} } \\
& {\left[\mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{P}(\mathrm{OMe})_{3}\right]^{+} } \\
\text {or } & {\left[\mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{P}(\mathrm{OMe})_{2} \mathrm{P}\right]^{+} } \\
& {\left[\mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{Fi}_{2}\right)_{2} \mathrm{P}(\mathrm{OMe})_{2} \mathrm{O}\right]^{+} } \\
\text {or } \quad & {\left[\mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{P}(\mathrm{OMe}) \mathrm{OP}\right]^{+} } \\
& {\left[\mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{P}(\mathrm{OMe})_{2}\right]^{+} } \\
\text {or } & {\left[\mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}(\mathrm{P}(\mathrm{OMe}))^{+}\right]^{+} } \\
& {\left[\mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{P}\right]^{+} } \\
& {\left[\mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\right]^{+} }
\end{aligned}
$$

a All peaks show the characteristic ruthenium isotopic pattern

TABLE 2.5

Main Peaks in the Mass Spectrum of $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{FMe}_{2}\right)_{2}(\mathrm{P}(\mathrm{OPh}) 3) \mathrm{CO}$

Mass No. of Ru^{102} peak ${ }^{\text {a }}$
Probable Ion

$$
\begin{gathered}
{\left[\mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OPh})_{3}\right) \mathrm{CO}\right]^{+}} \\
{\left[\mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)\right]^{+}} \\
690 \longrightarrow 662
\end{gathered}
$$

597
569
537
476
435 (metastable)
412
380
352
331
$\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OPh})_{2}\right) \mathrm{CO}\right]^{+}$
$\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OPh})_{2}\right)\right]^{+}$
$\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)\left(\mathrm{P}\left(\mathrm{CPh}_{3}\right)\right]^{+}\right.$
$\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}(\mathrm{P}(\mathrm{OPh}))\right]^{+}$
$662 \longrightarrow 537$
$\left[\mathrm{Ru}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)\right]^{+}$
$\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe} \mathrm{S}_{2} \mathrm{CO}^{+}\right.\right.$
$\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\right]^{+}$
$\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}{\left.\left.\mathrm{P}(\mathrm{OPh})_{3}\right)\right]^{2+}}^{2+}\right.$
a All peaks show the characteristic ruthenium isctopic pattern.

Complex

$$
\begin{gathered}
\text { Lis- } \mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right) \mathrm{CO} \\
\text { Cj.s- } \mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{AsPh}_{3}\right) \mathrm{CO} \\
\mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMePh}_{2}\right) \mathrm{CO} \\
\mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right) \mathrm{CO}
\end{gathered}
$$

$$
\text { cis- } \operatorname{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OPh})_{3}\right) \mathrm{CO}
$$

$$
\text { cis- } \mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}\left(\mathrm{OMC}_{3}\right) \mathrm{CO}\right.
$$

$$
\text { cis- } \mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}(\mathrm{CO})_{2}
$$

$$
\text { is- } \mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right) \mathrm{CO}
$$

$$
\text { is- } \mathrm{Ru}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{P}(\mathrm{OPh})_{3}\right)
$$

Solvent Temp (K)
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl} \quad 373$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl} 301$
$\mathrm{CDC1}_{3} \quad 301$
is- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)\left(\mathrm{P}(\mathrm{OPh})_{3}\right)$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$
$\mathrm{CH}_{2} \mathrm{Cl}_{2} \quad 298$
$\mathrm{CH}_{2} \mathrm{Cl}_{2} \quad 233$
is- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)\left(\mathrm{P}(\mathrm{OPh})_{3}\right)$
$\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{CO}$

[^0]Dithioligand(Me group)
$8.21^{j} \quad 8.68^{k}$
$\mathrm{Tc}(\mathrm{K})$
353^{1}
$8.10^{i}(13.0) 8.33(12.5) 9.04(12.5)$
$7.94(13.0) 8.00(13.0) 8.04(12.5) 9.04(12.5)$
$7.90(13.0) 7.96(13.0) 8.00(12.5) 9.07(12.5)>330$
$7.88(13.0) 7.94(13.0) 8.05(13.0) 8.62(13.0)>330$
7.83(13.0) 7.96(13.0) 8.06(12.5) 8.33(12.5)
>330
$2437.80(13.0) 7.94(13.0) 8.05(12.5) 8.35(12.5)$
7.89.(13.0) 7.96(13.0) 8.09(13.0) 8.20(12.5)>330 $=7.91^{i}(12.5) \quad 8.00(12.5) 8.10(13.0)>330$ 7.86(12.5) 7.99(12.5)>330

- -

Me(Phosphorus
Phenyl
Ligand)
Tc(K) Groups

- $2.3-2.8$
- $2.4-2.9$

$$
7.83^{g}(9.0)^{h}
$$

$$
=\quad 2.2-3.0
$$

$$
8.11^{g}(9.5)^{h}
$$

$$
8.10^{g}(9.5)^{h} 8.12^{g}(10.0)^{h-\quad 2.2-2.8}
$$

$$
\therefore \quad-\quad-2.6-3.0
$$

$$
6.25^{9}(10.5)^{h}
$$

$$
8.19^{\dot{g}}(10.0)^{h}
$$

$$
-\quad 8.16^{g}(10.0)^{h} 8.21^{g}(10.0)^{h}-\quad 2.0-3.0
$$

$$
8.32^{j}(12.5)
$$

$$
8.45^{k}(12.5)
$$

$$
8.28^{n}
$$

$$
\begin{aligned}
& 283^{1} \\
& 313^{\mathrm{m}}
\end{aligned}
$$

$$
8.19(12.5)
$$

$$
7.86(8.0) 8.03(8.0) 8.41^{i}(12.5)
$$

$$
8.91(12.5)
$$

$$
301^{\circ}
$$

$8.05^{g}(9.5)^{h}$
$7.99^{g}(8.0)^{h}$
$8.04^{g}(9.0)^{h}$
$7.99^{g}(9.0)^{\mathrm{h}} 8.02^{g}(9.0)^{\mathrm{h}}-2.1-3.2$
$-\quad 7.86^{\mathrm{p}}(8.0)^{\mathrm{f}} 7.90^{\mathrm{p}}(8.0)^{\mathrm{f}}-2.2-2.8$

TABLE 2.6 (CONTD.)

± 0.01

Doublet; J_{PH} in parentheses $\left(\pm 0.2 \mathrm{H}_{2}\right)$
Coalescence temperature of dithioacid methyl resonances

Coalescence temperature of methyl groups attached to phosphorus ligands
$H_{n} \mathrm{PP}^{\prime} \mathrm{H}_{\mathrm{n}}^{\prime}$ type spectrum (pseudo-triplet)
$\mathrm{J}_{\mathrm{PH}}+\mathrm{J}_{\mathrm{PH}}{ }^{\prime}$. in parentheses $\left(\stackrel{+}{ \pm} 0.2 \mathrm{H}_{2}\right)$
Doublet
J_{PH} in parentheses $\left(\pm 0.2 \mathrm{H}_{2}\right)$
Two doublets superimposed
Doublet from coalescence of inner doublets Doublet from coalescence of outer doublets

Conlescence temperature for inner doublets

Coalescence temperature for outer doublets Broadened doublet superimposed on broad signal

Coalescence temperature for doublets at $\tau 8.03,8.41$ and $\mathcal{4 . 8 6 , 8 . 4 1}$

Virtually coupled $1,2,1$ triplet
Methyl singlet (acetone) at 7.86

Singlet

Broad singlet
Two singlets superimposed
Singlet from coalescence of peaks at $\tau 7.13$ and 7.37
Coalescence temperature for resonances at $\tau 7.13$ and 7.37
In $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$
Triplet from CH_{2} protons

```
TABLE 2.7
```

Rates and Activation Parameters obtained by Line Shape Analysis for the Inversion Process cis- $\Delta \underset{\sim}{\boldsymbol{c}} \boldsymbol{\operatorname { c i s }}-\Lambda$ in some Ruthenium(II) Dimethylphosphinodithioate Complexes

Compound	Solvent	$\log _{10} \mathrm{k}_{298} \mathrm{a}$	$\mathrm{Ea}^{\text {b }}$	$\Delta H_{298}^{\ddagger}{ }^{\text {¢ }}$	$\Delta S_{298}^{\neq} c$	$\triangle G_{298}^{\ddagger} \mathrm{b}$
cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}$	CDCl_{3}	3.83 ± 0.02	49.6 ± 1	47.1 ± 1	-14 ± 3.	51.1 ± 0.1.
cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMEPh}_{2}\right)_{2}$	CDCl_{3}	3.08 ± 0.02	60.5 ± 2	58.0 ± 2	9 ± 7	55.4 ± 0.2
cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)_{2}$	CDCl_{3}	2.53 ± 0.34	67.8 ± 2	65.3 ± 2	23 ± 13	58.6 ± 2
cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$	CDCl_{3}	1.91 ± 0.12	62.0 ± 1	59.6 ± 1	-9 ± 4	62.1 ± 0.1
	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$	1.31 ± 0.01	69.7 ± 1	67.2 ± 1	6 ± 4	65.5 ± 0.1
	$C_{6} \mathrm{H}_{6}$	0.34 ± 0.12	126 ± 4	123.5 ± 4	176 ± 11	71.0 ± 0.1
cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)_{2}$	CDCl_{3}	0.71 ± 0.01	73.7 ± 2	71.2 ± 2	8 ± 8	68.9 ± 0.1
$\underline{\text { cis- }} \mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{P}(\mathrm{OPh})_{3}\right)$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$1.99 \pm 0.05^{\text {d }}$	$47.3 \pm 4^{\text {d }}$	$44.8 \pm 4^{\text {d }}$	$-56 \pm 15^{\text {d }}$	$61.6 \pm 0.3^{\text {d }}$
		1.92 ± 0.03^{e}	42.5 ± 3^{e}	40.0 ± 3^{e}	-74 ± 9^{e}	62.0 ± 0.2^{e}
$\underline{\text { cis- }} \mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right) \mathrm{CO}^{\mathrm{f}}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$	-1.62 ± 0.08^{9}	121.8 ± 2^{9}	119.3 ± 2^{9}	125 ± 7^{9}	$82.0 \pm 0.4{ }^{\text {g }}$
$\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}$ (diphos)	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$	-3.2 ± 0.3	113.4 ± 7	110.9 ± 7	65 ± 20	91.4 ± 2
		$\sec ^{-1} \quad d$	Obtained fr	m analysis	exchange	of inner dou
		kJmol^{-1}	Obtained fr	analysis	exchange	f outer dou
		$\mathrm{JK}^{-1} \mathrm{~mol}^{-1} \quad \mathbf{f}$	For cis- Ru	$\left.\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}(\mathrm{CO})$, no scram	bing of me
		g	Obtained fro	analysis		

TABLE 2.8

Assignment of Methyl Group Stereochemistries for cis $-\Delta-\operatorname{Ru}\left(S_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{LL}^{\prime}$
 after Twisting and Bond Rupture operations

Methyl Group Stereochemistries ${ }^{\text {b }}$ syaistoL) anti(to L) syn(to $\left.L^{\prime}\right)$ anti(to $\left.L^{\prime}\right)$

For cis- Δ isomer a
Established experimentally for

$$
\text { cis }-\Delta \rightleftharpoons \text { cis }-\Lambda
$$

Operation

Product
(on cis-)
a) $i-\mathrm{C}_{3}(1)^{+}$
b) ${\mathrm{i}-\mathrm{C}_{3}(2)}^{+}$
$\mathrm{i}_{-\mathrm{C}_{3}(2)}{ }^{-}$
cis- Λ
$\frac{\operatorname{trans}-i s o m e r}{\text { cis }-\Lambda}$
$e \neq h$
$g \rightleftharpoons f$
g.
f
h
e
$\mathbf{f} \rightleftharpoons \mathbf{g}$
$h \rightleftharpoons e$

Methyl Group Stereochemistries of Product
c) $i-C_{3}(3)^{+}$
$\mathrm{i}_{-\mathrm{C}_{3}}(3)^{-}$
d) $\begin{aligned} & i-\mathrm{C}_{3}(4)^{+} \\ & i-\mathrm{C}_{3}(4)^{-}\end{aligned}$cis- $\Lambda^{\text {d }}$

Bond Rupture
mechanism (Figure2.13:is- \quad h $\quad \mathbf{f} \quad$ e

b See Figure 2.5 for assignment of $e, 9, f$ and h groups in cis- Δ isomer.
By variable temperature ${ }^{1} \mathrm{H}$ n.m. r . studies for cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PM}_{2}\right)_{2}\left(\mathrm{OPh}_{3}\right)\left(\mathrm{P}(\mathrm{OPh})_{3}\right)$

These twist operations are sterically impossible since they produce a configuration in which a $\mathrm{S}_{2} \mathrm{FMe}_{2}$ group would have to span trans positions.
table 2.9

Rates and Activation Parameters obtained by Line Shepe Analysis for the interchange of Methyl groups in some Ruthenium (II) N,N-Dimethyldithiocarbamato Complexes

Chapter 3

Reactions of mer $-\mathrm{RhCl}_{3} \mathrm{PMe}_{2} \mathrm{Ph}_{3}$ with Dithioacid Ligands.

Introduction

As has already been noted (page 47, reactions of mer- $\mathrm{RuCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3}\right.$ with $\mathrm{NaS}_{2} \mathrm{PR}_{2}(\mathrm{R}=\mathrm{Me}$ or Ph$)$ lead to the formation of paramagnetic (presumably Ru (III)) sjecies which proved impossible to isolate and which were thought to be
 In order to gain more information on complexes of this type, it was decided to investigate the complexes formed from the reactions of Rh (III) complexes with dithioacid anions since, not only is Rh (III) generally considered to be less labile than Ru (III) 208, 286b but it does not have a stable +2 oxidation state and it forms phosphine containing complexes in the +3 oxidation state which are comparable with those of Ru (III) ${ }^{286 \mathrm{~b}}$. Thus, reactions of RhCl_{3} with excess tertiary phosphine in refluxing ethanol lead to the formation of mer-RhCl L_{3} ($L=$ alkyl or alkyl-aryl tertiary phosphine $)^{3} 4$ with $\mathrm{fac}_{\mathrm{ac}}-\mathrm{RhCl}_{3} \mathrm{~L}_{3}$, which has been shown ($\mathrm{L}=\mathrm{PEt}_{2} \mathrm{Ph}$) to be formed on irradiation of mer- $\mathrm{RhCl}_{3}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{3}^{349}$, often occurring as a by-product ${ }^{348}$. The meridional isomers, which have three terminal $V_{\text {Rh-Cl }}$ in their i.r. spectra 350 , (as predicted by group theory), have been shown to undergo metathesis with other anions and the chloride ion trans to a phosphine group is more labile than the other two although refluxing ivith excess X^{-}ir ethanol gives mer- $\operatorname{RhX}_{3} L_{3}$ $(X=N C O, S C N, B r \text { or } I)^{350}$. In contrast to the behaviour of alkyl and alkyl-aryl tertiary phosphines towards RuCl_{3}, prolonged reactions
with RhCl_{3} do not give complexes of the type $\left[\mathrm{Rh}_{2} \mathrm{Cl}_{3} \mathrm{I}_{6}\right] \mathrm{Cl}$, on account of the instability of Rh (II) complexes, but binuclear species with double halide bridges, $\left\{\mathrm{RhCl}_{3} \mathrm{~L}_{2}\right\}_{2}(1)$ have been isolated from the reaction of $1: 2$ molar ratios of RhCl_{3} and L , or fron stoichiometric quantities of RhCl_{3} and mer- $\mathrm{KhCl}_{3} \mathrm{~L}_{3}{ }^{348}$. For $L=P(B u)_{3}$, a further dimeric species, $\mathrm{Rh}_{2} \mathrm{Cl}_{6}\left(\mathrm{P}(\mathrm{Bu})_{3}\right)_{3}$, has been isolated and is thought to have the triple nalide bridged structure (2) ${ }^{351}$.

(1)

(2) $L^{\prime}=\mathrm{PBU}_{3}$

In contrast, to the alkyl and alkyl-aryl tertiary phosphines, triphenylphosphine reacts with RhCl_{3} to give purple, or orange, $\mathrm{RhCl}_{\left(\mathrm{PPh}_{3}\right)}{ }_{3}{ }^{352,353}$. This complex has been very fully investigated since it has been shown to be an excellent catalyst for the homogeneous hydrogenation of olefins ${ }^{353} \cdot \mathrm{RhCl}^{\left(\mathrm{PPh}_{3}\right)_{3}}$ also undergoes oxidative addition with many other substrates including [$\left.\mathrm{Ph}_{4} \mathrm{As}\right] \mathrm{Cl}: \mathrm{HCl}$ which gives $\left[\mathrm{Ph}_{4} \mathrm{As}\right]\left[\mathrm{RhCl}_{4}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{316}$. Similar Rh (III) anions containing more basic phosphines may be prepared by exchange of PPh_{3} for L^{316}. The reaction of $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ with CS_{2} is also interesting since the product, $\mathrm{Rh}_{\left(\mathrm{CS}_{2}\right)}^{2}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}$ contains two CS_{2} groups which are differently bonded (3) ${ }^{354}$.

Since rhodium does have a stable +1 oxidation state, it was considered possible that reactions of Rh (III) complexes with dithioacid anions, which are usually considered to be reducing in nature, might lead to the formation of Rh (I) species. However, this is unlikely since reactions of Rh (I) complexes such as $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ and $\mathrm{RhClCO}\left(\mathrm{PPh}_{3}\right)_{2}$ with excess $\mathrm{NaS}_{2} \mathrm{CNR}_{2}$ have been shown to cause oxidation to Rh (III) species ${ }^{233}$ (page 35).

The reactions of rhodium complexes with ${ }^{-} \mathrm{S}_{2} \mathrm{CNR}_{2},{ }^{-} \mathrm{S}_{2} \mathrm{COP}$ and ${ }^{-} \mathrm{S}_{2} \mathrm{PR}_{2}$ have already been discussed (pages 32 - 36) but other interesting compounds of rhodium with sulphur donor Iigands should ine noted. Reaction of a solution containing $\left[\mathrm{Rh}_{4}\right]^{2+}$ (page 36) with $\mathrm{NaS}_{2} \mathrm{P}(\mathrm{OEt})_{2}$ in the presence of PPh_{3} yields the very umusual Rh ($\left.S_{2} \mathrm{POEt}\right)_{3}\left(\mathrm{PPh}_{3}\right)_{3}$ which is said to contain three unidentate dithioacid ligands ${ }^{253}$, and reactions of RhCl_{3} with $\mathrm{NaS} \mathrm{CR}_{2}$ give $\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{CR}\right)_{3}(\mathrm{R}=\mathrm{Ph}$ or Bz$)$ whilst the ionic $\mathrm{NH}_{4}\left[\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{CBz}\right)_{2}\right]$ is isolated from the reaction of $\left[\mathrm{NH}_{4}\right]_{3}\left[\mathrm{RhCl}_{6}\right]$ with $\mathrm{NaS}_{2} \mathrm{CB}_{2}{ }^{355}$. Results and discussion

Since mer $-\mathrm{RhCl}_{3}\left(\mathrm{PAe}_{2} \mathrm{Ph}\right)_{3}$ is readily prepared from RhCl_{3} and $\mathrm{PMe}_{2} \mathrm{Ph}^{348}$ (see above), its reactions with various dithioacid anions were investigated and the results of this investigation are presented in this chapter:

Reactions of mer- $\mathrm{RhCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ with an excess of an allali metal, or ammonium, dithioacid salt under reflux for one hour lead to the formation of several different products in every case. These products may be separated by fractional recrystallisation or dry column chronatogranhy ${ }^{318}$ or, in general, each may be synthesised as the sole product by slight changes in the conditions of the reaction. Analytical data for all these new compounds are given
in Table 3.1 and spectroscopic properties in Tables 3.2 and 3.3. 1. NN -dimethyldithiocarbamato complexes:- : Refluxing mer- $\mathrm{RhCl}_{3}{ }^{\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}}$ with an axcess of $\mathrm{NaS}_{2} \mathrm{CNMe}_{2} \mathrm{CH}_{2} \mathrm{O}$ in ethanol for one hour leads to the formation of two products. These are readily separated, since one of theui, $\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{CNM}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}(\mathrm{I})$, is insoluble in coid ethanol whereas the other is very soluble. After removal of (I), the other is precipitated in high yield as a yellow crystalline conplex by addition of excess NaBPh_{4} or $\mathrm{NH}_{4} \mathrm{PF}_{6}{ }^{\circ}$ These complexes are strongly conducted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and analyse for $\left.\left[\mathrm{Rh} \mathrm{SS}_{2} \mathrm{CNMP}_{2}\right)_{2}\left(\mathrm{PNP}_{2} \mathrm{Ph}\right)_{2}\right] \mathrm{Y}(\mathrm{IIa}, \mathrm{Y}=$ $\mathrm{BPh}_{4}{ }^{-}$IIb, $\mathrm{I}=\mathrm{PF}_{6}{ }^{-}$). Longer reaction times in ethanol lead exclusively to this ionic product on adiition or \mathbf{Y}^{-}.

However, if a suspension of mer- $\mathrm{RhCl}_{3}\left(\mathrm{PM} \mathrm{P}_{2} \mathrm{Pn}\right)_{3}$ and $\mathrm{NaS}_{2} \mathrm{CMMe}_{2} \mathrm{CH}_{2} \mathrm{O}$ is shaken in methanol for 10 m , the orange, methanolinsoluble complex $\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{CNMe}_{2} \text {) (} \mathrm{PMe}{ }_{2} \mathrm{Ph}\right)_{3}$ (III) is formed, but on recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane, this is converted into (I). If (III) is shaken in methanol with a mixture of NaBPh_{4}, and $\mathrm{PM} \mathrm{P}_{2} \mathrm{Ph}$ for 24 h , (I) is again formed together with a new compound of formila [$\left.\mathrm{RhCl}\left(\mathrm{S}_{2} \mathrm{CNHe}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right] \mathrm{BPh}_{4}$ (IV). Attempts to prepare (IV) directly from mer- $\left.\mathrm{RhCl}_{3} \mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ by reaction with $\mathrm{NaS}_{2} \mathrm{CNMe}_{2} \mathrm{PH}_{2} \mathrm{O}$, NaBPh_{4} and $\mathrm{PMe}_{2} \mathrm{Ph}$ have proved abortive. Instead, the yellow, conducting solid $\left[\mathrm{RhCl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{4}\right] \mathrm{EPh}_{4}{ }^{356}$ is formed which, on leaving in CDCl_{3} for 48 h , reverts to mer $-\mathrm{RhCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3}\right.$ and free $\mathrm{PMe}_{2} \mathrm{Ph}$. Finally, if mer $-\mathrm{RhCl}_{3}\left(\mathrm{PMePh}_{2}\right)_{3}$ is used instead of mer-RhCl ${ }_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3}\right.$, the long-term reaction in reflizeing ethanol witr excess $\mathrm{NaS}_{2} \mathrm{CNMe}_{2} 2 \mathrm{H}_{2} \mathrm{O}$, followed by addition of NaSPh_{4} gives two ionic compounds, bothi of formula $\left[\mathrm{Rb}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right]_{\mathrm{BPh}}^{4}$ (Va and VIa) together with very small amounts of $\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{CNM}_{2}\right)_{3}$. Similar ionic compounds $\left[\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}\left(\mathrm{PMePh}_{2}\right)\right]_{2} \mathrm{PF}_{6}(\mathrm{Vb}$ and VIb$)$ are formed by
addition of $\mathrm{NH}_{4} \mathrm{PF}_{6}$.
2. Diphenyl- and dimethyl-phosphinodithioato complexes:- If
mer $-\mathrm{RhCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ is refluxed in ethanol for 60 m with an excess of $\mathrm{NH}_{4} \mathrm{~S}_{2} \mathrm{PPh}_{2}$, addition of excess NaBPh_{4} or $\mathrm{NH}_{4} \mathrm{PF}_{6}$ leads to precipitation of the expected $\left[\mathrm{Kh}\left(\approx_{2} \mathrm{PPh}_{n_{1}}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] \mathrm{Y}(\mathrm{VIIa}$, $Y=\mathrm{BPh}_{4}{ }^{-}$; $\mathrm{VIIb}, Y=\mathrm{PF}_{6}{ }^{-}$). In addition, very small amounts of an ethanol-insoluble compound analysing for $\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{PPh}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ (VIII) are obtained. However, if the reaction is carried out using $\mathrm{NaS}_{2} \mathrm{PMe}_{2}{ }_{2} \mathrm{H}_{2} \mathrm{O}$, the analogous compounds are not formed. Instead, a red solid of uncertain composition is obtained since this exhibited variable analyses (carbon and hydrogen) each time the reaction was attempted. The ${ }^{1} H$ n.m.r. spectrum of this material contains only broad peaks, which are temperature invariant. The broadness of these signals probably arises from a paramagnetic impurity since the substance exhibits a weak esr signal (cf the preparation of $\left.\operatorname{RhCl}\left(\mathrm{FPh}_{3}\right)_{2}\right)^{353}$

The compound $\left[\mathrm{Rh}_{2} \mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{2}\right]^{\mathrm{BPh}} 4_{4}(\mathrm{IX})$ can however, be prepared as a yellow, microcrystalline solid either by excluding oxygen completely from the reaction in ethanol or by reaction of fac $^{-R h C l_{3}}\left(\mathrm{PNO}_{2} \mathrm{Ph}\right)_{3}{ }^{348}$ with excess $\mathrm{NaS}_{2} \mathrm{PMe}_{2} \mathrm{ZH}_{2} \mathrm{O}$ in acetone, followed by addition of NaBPh_{4}. Compound (IX) is, in fact, stable both in the solid state and in solution. However, a red solution is rapidly formed when (IX) is dissolved in ethanol or methanol in the presence of excess $\mathrm{NaS}_{2} \mathrm{PMe}_{2} 2 \mathrm{H}_{2} \mathrm{O}$ and air.

Short term reactions between mer- $\mathrm{RhCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ and $\mathrm{NaS}_{2} \mathrm{PMe}_{2} \mathrm{PH}_{2} \mathrm{O}$ or $\mathrm{NH}_{4} \mathrm{~S}_{2} \mathrm{PPh}_{2}$ also differ slightly from one another. The dimethylphosphinodithicato ion behaves like the NN-dimethyldithiocarbamato ion, giving, after shaking for 10 m in methanol, orange $\operatorname{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{PM}_{2}\right)\left(\mathrm{PN}_{2} \mathrm{Ph}\right)_{3}(\mathrm{X})$ which, on recrystallisation from $\mathrm{CDCl}_{3} /$
hexane, gives $\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ (XI). Recrystallisation of (XI) from hot toluene gives mainly (XI), together with a small amount of another compound (XII) with the same analytical data but different spectral properties from (XI).

In contrast, shaking mer $-\mathrm{HhCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ and $\mathrm{NH}_{4} \mathrm{~S}_{2} \mathrm{PPh}_{2}$ in ethanol for 10 m gives only $\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{PPh}_{2}\right)\left(\mathrm{FMe}_{2} \mathrm{Ph}\right)_{2}$ (XIII). Compound (XIII) has different spectral properties from (VIII) although recrystallisation of (XIII) from hot ethanol gives small amounts of (VIII).

Finally, attempts to prepare the compound $\left[\mathrm{RhCl}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)\right.$ ($\left.\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3} \mathrm{BPh}_{4}$ by reaction between $\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ (X), NaBPh_{4} and $\mathrm{PMe}_{2} \mathrm{Ph}$ in methanol yieid only $\left[\mathrm{RhO}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{4}\right]_{\mathrm{BPh}_{4}}{ }^{357}\right.$ (XIV) or, if oxygen is excluded, a mixture of $\left[\mathrm{RhCl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{4}\right] \mathrm{BPh}_{4}{ }^{556}\right.$ (XV) and $\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}(\mathrm{XI})$. Compound (XIV) is also formed as the sole product from the reaction of $\left.\mathrm{Rh}^{\prime} \mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{3}, \mathrm{PMe}_{2} \mathrm{Ph}$ and $\mathrm{NaBPh}_{4}{ }^{-}$
3. O-ethyldithiocarbonate (xanthate) and dithiocarbonate complexes:The reaction of $\mathrm{KS}_{2} \mathrm{COEt}$ with mer- $\mathrm{RhCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ leads to an even wider range of products than those found with the other dithio ligands, since there is the added possibility of attack on a co-ordinated xanthate ligand by a nucleophile to yield dithiocarbonato complexes (e.g. the formation of $\mathrm{PtL}_{2}\left(\mathrm{~S}_{2} \mathrm{CO}\right)$ from $\left[\mathrm{PtL}_{2}\left(\mathrm{~S}_{2} \mathrm{COR}\right)\right]\left[\mathrm{S}_{2} \mathrm{COR}\right]$ (see page 4) $)^{18,19}$.

Thus, when mer-RhCl ${ }_{3}\left(\mathrm{PMO}_{2} \mathrm{Ph}\right)_{3}$ is refluxed in ethanol with excess KS_{2} COEt for 60 m : no fewer than four different compounds, which may be separated by dry column chromatography, are isolated. Analytical and spectroscopic analyses indicate the formulations
$\operatorname{RhCl}\left(\mathrm{S}_{2} \mathrm{CO}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(\mathrm{XVI}), \mathrm{K}\left[\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{CO}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}^{*}\right.$ (XVII) and two isomers of $\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{CO}\right)\left(\mathrm{S}_{2} \mathrm{COEt}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ (XVIII) and (XIX).

However, if the reaction is carried out in a less polar solvent such as acetone, or an ethanol/ CHCl_{3} mixture, none of these products are obtained but instead, orange $\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{COEt}\right)\left(\mathrm{PMe}{ }_{2} \mathrm{Ph}_{2}\right.$ (XX) is isolated.

As for (S-S) = $\mathrm{S}_{2} \mathrm{CNMe}_{2}$, shaking mer- $\mathrm{RhCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$
and $\mathrm{KS}_{2} \operatorname{COEt}$ in methanol for 1 cm gives the dark orange complex $\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{COEt}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(\mathrm{XXI})$ which yields (XX) on recrystallisation from hot methanol or CHCl_{3} /hexane. This interconversion can also be affected by heating (XXI) to its melting point (120-123 ${ }^{\circ} \mathrm{C}$)
whereupon $\mathrm{PMe}_{2} \mathrm{Ph}$ is evolved and the orange residue consists largely of compound (XX).

Finally, if $\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{COEt}\right)\left(\mathrm{PNe}_{2} \mathrm{Ph}\right)_{3}$ (XXI) is shaken in ethanol with excess NaBPh_{4} for several weeks, a small amount of [$\mathrm{RhCl}\left(\mathrm{S}_{2} \mathrm{COEt}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3}\right.$] BPh_{4} (XXII) is deposited. This compound can also be prepared in high yield by reaction of mer- $-\mathrm{RhCl}_{3}\left(\mathrm{PHe}_{2} \mathrm{Ph}_{3}{ }_{3}\right.$ and $\mathrm{KS}_{2} \operatorname{COEt}$ (1:1 molar ratios) in refluxing methanol for 60 m , followed by addition of NaBPh_{4}. Longer roaction times (5 h) give yellow solutions from which compounds (XVI) and (XVIII) have been isolated.
4. Spectrosconic properties of dithioacid complexes.
a) Infrared spectra:- The three infrared active $\mathcal{V}_{\mathrm{Rh}} \mathrm{Cl}$ stretching Vibrations for the compound mer- $\mathrm{RhCl}_{3}\left({ }^{\left(1 \mathrm{Me}_{2} \mathrm{Ph}\right)_{3}}\right.$ have been assigned to the peaks at 339,313 and $273 \mathrm{~cm}^{-1}$ with the hand at lowest energy arising (predominantly) from the stretch of the rhodium-chloride bond trans to a $\mathrm{PMe}_{2} \mathrm{Ph}$ group ${ }^{350 \text {. Thus, an analysis }}$ of the RhCl stretching region of some of these new complexes should yield information about their structures. Also as previously
pointed out (page 53), the position of the sulphur ligand absorption bands should give some information about the mode of bonding of the dithioacid group.

For each of the complexes $\mathrm{RhCl}_{2}(\mathrm{~S}-\mathrm{S})\left(\mathrm{PME}_{2} \mathrm{Fh}\right)_{3}(\mathrm{~S}-\mathrm{S}=$ $S_{2} \mathrm{CNM}_{2}, \mathrm{~S}_{2} \mathrm{PMe}_{2}, \mathrm{~S}_{2} \mathrm{COEt}$), the VRhCl region is similar to that of mer $-\mathrm{RhCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3}\right.$ (Table 3.2) except that the lowest $\mathcal{V}_{\mathrm{RhCl}}$ band has disappeared, indicating that the chloride ion t:-ans to phosphine has been replaced. \because This is in agrement with the larger trans labilising effect of $\mathrm{PMe}_{2} \mathrm{Ph}$ compared to chloride ion and is consistent with the results of other exchange reactions ${ }^{350}$, (see page 132). In addition, for $(\tilde{S}-S)=S_{2} \mathrm{PMe}_{2}$, the absorption at $601 \mathrm{~cm}-16$ and for $(S-S)=$ $\mathrm{S}_{2} \mathrm{CNMe}_{2}$ the position of VCN below $1470 \mathrm{~cm}^{-1} 14,233$ both suggest that the sulphur ligands are co-ordinated through only one sulphur atom.

Since there is little change in the $V_{R h C l}$ region from
$\mathrm{RhCl}_{2}(\mathrm{~S}-\mathrm{S})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ to $\mathrm{RhCl}_{2}(\mathrm{~S}-\mathrm{S})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ and since all the dithio ligand absorptions now have characteristic frequencies for bidentate co-ordination (see Table 3.2), it seems reasonable to infer that the chloro groups remain mutually trans and that chelation of the dithio ligand occurs with concomitant loss of a PMe ${ }_{2}$ Ph group. From an i.r. standpoint, there is very little ditference between the Vhol region or hetween the \mathcal{V} PS region for the different isomers of $\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{PR}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ although other parts of their i.r. spectra and their ${ }^{1}{ }^{1}$ n.m.r. spectra are substantially different (see later).

The remaining compounds all appear to contair only chelated dithio groups and have only one or no ν_{RhCl} bands and hence, little stereochemical information can be gleaned from i.r. studies. N.m.r. spectroscopy has, however, proved an invaluable tool in assigning structures to all these compounds.
b) Nom.r. spectra:- The only differences between the ${ }^{1} \mathrm{H}$ n.m.r. spectra of $\mathrm{RhCl}_{2}(\mathrm{~S}-\mathrm{S})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ and mer- $\mathrm{RhCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Pn}_{3}\right.$ is that dithio-ligand resonances occur in the former and that the positions of the triplet and the doublet arising from the phosphine groups are very slightly different (Table 3.3), presumably because of the different shielding effects of the dithio ligands from that of the chloride ion. In agreement with the i.r. data, this confirms the structure of these compounds to be A, (see Scheme 3.1) since if either of the other chloride ions had been replaced, the plane of symmetry passing through the three phosphorus atoms would have been removed and because of hindered rotation about the rhodiumphosphorus bonds, tio triplets should arise from the methyl groups of the mutually trans phosphines (cf cis-RuCl $\mathrm{CO}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}{ }^{325}$). In fact, the ${ }^{1_{H}}$ n.m.r. spectra of the complexes [$\mathrm{RhCl}\left(\mathrm{S}_{2} \mathrm{CNM} \mathrm{e}_{2}\right)$ -$-\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3} \mathrm{BPh}_{4}$ (IV) and $\mathrm{RhCl}\left(\mathrm{S}_{2} \mathrm{CO}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ (XVI) do show two triplets arising from the trans phosphine groups, indicating that there is no plane of symmetry through these phosphines and hence the former is assigned structure \underline{B} (see Scheme 3.1).

Further evidence that compound (IV) has structure \underline{B} stems
from the fact that at 301 K , there are two resonances arising from the methyl groups on the dithiocarbomato ligand which can only be explair, A if there is no plane of symmetry perpendicular to the $S_{2} C N$ plane in the molecule and if rotation about the CoN bond is hindered. Since the two resonances remain sharp up to 320 K , it appears that free rotation about the $C \cdots N$ bond is not occuring, even at this temperature. The dithiocarbonate compiex (XVI) which can be assigned structure \underline{C} is most likely formed from $\left[\mathrm{RhCl}\left(\mathrm{S}_{2} \mathrm{COEt}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3}\right]_{\mathrm{BPh}_{4}}\right.$ (XXII) by attack of a previously displaced chloride ion, or excess S_{2} coEt, on the
co-ordinated xanthato group.
The complexes $\mathrm{RhCl}_{2}(\mathrm{~S}-\mathrm{S})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\left(\mathrm{~S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{CNMe}_{2}\right.$ (I) $\mathrm{S}_{2}{ }^{\mathrm{PMe}}{ }_{2}(\mathrm{XI}), \mathrm{S}_{2} \mathrm{PPh}_{2}(\mathrm{XIII})$ and $\mathrm{S}_{2} \mathrm{COEt}(\mathrm{XX})$) show only one dithio ligand resonance in each case, together with one H_{G} PP $^{\prime} H_{G}{ }_{G}$ pseudodouble which arises from the $\mathrm{PMe}_{2} \mathrm{Ph}$ groups. Since J_{PP} is amall and there is only one phosphine methyl resonance, the phosphine groups must be mutually cis and the phosphorus atoms mist lie on the plane of symmetry of the molecule. The sulphur ligand must also have planes of symmetry both in the S-Rh-S plane and perpendicular to it, since if either of these were absent, either the compound with (S-S) $=\mathrm{S}_{2}{ }^{\mathrm{PMe}}{ }_{2}$ or that with (S-S) $=\mathrm{S}_{2} \mathrm{CNMe}_{2}$ would give rise to two dithio ligand resonances.

Thus, the only possible structure for these compounds is one with trans chloride groups (as suggested by i.r. studies) as in structure D.

For $\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ (XII), since the ${ }^{1} \mathrm{H}$ n.m.r. spectra contains no triplet patterns, the compound cannot contain trans-PMe ${ }_{2} \mathrm{Ph}$ groups. The only possible structure for this isomer is one containing cis-chlorides and cis-phosphines (structure E). This structure should exhibit four phosphine methyl doubiets but only two are observed (Table 3). This could be due to fast rotation about the metal phosphorus bonds at room temperature but since the solutions used for this n.m.r. study were very weak (because of the small yield of XII), it is possible that further small splittings are obscured by the high noise level. Further support for the correctness of this cis, cis,

A 'pseudo-doublet' is analagous to the 'pseudo-triplet' referred to in Chapter 2. However, in this case, the much lower signal intensity between the two main lines of the signal is indicative of a smaller but non-zero value for $J_{p P}$ ' than is indicated by a pseudo-triplet ${ }^{324}$.
cis-isomer formulation for. (XII) comes from recent studies of the isomerisation reaction of $\mathrm{RuCl}_{2}(\mathrm{CO})_{2}\left(E \mathrm{Ch}_{3}\right)_{2}(E=P, A s)$ where recrystallisation of trans- $\mathrm{RuCl}_{2}(\mathrm{CO})_{2}\left(\mathrm{EPH}_{3}\right)_{2}$ gives the more stable cis, cis, cis-isomer ${ }^{302}$.

The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of $\mathrm{K}\left[\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{CO}\right)\left(\mathrm{PHe}_{2} \mathrm{Ph}\right)_{2}\right]$ (XVII)
consists of broad peaks in the phenyl region of the spectrum, together with a single sharp triplet at 8.22 . This can only occur if the phosphine groups are mutually trans ('virtually-coupled' triplet with large $\left.J_{p P^{\prime}}\right)^{324}$ and thus the compound is assigned structure F. A possible mode of formation of this rather unusual compound is by attack of potassium chloride, formed from the reaction of mer- $\mathrm{RhCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3}\right.$ and $\mathrm{KS}_{2} \mathrm{COEt}$ on $\mathrm{RhCl}\left(\mathrm{S}_{2} \mathrm{CO}\right)\left(\mathrm{FMe}_{2} \mathrm{Ph}\right)_{3}(\mathrm{XVI})$. The $\mathrm{PMe}_{2} \mathrm{Ph}_{\mathrm{h}}$ group released could then attack (XVII) to reproduce (XVI) with loss of potassium chloride. Since both compounds are found in the reaction mixture, it seems likely that in the presence of excess KCl and $\mathrm{PMe}_{2} \mathrm{Ph}$, an equilibrium is set up between the two compounds.

The ${ }^{1} \mathrm{H}$ n.m.r. spectra of the two compounds of formula
$\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{CO}\right)\left(\mathrm{S}_{2} \mathrm{COEt}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ both contain quartet and triplet signals in the positions expected for an -OEt group but the pattern arising from the methyl groups on the two phosphines is quite different in each case. Compound (XVIII) contains a single ivirtually-coupled' triplet. indicative of trans phosphines (structure G) whereas (XIX) shows four doublets (Figure 3.1a, page 144) which suggests that the two phosphine groups are mutually cis; and in differert chemical environments and that there is hindered rotation about the rhodium-phosphorus bonds. A similar phosphine methyl pattern is observed for isomer E of the compound $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{CO}$ (page 99). For (XIX), the proton noise decoupled ${ }^{31} \mathrm{P}$ n.m.r. spectrum shows two resonances (indicating the phosphorus atoms
are magnetically inequivalent) each split into a doublet of doublets by coupling to the rhodium ${ }^{103}$ nucleus and the other phosphorus atom. The ${ }^{103}$ Rh n.m.r. spectrum of (XIX) has also been measured by decoupling the proton spectrum. Each peak arising from a methyl group in the ${ }^{1} \mathrm{H}$ n.m. m . spectrum is rather broad $(2-3 \mathrm{~Hz})$ due to ${ }^{103} \mathrm{Rh}^{1}{ }^{1} \mathrm{H}$ coupliny and hence, irradiation in the rhodium range of frequencies sharpens some of the signal. 3 but not others (Figure 3.1, page 144). In this way, the rhodium spectrum may be seen to consist of four resonances ie. a doublet of doublets arising from coupling to two inequivalent phosphorus atoms. The only structure consistent with all this information is H. The complexes $\left[\mathrm{Rh}(\mathrm{S}-\mathrm{S})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] \mathrm{Y}\left(\mathrm{S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{CNMe}_{2}, Y=\mathrm{BPh}_{4}^{-}\right.$or $\mathrm{PF}_{6}^{\mathbf{m}} \quad \mathrm{S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{PMe}_{2} ; \quad \mathrm{Y}=\mathrm{BPh}_{4}^{-}$) all have low temperature ${ }^{1} \mathrm{H}_{\mathrm{H}}$ n.m.r. spectra which are consistent with cis-phosphines and hindered rotation about the rhodium-phosphorus bonds, (structure J), namely two resonances corresponding to the methyl groups on the dithio ligands and two pseudo-doublets arising from the phosphine methyl groups (Figure 3.2, page 145). The ${ }^{1} \mathrm{H}_{\mathrm{n}} \mathrm{n}_{\mathrm{m}}$. . spectrum of cis- $\left[\mathrm{Rh}_{2}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{2}\right] \mathrm{BPh}_{4}\right.$ (IX) is temperature invariar: in chlorobenzene up to 360 K but above this temperature, all the peaks begin to broaden and the solution turns darl, indicating that decomposition has probably occurred. Thus, unlike the related cis- Ru(S $\left.\mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ complex, the inversion process cis $-\Delta \underset{\sim}{-i}$ cis Λ is very slow on the n.m.r. timescale. This indicates that these complexes are indeed much less labile than their ruthenium analogues but this is probably due mainly to the fact thint they are ionic. Hence, the positive charge on the metal will tend to make the metal-ligand bonds stronger and it is probably this fact rather than any large, intrinsic differences in lability of the co-ordination spheres of shodium (III) and ruthenium (II) which accounts for the difference in behaviour.

Figure 3.1

```
Rhodium -103 decoupling of \({ }^{1} \mathrm{H}\) n.m.r. spectrum of
cis-Rh( \(\left.\mathrm{S}_{2} \mathrm{CO}\right)\left(\mathrm{S}_{2} \mathrm{COEt}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\) (XIX)
```

a) No irradiation.
b) irradiation at $3,163,455 \mathrm{~Hz}$ decouples $1^{\prime}, 2^{\prime}$, $3^{\prime}, 4^{\prime}$ rhodium-methyl Aoublets.
c) irradiation at $3,163,345 \mathrm{~Hz}$ decourles $1^{\prime}, 2^{\prime}$, $3^{\prime}, 4^{\prime}$ more than $1,2,3$ and 4 . rhodium-methyl doublets.
d) irradiation at $3,163,337 \mathrm{~Hz}$ decouples $1,2,3,4$ more than $1^{\prime}, 2^{\prime}, 3^{\prime}$ and 4^{\prime} rhodium-methyl doublets.
e) irradiation at $3,163,227 \mathrm{~Hz}$ decouples $1,2,3,4$ rhodium-methyl doublets.

Triplet from methyl group of $\mathrm{F}_{2} \operatorname{COE}$. Centre peak totally masks 4^{\prime} rhodium-metnyl doublet.

${ }^{1} \mathrm{H}$ n.m. r . spectrum of phosphine methyl groups of $\operatorname{cis}-\left[\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{CNH}_{2}\right)_{2}\left(\mathrm{PHe}_{2} \mathrm{Ph}\right)_{2}\right]_{6} \mathrm{PF}_{6}$ in CDCl_{3} at different temperatures.
a) 223 K
b) 253 K
c) 300 K
 P_{6}^{-}(IIb)) both give rise to a single doublet in the proton noisedecoupled ${ }^{31} \mathrm{p}$ n.m.r. spectrum due to coupling with the ${ }^{103} \mathrm{Rh}$ nucleus and this coupling is found to be temperature invariant in each case. In contrast, the ${ }^{1} H$ n.m.r. spectrum of (IIb) does show marked variations with temperature giving only a singlet for the $\mathrm{S}_{2} \mathrm{CNMe}_{2}$ methyl resonance and a pseudo-doublet for the phosphine :.:ethyl resonance at 300 K (Figure 3.2(c), page 145). As for cis - $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PM}_{2}\right)_{2}$ ($\mathrm{PMe}_{2} \mathrm{Ph}$) CO (page 64)
 do not undergo coalescence on heating, but rather, gradually move together urtil they become ccincident (Figure 3.2, page 145). Once again, this is attributable to fast rotation about the rhodium-phosphorus bond at high temperatures, which on account of the chiral nature of the cation does not lead to exchange of the magnetic environments of the two methyl groups on each phosphine ligand, but rather, to an average environment which is the same for both methyl groups. A similar process occurs on warming cis $-\left[\mathrm{Ph}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}\left(\mathrm{PNe}_{2} \mathrm{Ph}\right)_{2}\right]_{\mathrm{BPh}_{4}}(\mathrm{II}(\mathrm{a}))$ but in this case the separation of the pseudo doublets at lower temperatures is greater than for $\operatorname{II}(\mathrm{b})$, and superposition is not reached even at $335^{\circ} \mathrm{K}$.

Finally, the ionic compounds formed by long-term reaction between mer- $\mathrm{RhCl}_{3}\left(\mathrm{PMePh}_{2}\right)_{3}$ and $\mathrm{NaS}_{2} \mathrm{CNle}_{2} \mathrm{CH}_{2} \mathrm{O}$ are, as expected, geometrical isomers of $\left[\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right] Y$. Thus, the ${ }^{1} \mathrm{H}$ n.m.r. spectra of (VIa and b) consist of one $S_{2} C N M e_{2}$ methyl resonance and a 'virtually-coupled' triplet phosphine methyl resonance (structure K)
whereas (Va and b), which cannot be satisfactorily separated from the
trans isomer, have two $\mathrm{S}_{2} \mathrm{CNMe}_{2}$ resonances and one pseudo-doublet phosphine resonance in each case (structure J).

The fact that the trans isomer is formed more readily when
the phosphine is PMePh_{2} rather than $\mathrm{PMe}_{2} \mathrm{Fh}^{*}$ can presumably be attributed to the greater steric size of PMePh_{2}. It should be noted at this point that the analogous complex $\left[\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{CNE}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{BF}_{4}$ has been assigned a trans stereochemistry ${ }^{253}$ and, although no evidence is cited to suprort this assignment: the result is consistent with the still greater steric size of triphenylphosphine.

Thus, ihis combination of i.r. and nom.r. studies, together with the various interconversions of compounds noted earlier can be used to suggest a probable stereochemical pathway for the overall reaction between mer- $\mathrm{RhCl}_{3}\left(\mathrm{PNe}_{2} \mathrm{Ph}_{3}\right.$ and these various dithioacid ligands and this is outlined in the Scheme3.1.

Experimental: General experimental techniques and non-Rhodium containing materials were as for Chapter 2. Rhodium Chloride Trihydrate was from Jotinson-Matthey Ltd.
 were synthesised by published methods ${ }^{350}$.

NN - Dimethyldithiocarbamato Complexes

trans- Dichloro (N, N-dimethyldithiocarbamato) bis(dimethylphenylphosohine)
rhodium (III) (I) and cis- Bis(N, N-dimethyldithiocarbamato) bis (dimethyiphenylphosnhine) rhodium (III) tetraphenylborate (IIa):- mer- $\mathrm{RhCl}_{3}{ }^{-}$ $\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(0.25 \mathrm{~g})$ and excess $\mathrm{NaS}_{2} \mathrm{CNMe}_{2} 2 \mathrm{H}_{2} \mathrm{O}(0.25 \mathrm{~g})$ were refluxed in

The presence of a small triplet at $\tau 8.15$ and a singlet at $\tau 7.10$ in the n.m.r. spectrum of cis-[$\left.\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{CMMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] \mathrm{PF}_{6}$ indicates that some of the trans isomer is formed but it is only of the order of 7% of the total yield (as determined from peak areas).
ethanol (20mi) for 60 m . and then, the resulting orange solution cooled and filtered. The residue was well-washed with water to remove sodium chloride and then with ethanol, pentane to give the orange solid (I) $(0.07 \mathrm{~g}, 30 \%)$. The yellow filtrate was treated with erces $=\mathrm{NaBPh}_{4}$ in ethanol, the resulting yeilow precipitate filtered, washed with water, ethanol, pentane and then recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / ethanol to give (IIa) $(0.20 \mathrm{~g}, 51 \%) \xrightarrow{31_{p_{0}} \mathrm{~m}_{0} \mathrm{r}_{\mathrm{a}}}$ (IIa) in CDCl_{3}; 4.5ppm (doublet; $J_{\mathrm{RhP}}=112 \mathrm{~Hz}$).

If mer- $\mathrm{RhCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3}\right.$ and $\mathrm{NaS}_{2} \mathrm{CMMe}_{2} \mathrm{ZH}_{2} \mathrm{O}$ were refluxed in ethanol for 16 h , only (IIa) ($0.35 \mathrm{~g}, 92 \%$) was isolated on addition of $\mathrm{NaBPh}_{4}{ }^{\text {• }}$
cis- Bis(N,N-dimethrldithiocarbamato) bis (dimethylphenylphosphine) rhcdium(III) hexafluorophosphate (IIb) was similerly prepared except that excess $\mathrm{NH}_{4} \mathrm{PF}_{6}$ was added to the yellow ethanolic solution. No immediate precipitation occurred but large orange crystals were deposited when the solution was left for three days. These were filtered, washed with water, ethanol and pentane to give (IIb) ($0.30 \mathrm{~g}, 98 \%$) .
${ }^{31_{p} n_{0} m_{\bullet} r_{0}(I I b)}$ in $C D C 1_{3} ; 4.57 \mathrm{ppm}$ (doublet) $\left(J_{R h P}=114 \mathrm{~Hz}\right) ;-147.2 \mathrm{ppm}$ (heptet, $J_{P F}=727 \mathrm{~Hz}$)...
cis- and trans- Bis(N_N-Amethyldithiocarbamato)bis(methyldiphenylphesohine)
rhodium (III) tetraphenylborate (Va) and (VIa):- As above, refluxing
mer- $\mathrm{RhCl}_{3}\left(\mathrm{PMePh}_{2}\right)_{3}(0.20 \mathrm{~g})$ and excess $\mathrm{NaS}_{2} \mathrm{CNMe}_{2} 2 \mathrm{H}_{2} \mathrm{O}(0.15 \mathrm{~g})$ in
ethanol (20 ml) for 16 h . Addition of NaPPh_{4} then gave an immediate yellow precipitate consisting of a mixture of the cis and trans isomers (Va) and (VIa) (${ }^{1} \mathrm{H}$ n.m.r. and analytical evidence), On leaving the filtrate, yellow microcrystals of the pure trans isomer (VIa) were deposited. Total yield 90% cis: trans ratio ca 1.5\% 1.0.

Similarly, cis and trans- $\left[\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{CMMe}_{2}\right)_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right] \mathrm{PF}_{6}(\mathrm{Vb})$
and (VIb) were prepared from mer- $\mathrm{RhCl}_{3}\left(\mathrm{PM}_{\mathrm{HPh}}^{2}\right)_{3}$ and $\mathrm{NaS}_{2} \mathrm{CNMe}_{2} 2 \mathrm{H}_{2} \mathrm{O}$ followed by addition of excess $\mathrm{NH}_{4} \mathrm{PF}_{6}$. The yellow crystals that separated first were the pure trans isomer (VIb) (${ }^{1} \mathrm{H}$ nom. $\mathrm{r}_{\text {. evidence }}$). Later batches were orange and consisted of a mixture of cis and trans isomers. Total yield ca 70%. mer- Dich! \boldsymbol{C} (N, N-dimethyldithiocarbamato)tris(dimethylphenylnhosphine)
 was shaken with excess $\mathrm{NaS}_{2} \mathrm{CNMe}_{2} 2 \mathrm{H}_{2} \mathrm{O}$ (0.20 g) in methanol (25 ml) for 10m. The resulting orange solid (III) was filtered off and washed with water, methanol and pentane ($0.25 \mathrm{~g}, 88 \%$). Recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane gavs trans- $\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{CNHe}_{2}\right)\left(\mathrm{PNe}_{2} \mathrm{Ph}\right)_{2}$ (I). mer- Chloro(N, N-dimethyldithiocarbamato)tris(dimethylphenylphosphine) rhodiun (III) tetraphenylborate (IV):- mer- $\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{CNMe}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ (0.23 g), $\mathrm{NaBPh}_{4}(0.36 \mathrm{~g})$ and $\mathrm{PMe}_{2} \mathrm{Ph}(0.20 \mathrm{ml})$ were shaken in methanol for 24 h under nitrogen. The resulting mixture of orange and yellow solids was treated with hot ethanol to leech out the yellow solid. On cooling, this solution gave yellow crystals which were recrystallised from methanol to give (IV) $(0.20 \mathrm{~g}, 55 \%)$. The remaining orange solid, which was insoluble in hot ethanol was trans- $\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{CNMe}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ (I). Diphenylphosphinodithioato Complexes
cis-cis-cis Dichloro(diphenylphosphinodithioato)bis(dimethylnhenylnhosphine)
rhodium (III) (VIII) and cis-Bis(diphenylphosphinodithioato)bis(dimethyl-:
phenylphosphine) rhodium (III) tetranhenylborate (VIIa):- mer- RhCl_{3} -
$-\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(\mathrm{O} .30 \mathrm{~g})$ and excess $\mathrm{NH}_{4} \mathrm{~S}_{2} \mathrm{PPh}_{2}(0.40 \mathrm{~g})$ were refluxed in
ethanol (20 ml) for 6 cm . Filtration of the hot soiction left a very small amount of orange crystals of (VIII), parified by washing with water, methanol and pentane. The orange filtrate was treated with excess NaBPh_{4} to give an immediate orange precipitate (VIIa), which
was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ methanol to remove any $\mathrm{NH}_{4} \mathrm{BPh}_{4}(0.46 \mathrm{~g} \% 80 \%)$ cis- [$\left.\left.\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)_{2} \mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] \mathrm{PF}_{6}$ (VIIb) was similarly prepared except that the orange, ethanolic solution was treated with excess $\mathrm{NH}_{4} \mathrm{PF}_{6}$ and the complex separated, slowly as large orange crystals ($0.40 \mathrm{~g}, 80 \%$) (VIIa) could also be obtained in a pure state by dissolving (VIIb) in methanol and adding excess NaBPh_{4}.
trans-Dicinsro(diphenylphosphinodithioato)bis(dimethylphenylnhosphine)
rhodium (III) (XIII):- mer- $\mathrm{RhCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(\mathrm{O} .20 \mathrm{~g})$ and $\mathrm{NH}_{4} \mathrm{~S}_{2} \mathrm{PPh}_{2}$ (0.20 g) were shaken in ethanol (25 ml) for 10 m . Excess starting material was filtered off and after 3 days, large crystals of the complex were formed in the filtrate. These were filtered and washed with diethyl-ether and pentane ($0.11 \mathrm{~g}, 50 \%$). Rearystallisation from ethanol gave a mixture of mainly (XIII) and small amounts of the cis, cis, cis isomer (VIII) (i.r. evidence).

Dimethylnhosphinodithioato Complexes:-
cis-Bis(dimethylphosphinodithioato)bis(dimethylphenylphosphine) rhodium (III)
tetraphenylborate (IX):- mer $-\mathrm{RhCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(\mathrm{O} .30 \mathrm{~g})$ and $\mathrm{NaS}_{2} \mathrm{PMe}_{2}-$ $2 \mathrm{H}_{2} \mathrm{O}(0.35 \mathrm{~g})$ were refluxed in degassed ethanol (20 ml) for 1 h . with dry, oxygen-iree nitrogen continuously bubbling through the mixture. The resulting orange solution was cooled (under nitrogen) and NaBPh_{4} (0.20 g) adred. The resulting yellow solid was filtered of under nitrogen and washed with water, ethanol and pentane ($0.30 \mathrm{~g}, 61 \%$). Omission of nitrogen from the reaction gave a red solution from which a red solid was precipitated by addition of excess NaBPh_{4} • This maie: ${ }^{\text {• }}$ ial had different analyses from ostensibly the same preparatior e.g. C, 51.2; H, 5.6% and $\mathrm{C}, 37.3 ; \mathrm{H}, 4.7 \%$.

However (IX) may also be prepared by refluxing fac- $\mathrm{RhCl}_{3}-$ $-\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(0.07 \mathrm{~g})$ and excess $\mathrm{NaS}_{2} \mathrm{PMe}_{2} 2 \mathrm{H}_{2} \mathrm{O}$ ($0,06 \mathrm{~g}$) in acetone/chloroform
(50; $50 \mathrm{v} / \mathrm{v}$) (25m1) for 60m. Then, by evaporating to dryness, dissolving in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtering off excess $\mathrm{NaS}_{2} \mathrm{PMe}_{2} 2 \mathrm{H}_{2} \mathrm{O}$, evaporating to dryness, dissolving in methanol and adding excess NaBPh_{4}, (IX) is obtained as yellow microcrystals.
mer- Dichloro(dimethyiphosphinodithioato)tris(dimethylphenylphosphine)-
 and $\mathrm{NaS}_{2} \mathrm{PMe}_{2} 2 \mathrm{H}_{2} \mathrm{O}$ (C.24 g) in methanol ($4(\mathrm{mil}$) for 10 m . ($0.41 \mathrm{~g}, 90 \%$). Recrystallisation from CDCl_{3} /hexane gave trans-Dichloro(dimethylphosphinodithioato)his(dimethylphenylphosphine) rhodium (III) (XI). This compound was also obtained by shaking mer- $\mathrm{RhCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(\mathrm{O} .3 \mathrm{~g} \mathrm{~g})$ and $\mathrm{NaS}_{2} \mathrm{PMe}_{2}$ $2 \mathrm{H}_{2} \mathrm{O}(0.30 \mathrm{~g})$ in ethanol (20ml) for two days. The orange crystals were filtered from the red-brown solution and washeu with water, ethanol and pentane $(0.22 \mathrm{~g}, 80 \%$). Recrystallisation of (XI) from toluene gave mainly (XI) together with small quantities of cis, cis, cis- $\mathrm{RhCl}_{2}{ }^{-}$ $-\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ (XII).

Reaction of mer $\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)\left(\mathrm{PM}_{2} \mathrm{Ph}\right) 3(\mathrm{X})$ with NaBPh ${ }_{4}$ and $\mathrm{PMe} \mathrm{Ph}_{2}$ (X) $(0.32 \mathrm{~g}), \mathrm{NaBPh}_{4}(0.32 \mathrm{~g})$ and $\mathrm{PMe}_{2} \mathrm{Ph}(0.10 \mathrm{ml})$ were shaken in degassed ethanol under nitrogen for two days to give a yellow precipitate of cis- Dichlorotetrakis(dimethylphenylphosphine)rhodium(III)tetraphenylborate (XV), purified by washing several times with water, methanol, diethylether and pentane $\left(0.43 \mathrm{~g}, 80 \%\right.$) mp $145-147^{\circ} \mathrm{C}$ (Found: $-\mathrm{C}, 64.1 ; \mathrm{H}, 6.3 \%$ Calc for $\mathrm{C}_{56} \mathrm{H}_{64} \mathrm{BC}_{2} \mathrm{P}_{4} \mathrm{Ru} ; \mathrm{C}, 64.3 ; \mathrm{H}, 6.1 \%$. The same compound was also formed by reaction of a mixture of mer- RhCl_{3} (PMe $_{2} \mathrm{Ph}_{3}, \mathrm{NaS}_{2} \mathrm{CNMe}_{2}{ }^{-}$
 $\left(\mathrm{J}_{\mathrm{PH}}+\mathrm{J}_{\mathrm{PH}^{\prime}}, 48 \mathrm{~Hz}\right) ; 8.94 \tau$ ('doublet') ($\left.\mathrm{J}_{\mathrm{PH}^{+}} \mathrm{J}_{\mathrm{PH}^{\prime}}, 40 \mathrm{~Hz}\right)$; at 313 K 8.40 (singlet); Ph resonance at $\tau_{1.4-3.6 . ~ C o m p o u n d ~(X V) ~ r e a r r a n g e s ~}^{\text {- }}$ to mer- $\mathrm{RhCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ and iree $\mathrm{PMe}_{2} \mathrm{Ph}$ on standing in CICl_{3} for 48 h . If the reaction between (X), NaBPh_{4} and $\mathrm{PMe}_{2} \mathrm{Ph}$ is carried
out in the presence of air, the white solid cis-(oxygen)tetrakis(dimethyl phenylphosphine)rhodium (I) tetranhenylhorate (XIV) is formed $(0.40 \mathrm{~g}, 80 \%)\left(0-0,841,860 \mathrm{~cm}^{-1}\right.$; cf 841,870 for $\left[\mathrm{RuO}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{4}\right]\right.$ $\mathrm{C} 10^{4}{ }^{357}$. The same compound is formed when $\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{PNe}_{2}\right)_{3}$ is reacted with excess $\mathrm{PMe}_{2} \mathrm{Ph}$ in the presence of $\mathrm{NaBPh}_{4_{4}}$. mp 129-130 ${ }^{\circ} \mathrm{C}$ (Found:-

 ($J_{\mathrm{PH}}+\mathrm{J}_{\mathrm{PH}} \ell$) $=8 \mathrm{~Hz}$) $\quad \mathrm{Ph}$ resonance $2.2-3.6 \tau$.

Reaction of potassium O-Ethyldithiocarbonate (xanthate) with mer- RhC1 ${ }_{3}$ $\mathrm{PMe}_{2} \mathrm{Ph}_{3}$ -mer- $\mathrm{RhCl}_{3}\left(\mathrm{MMe}_{2} \mathrm{Ph}\right)_{3}(0.30 \mathrm{~g})$ and excess $\mathrm{KS}_{2} \mathrm{COEt}(0.30 \mathrm{~g})$ were refluxed in ethanol for 60 m and the resulting yellow solution filtered hot in order to remove potassium chloride. It was then evaporated to dryness and the yellow oil dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Excess $\mathrm{KS}_{2} \mathrm{COE}$ was filtered off and the solution allowed to stand whereupon yellow neadle-shaped crystals of potassium cis-dichloro(ditniorarbonato) trans-bis(dimethylphenylphosphine)rhodate (III) (XVII) were deposited. ($0.02 \mathrm{~g}, 7 \%$). These were filtered off and recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /methanol. The yellow filtrate was placed onto an alumina dry column and eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give three poorly resolved bands coloured yellow, orange and yellow respectively. Each band was extracted with diethyl-ether and then hexane added. Slow evaporation of these solutions gave crystals in each case.

The first yellow band gave trans-(dithiocarhonato)(0 -ethyl-
dithiocarbonato)bis(dimethylfhenylphosnhine)rhorium (III) (XVIII) ($0.05 \mathrm{~g}, 17.5 \%$). The orange band gave mer-chloro(dithiocarbonnto)tris (dimethylphenylphosnhine)rhodium (III) (XVI) ($0.05 \mathrm{~g}, 16 \%$) and the second yellow band yielded cis-(dithiocarbonato) (O-ethvldithiocarbonato) bis(dimethylphenylphosphine)rhodium (III) (XIX) ($0.10 \mathrm{~g}, 35 \%$)

31pnom.r. (XIX) in $\mathrm{CDCl}_{3} ; 9.13 \mathrm{ppm}$ (doublet of doublets); 0.46 ppm (doublet of doublets); $J_{P_{1} R h}, 118 \mathrm{H} ; \quad J_{P_{2} R h}{ }^{110 \mathrm{~Hz} ; \quad J_{P_{1} P_{2}}=18 \mathrm{~Hz} .}$ If the initial ethanolic solution is allowed to evaporate slowly, the first product to crystallise out is (XIX) ($0.20 \mathrm{~g}, 70 \%$) Then a mixture of (XIX) and (XVI) art deposited followed by small amounts of pure (XVI) ($0.05 \mathrm{~g}, 16 \%$).

When $\left.\underline{m \mathrm{r}}-\mathrm{RhCl}_{3} \mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(0.30 \mathrm{~g})$ and $\mathrm{KS}_{2} \mathrm{COEt}(0.08 \mathrm{~g})(1 . ;$
1.05 molar ratio) were reflixed in ethanol for 5 h and the resulting yellow solution worked-up as before, two bands were eluted containing (XVI) ($0.05 \mathrm{~g}, 16 \%$) and (XIX) (0.02g, 7\%).

However, when mer- $\mathrm{RhCl}_{3}\left(\mathrm{FMe}_{2} \mathrm{Ph}\right)_{3}(0.30 \mathrm{~g})$ and excess $\mathrm{KS}_{2} \mathrm{COEt}(0.30 \mathrm{~g})$ were shaken in acetone (25 ml) for 16 hours, and the resulting orange solution evaporáted to dryness (after removing KC1. by filtration) recrystallisation of the orange oil. from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane gave orange crystals of trans- Dichloro(O-ethyldithiocarbonato)bis. (dimethylphenylphosphine)rhodium(III) (XX) ($0.20 \mathrm{~g}, 72 \%$). This compound was also prepared by carrying out the same reaction in a refluxing solution of ethanol/ CHCl_{3} and working up the orange solution in the same way. Reaction of (XX) with $\mathrm{KS}_{2} \operatorname{COEt}$ gave (XIX). If mer- $\mathrm{RhCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(0.30 \mathrm{~g})$ and $\mathrm{KS}_{2} \operatorname{COEt}(0.30 \mathrm{~g})$ were
shaken in methanol (25 ml) for 10 m . the orange complex mer-Dichloro -(0-ethyldithiocarbonato)tris(dimethyl phenylphosphine)rhodium(III) (XXI) ($0.30 \mathrm{~g}, 88 \%$) was deposited. Recrystallisation of this compound from methanol (or $\mathrm{CHCl}_{3} /$ hexane) gave trans- $\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{COEt}\right)\left(\mathrm{PNe}_{2} \mathrm{Ph}\right)_{2}$ (XX). Finally, if mer- $\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{COEt}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ (XXI) (0.12 g) is shaken for 4 weeks in ethanol (20ml) with NaFPh_{4} (0.12 g), a small anount of the orange compound mer-Chloro(O-ethyldithiocarhonato)tris(dimethylphenylphosphine)rhodium (III) tetraphenylborate (XXII) is deposited ($0.02 \mathrm{~g}, 9.5^{n \%}$) .

However, this compound can be prepared in high yield by reaction of mer- $\mathrm{RhCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3} \quad(0.37 \mathrm{~g})\right.$ with $\mathrm{KS}_{2} \mathrm{COEt}$ ($0 . \mathrm{Cg}$ g, $1: 1$ molar ratio) in refluxing methanol (20 ml) for 60 m followed by addition of excess NaBPh_{4}. Recrystallisation of the resulting yellow solid from $\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{\prime}$ methanol gives (XXII) as crange microcrystals ($0.45 \mathrm{~h}, 80 \%$).

Analytical Data for some Rhodium Complexes

									Requ	red \%		
	Complex	Colour	$\mathrm{M} \cdot \mathrm{p} \cdot\left({ }^{\circ} \mathrm{C}\right)$	c	H	N	Cl	C	H	N	Cl	$\Lambda^{a}\left(\begin{array}{cc} \text { Conc. } \\ & -4 \\ 10 & M \end{array}\right)$
(I)	trans- $\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{CNMe} 2\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$	Orange	207-208	39.9	4.9	2.6	12.5	40.0	4.9	2.5	12.5	
(IIa)	$\left.\left.\underline{\text { cis- }-\left[\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{CNHe}\right.\right.} \mathrm{S}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] \mathrm{BPh}_{4}$	Yellow	178-180	58.7	5.7	2.8	-	58.9	5.8	3.0	-	64.8(3.5)
(IIb)	cis- $\left[\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{CNM} \mathrm{e}_{2}\right)_{2}\left(\mathrm{PNe}_{2} \mathrm{Ph}\right)_{2}\right] \mathrm{PF}_{6}$	Yellow	204-206	34.6	4.5	3.7	-	34.6	4.5	3.7	-	77.4(10.5)
(III)		Orange	189-195 (d)	45.4	5.5	1.7	-	45.8	5.5	2.0	-	
(IV)	mer-[$\left.\mathrm{RhCl}\left(\mathrm{S}_{2} \mathrm{CNMe}{ }_{2}\right)\left(\mathrm{PNe}_{2} \mathrm{Ph}\right)_{3}\right] \mathrm{BPh}_{4}$	Yellow	176-178	61.4	5.9	1.3	3.8	61.7	6.0	1.4	3.6	50.0(10.2)
(VIa)	trans-[$\left.\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}\left(\mathrm{PNePh}_{2}\right)\right]_{2} \mathrm{BPh}_{4}$	Yellow	192-195	62.4	5.6	2.7	-	63.3	5.5	2.6	-	53.2(5.4)
(VIb)		Yellow	230	43.3	4.3	3.1	-	43.2	4.3	3.2	-	68.1(8.7)
(Va), (VIa)	[$\left.\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{CNHe}_{2}\right)_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right] \mathrm{BPh}_{4}{ }^{\mathrm{b}}$	Yellow	-	62.1	5.6	2.4		63.3	5.5	2.6	-	
(VIIa)	$\left.\left.\underline{\text { cis- }-\left[\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{PPh}\right.\right.} \mathrm{C}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] \mathrm{BPh}_{4}$	Yellow	110-112	63.8	5.2	-	-	64.2	5.2	-	-	74.0(2.0)
(VIIb)		Orange	128-130	47.3	4.2	-	-	47.0	4.1	-	-	74.0(10.5)
(VIII)	cis, cis, cis $\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{PPh}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$	Orange	208-210	48.0	4.5	-	-	48.1	4.6			
(IX)		Yellow	72-73	57.2	5.7	-	-	55.7	5.7	-	-	49.2(9.2)
(x)	mer- $\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$	Orange	140-142 (d)	43.9	5.8	-	-	43.8	5.5	-	-	
(XI)	trans- $\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{PM} / \mathrm{e}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$	Orange	235-237(d)	37.8	4.9	-	12.5	37.6	4.9	-	12.4	
(XII)	cis, cis, cis- $\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$	Orange	184-186	37.8	4.9	-	-	37.6	4.9	-		
(XIII)	trans- $\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{PPh}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$	Orange	228-229 (d)	48.1	4.8	-	-	48.1	4.6	-	-	
(XVI)	mer- $\mathrm{RhCl}\left(\mathrm{S}_{2} \mathrm{CO}\right)\left(\mathrm{PNH}_{2} \mathrm{Ph}\right)_{3}$	Orange	150-155(d)	45.9	5.2	-	-	46.5	5.1	-	-	
XVII)	$\mathrm{K}\left[\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{CO}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$	Yellow	195(d)	34.9	3.8	-	-	35.1	3.8	-	-	64.0(5.2)
(XVIII)	trans $-\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{CO}\right)\left(\mathrm{S}_{2} \mathrm{COEt}\right)\left(\mathrm{PMe} \mathrm{P}^{\mathrm{Ph}}\right)_{2}$	Yellow	150-153 (d)	40.5	4.6	-	-	40.5	4.6	-	-	

TABLE 3.1 (Contd.)

1
Found \% Required \%

	Complex	Colour	M. $\mathrm{p}_{\cdot}\left({ }^{\circ} \mathrm{C}\right)$	C	H	N	Cl	C	H	N	C1
(XIX)	cis $-\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{CO}\right)\left(\mathrm{S}_{2} \mathrm{COEt}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$	Yellow	172-173(d)	40.6	4.7	-	-	40.5	4.6	-	
(XX)	trans- $\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{COEt}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$	Orange	155-157	40.1	4.8	-	12.2	39.9	4.7	-	12.5
(XXI)	$\underline{\text { mer }-\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{COEt}\right)(\mathrm{PMe}} \mathrm{Ph}^{\text {P }}$	Orange	120-123 (d)	45.4	5.5	-	10.3	45.6	5.4	-	10.0
(XXII)	$\left.\underline{\text { mer }-[\mathrm{RhCl}}\left(\mathrm{S}_{2} \mathrm{COEt}\right)\left(\mathrm{PHe}_{2} \mathrm{Ph}\right)_{3}\right] \mathrm{BPh}_{4}$	Orange	89-91	59.6	5.8	-	-	61.7	5.8	-	\cdots

a In $\Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ measured in $\mathrm{CH}_{3} \mathrm{NO}_{2}$ at 298 K

Infrared Spectra of Various Rhodium Dithioacid Comnlexes

> (shoulders underlined)

Complex

mer- $\mathrm{RhCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$	339, 313	3 -
(III) mer- $\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{CNMe}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$	335, 319	$1432{ }^{\text {a }}$
(X) mer- $\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$	342, 309	$601{ }^{\text {b }}$
(XXI) mer-RhCl i $\left.^{\left(1 S_{2}\right.} \mathrm{COEt}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3}\right.$	342, 312	$1200{ }^{\text {c }}$
(I) trans-RhCl ${ }_{2}\left(\mathrm{~S}_{2} \mathrm{CNMe}_{2}\right)\left(\mathrm{PMe} \mathrm{P}^{\mathrm{Ph}}\right)_{2}$	332, 320	$1520 \mathrm{br}{ }^{\text {a }}$
(XIII) trans-RhCl ${ }_{2}\left(\mathrm{~S}_{2} \mathrm{PPh}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$	340, 330	645, $580{ }^{\text {d }}$
(VIII) cis-cis-cis-RhCl $2_{2}\left(\mathrm{~S}_{2} \mathrm{PPh}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$	339, 312	630, $576{ }^{\text {d }}$
(XI) trans-RhCl ${ }_{2}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$	330, 321	$589{ }^{\text {e }}$
(XII) cis-cis-cis-RhCl ${ }_{2}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$	330, 318	$580^{\text {e }}$
(XX) trans-RhCl ${ }_{2}\left(\mathrm{~S}_{2} \mathrm{Crjat}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$	338, 325	$1240{ }^{\text {c }}$
(IV) [mer- $\left.\mathrm{RhCl}\left(\mathrm{S}_{2} \mathrm{CNHe} 2\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right] \mathrm{BPh}_{4}$	320	$1549 \mathrm{kr}{ }^{\text {a }}$
(XII) [mer- $\mathrm{RhCl}\left(\mathrm{S}_{2} \mathrm{COEt}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$] BPh_{4}	342	$1258 \mathrm{br}{ }^{\text {c }}$
(XVI) mer-RhCl $\left(\mathrm{S}_{2} \mathrm{CO}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$.	312	$1680 \mathrm{br}^{\mathrm{f}}, 1600^{\text {f }}$
(XVII) $\mathrm{K}\left[\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{CO}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$	320	$1640{ }^{\text {f }} 1610^{\text {f }}$
(XVIII) trans- $\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{CO}\right)\left(\mathrm{S}_{2} \mathrm{COEt}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$	-	$1670 \mathrm{rr}^{\mathbf{f}}, 1592^{\text {f }}$,
(XIX) cis-Rh($\mathrm{S}_{2} \mathrm{CO}$) ($\mathrm{S}_{2} \mathrm{COEEt}$) ($\left.\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$	-	$1680 \mathrm{br}^{\mathrm{f}}$, $1598{ }^{\text {f }}$,
(IIa) cis-[Rh($\left.\left.\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] \mathrm{BPh}_{4}$	-	$1540 b r^{\text {a }}$
(IIb) eis-[Rh(S $\left.\left.\mathrm{S}_{2} \mathrm{CNH} \mathrm{e}_{2}\right)_{2}\left(\mathrm{PR} \mathrm{e}_{2} \mathrm{Ph}\right)_{2}\right] \mathrm{PF} 6$	-	$1540 \mathrm{br}{ }^{\text {a }}$
	-	$572^{\text {d, }}$ g
(VIIb) cis-[$\left.\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]^{\mathrm{PF}}{ }_{6}$	-	$572^{\text {d, }} 9$
	-	$577{ }^{\text {e }}$

${ }^{\mathrm{a}} \mathrm{VCN}\left(-\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\operatorname{rof} 14$ and 233)
${ }^{\mathrm{b}}$ unidentate band (for ${ }^{-} \mathrm{S}_{2} \mathrm{PMe}_{2}$) (ref 16)
$\mathcal{V C L O ~ (~}^{-} \mathrm{S}_{2}$ COEt) (ref 103)
${ }^{d}$ bidentate bands (for ${ }^{-} \varepsilon_{2} \mathrm{PPh}_{2}$) (ref 15)
e bidentate band (for ${ }^{-} \mathrm{S}_{2} \mathrm{PM}_{2}$) (ref 16)
${ }^{\mathrm{f}} \mathrm{Y} \mathrm{C}=0\left({ }^{2-} \mathrm{S}_{2} \mathrm{CO}\right)($ ref 231)
${ }^{9}$ Higher energy band nositions masked by $\mathrm{BPh}_{4}{ }^{-}$or $\mathrm{FF}_{6}{ }^{-}$vibrations.

		n.	r. data for various sulphu	compounds (in CDCI_{3})	
	1		τ Value ${ }^{\text {a }}$	
	Compound	T/K	Dithio-ligand	Methyl (phosphine)	Phenyl Group
	mer- $\mathrm{RhCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$	301	-	$8.04 t(8.0)^{\text {b }} 8.70 \mathrm{~d}(11.0)^{\text {c }}$	2.3-3.2
(III)	$\left.\underline{\text { mer-RhCl }} \mathrm{Cl}_{2} \mathrm{~S}_{2} \mathrm{CNMe}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$	301	6.83s.	$8.02 t(8.0)^{\text {b }} 8.76 . t(12.0)^{\text {c }}$	2.2-3.0
(X)	mer-RhCl $2\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$	301	$7.72 \mathrm{~d}(13.0)^{\text {c }}$	$7.88 t(8.0)^{\text {b }} 8.74 \mathrm{~d}(11.0)^{c}$	2.2-3.2
(XXI)	mer- $\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{COEt}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$	301	$5.47 \mathrm{q}(7.0)^{e} 8.56 \mathrm{t}(7.0)^{e}$	$8.18 t(8.0)^{\text {b }} 8.80 d(11.0)^{c}$	2.3-3.2
(IV)	mer-[$\mathrm{PhCl}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3}\right] \mathrm{BPh}_{4}$	301	7.14s, 7.45s	$8.20 t(7.5)^{b} 8.34 t(7.5)^{b} 8.72 d(10.5)^{c}$	2.0-3.3
(XVI)		301	-	$7.98 t(7.5)^{\text {b }} 8.33 t(7.5)^{\text {b }} 8.85 d(10.0)^{c}$	2.2-3.4
(I)	trans-RhCl ${ }_{2}\left(\mathrm{~S}_{2} \mathrm{CNMe}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$	301	6.54 s	$8.31{ }^{f}(11.0)^{\text {b }}$	2.2-2.8
(XI)	trans- $\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$	301	7.98d(13.0) ${ }^{\text {c }}$	$8.32{ }^{\text {f }}(11.0)^{\text {b }}$	2.2-2.8
(XIII)	trans- $\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{PPh}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$	301	- ${ }^{-}$	$8.34{ }^{\text {f }}(11.0)^{\text {b }}$	2.2-2.8
(XX)	trans-RhCl $2\left(\mathrm{~S}_{2} \mathrm{COEt}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$	301	$5.50 \mathrm{q}(7.0),{ }^{\text {e }}$, $8.66 \mathrm{t}(7.0)^{\text {e }}$.	$8.29{ }^{\text {f }}(11.0)^{\text {b }}$	2.2-2.8
(XII)	cis, cis, cis- $\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$	301	$7.52 d(13.0){ }^{\text {c }}, 8.26 d(13.0)^{c}$	$8.10^{f}(11.0)^{\text {b }} 8.29^{f}(11.0)^{\text {b }}$	2.4-3.2
(XVII)	$\mathrm{K}\left[\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{CO}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]^{\mathrm{g}}$	301	-	$8.22 \mathrm{t}(8.0)^{\text {b }}$	2.0-2.9
(XVIII)	$\underline{\text { trans }-\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{CO}\right)\left(\mathrm{S}_{2} \mathrm{COEt}\right)(\mathrm{PMe} 2 \mathrm{Ph})_{2}}$	301	$6.30 \mathrm{q}(7.0),{ }^{\text {e }}$, $8.90 \mathrm{t}(7.0)^{e}$	$8.16 t(7.0)^{\text {b }}$	2.4-2.8
(XIX)	$\left.\underline{\text { cis-Rh }} \mathrm{S}_{2} \mathrm{CO}\right)\left(\mathrm{s}_{2} \mathrm{COEt}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$	301	$5.44 \mathrm{q}(7.0){ }^{\text {e }}$, 8.57t $(7.0)^{e}$	$8.24 \mathrm{~d}(9.0)^{\text {c }}, 8.35 \mathrm{~d}(9.0){ }^{\text {c }} 8.48 \mathrm{~d}(9.5)^{\text {c }}$ $8.53 \mathrm{~d}(9.0)^{\mathrm{c}}$	2.6-3.2
(IX)	cis- $\left[\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{2}\right] \mathrm{BPh}_{4}\right.$	301	$7.86 \mathrm{~d}(13.0)^{c} 8.30 \mathrm{~d}(13.0)^{\text {c }}$	$8.32^{\text {f }}(8.0){ }^{\text {b }} 8.4 .42^{\text {f }}(8.0)^{\text {b }}$	2.4-3.4
(VIIJ)	cis- $\left[\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{PHh}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] \mathrm{BPh}_{4}$	301	- -	$8.38{ }^{\text {f }}(10.0)^{\text {b }}, 8.48^{\text {f }}(10.0)^{\text {b }}$	2.0-3.2
(VIIb)	cis-[$\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)_{2}{ }^{\left.\left(\mathrm{PNe}_{2} \mathrm{Ph}\right)_{2}\right]^{\text {PF }} 6 .}$	301	-	$8.22^{\text {f }}(10.0)^{\text {b }}, 8.28^{\text {f }}(10.0)^{\text {b }}$	2.0-3.2

1

Compound

T/K Dithio-1igand

301 6.96s, 7.00s
333 6.93s, 6.96s
227 6.63s, 6.65s
264 6.67s, 6.68s
301 6.71s
301 7.60s
$301 \quad 7.33 \mathrm{~s}$
$3017.22 \mathrm{~s}, 7.40 \mathrm{~s}$
301 7.00s, 7.27 s

$\tau_{\text {value }}{ }^{a}$

Methyl (phosphine)	Phenyl Groups
$8.46^{\text {f }}(8.0){ }^{\text {b }} 8.56{ }^{\text {f }}(8.0)^{\text {b }}$	2.4-3.3
$8.45{ }^{\text {f }}(10.0){ }^{\text {b }} 8.50{ }^{\text {f }}(10.0)^{\text {b }}$	
$8.32^{f}(9.5)^{\text {b }}, 8.38{ }^{\text {f }}(9.5)^{\text {b }}$	2.6-3.2
$8.34{ }^{\text {f }}(9.5)^{\text {b }} 8.388^{\text {f }}(10.5)^{\text {b }}$	
$8.37{ }^{\text {f }}(9.5)^{\text {b }}$	
$7.92 t(6.5)^{\text {b }}$	2.4-3.4
$7.90 t(7.0)^{\text {b }}$	2.3-3.2
$8.18{ }^{\text {f }}(8.0)^{\text {b }}$	2.4-3.4
$8.08{ }^{\text {f }}(8.0)^{\text {b }}$	2.3-3.2

${ }^{a} \pm 0.01$
${ }^{\mathrm{b}}$ Since $\mathrm{H}_{\mathrm{n}} \mathrm{PP}^{\prime} \mathrm{H}_{\mathrm{n}}{ }^{\prime}$ type spectrum, coupling constant is $\mathrm{J}_{\mathrm{PH}}+\mathrm{J}_{\mathrm{PH}}{ }^{\prime} \mathrm{Hz}$
${ }^{c} \mathrm{~J}_{\mathrm{PH}}(\mathrm{Hz})$
e $\mathrm{J}_{\mathrm{CH}_{3}-\mathrm{CH}_{2}}(\mathrm{~Hz})$
${ }^{1}$ Pseudo-doublet
${ }^{9}$ Measured in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$.
${ }^{h}$ Spectrum obtained from mixture of cis and trans isoners.

$\mathrm{P}=\mathrm{PMe}_{2} \mathrm{Ph} \stackrel{\underline{J}}{\sim} \quad \mathrm{P}=\mathrm{PMePh}_{2} \quad \mathrm{P}=\mathrm{PMePh}_{2}$

$\mathrm{P}=\stackrel{\mathrm{G}}{\mathrm{PMR}_{2}} \mathrm{Ph}(\mathrm{XMII})$
 $\mathrm{S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{CNMe}(\mathrm{J}) \mathrm{S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{CNM} \mathrm{e}_{2}(\mathrm{~V}) \mathrm{S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{CNMP}_{2}(\mathrm{VI})$ $\mathrm{S}_{2} \mathrm{PPh}_{2}$ (VII) $\mathrm{S}_{2} \mathrm{PMe}_{2}$ (IX)

SCHEME 3.1

Proposed mechanism for reactions of men- $\mathrm{RhCl}_{3}\left(\mathrm{PM}_{2} \mathrm{Ph}_{2}\right)_{3}$ with (S-S) ${ }^{\text {- }}$
(Compounds in dashed brackets have not been isolated)

Reactions of mer-OsCl ${ }_{3}$ (PMe $_{2}{ }^{\mathrm{Ph})}$ with Dithioacid Ligands. Introduction

The investigation of the reactions of mer- $\mathrm{RhCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ with dithioacid ligands gave considerable insight into the possible nature of sone of the paramagnetic intermediates which might be formed in the preparation of cis-Ru($\left.\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \quad(\mathrm{R}=\mathrm{Me}$ or Ph) from mer- $\mathrm{RuCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3}\right.$ but, on account of the stability of Rh (III) complexes with respect to reduction to $\mathrm{Rh}(\mathrm{II})$, no information can be gleaned about the step at which reduction to $\mathrm{Ru}(\mathrm{II})$ occurs, or the nature of any $\mathrm{Ru}(\mathrm{II})$ intermediates. \cdot However, it was felt that, since osmium not only has stable oxidation states of +2 and +3 , but also is considered to be much less labile than ruthenium in both of these oxidation states ${ }^{286 b}$, an investigation of some of the reactions of halo-osmium complexes, containing phosphines, with dithioacid ligands might shed some extra light on the mechanism of formation of cis-Ru(S $\left.\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}\left(\mathrm{PRie}_{2} \mathrm{Ph}\right)_{2}$ from mer-RuCl $3_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}{ }^{\circ}$

The phosphine chemistry of osmium, although less extensively studied than that of the other metals of the iron group, has been shown to be similar to that of ruthenium, except that higher oxidation states tend to be more stable and less labile than their, ruthenium analogues ${ }^{286}$. Thus, although very few phosphine containing complexes of $\mathrm{Ru}(\mathrm{IV})$ have been isolated ${ }^{286 a}$, $\mathrm{OsX}_{4} \mathrm{~L}_{2}$ ($\mathrm{X}=\mathrm{Cl}$ or $\mathrm{Br}, \mathrm{L}=\mathrm{PPr}_{3}, \mathrm{PNe}_{2} \mathrm{Ph}, \mathrm{PPr}_{2} \mathrm{Ph}, \mathrm{PBu}_{2} \mathrm{Ph}$) may be prepared either by oxidation of mer- $\mathrm{OSCl}_{3} \mathrm{~L}_{3}$ with $\mathrm{CCl}_{4}{ }^{293}$, or chlorine in the presence of $u . v$. ight 358, or by the controlled reduction of OsO_{4} with L in the presence of wr^{293}. Prolonged reaction of
OsO_{4} with L in boiling HX gives stepwise reduction to mer $-\mathrm{OsX}_{3} \mathrm{~L}_{3}$ and finally the triply bridged ionic species $\left[\mathrm{Os}_{2} \mathrm{X}_{3} \mathrm{~L}_{6}\right] \mathrm{X}$ is formed ${ }^{293}$. The harsher condition required to form $\left[\mathrm{Os}_{2} x_{3} L_{6}\right] x^{293}$ compared with the preparation of $\left[\mathrm{Ru}_{2} \mathrm{X}_{3} \mathrm{~L}_{6}\right] \mathrm{X}^{289}$ (see page 43) is probably a reflection both of the higher stability to reduction of the Os(III) compound and the lower lability of the osmium complexes. $\left[\mathrm{Os}_{2} \mathrm{X}_{3} \mathrm{~L}_{6}\right] \mathrm{X}$ may also be prepared by the =aaction of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{OsX}_{6}$ with L in aqueous ethanol ${ }^{289}$ or by reduction of mer-0sCl ${ }_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$, but in the latter reaction, trans $\mathrm{OsCl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{4}$ is also isolated ${ }^{359}$. This is further evidence for the lower lability of $O S$ (II) than of $\mathrm{Ru}(\mathrm{II})$ since under similar conditions, $\mathrm{RuCl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{4}\right.$ rapidly rearranges to give $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{6}\right] \mathrm{Cl}^{291}\right.$ (page 43).

Very little work has been carried out on the synthesis of osmium compounds containing sulphur donor ligands although, apart from the compounds mentioned in the review section (pages 26-32) some spectrophotometric investigations on the reactions of Os (III) and $\mathrm{Os}(\mathrm{IV})$ with $\mathrm{HS}_{2} \mathrm{CR}(\mathrm{R}=\mathrm{Bz}$ or $\mathrm{p}-\mathrm{MeBz})$ have shown that complexes of stoichiometry $O s\left(S_{2} C R\right)_{n}(n=3$ or 4) are formed, depending upon the pH of the solution ${ }^{360}$.

Results and discussion
As noted above, mer $^{-} \mathrm{OsCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ fan be prepared by the reaction of OsO_{4} with $\mathrm{PMe}_{2} \mathrm{Ph}$ in HCl , or, in low yield by refluxing $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{OsCl}_{6}$ with excess $\mathrm{PMe}_{2} \mathrm{Ph}$ in 2-methoxyethanoi ${ }^{293}$. We have been able to increass the yield of the latter reaction to ca. 100% by addition of HCl to the mixture and by prolonging the reflux for sixteen hours. On account of this facile preparation of mer $-\mathrm{OsCl}_{3}\left(\mathrm{PiPe}_{2} \mathrm{Ph}\right)_{3}$ in high yield, some reactions of the complex with
dithioacid anions were carried out and the results of this investigation are detailed below. Table 4.1 contains analytical data for the complexes whilst their spectroscopic properties are given in Tables 4.2 and 4.3 .

1. N, N-dimethyldithiocarbamato complexes

$\mathrm{If}_{\mathrm{mer}}-\mathrm{OSCl}_{3}$ (FMe $\left._{2} \mathrm{Ph}\right)_{3}$ is refluxed with excess $\mathrm{NaS}_{2} \mathrm{CMM}_{2}$ for 90 mins. in ethanol, a yellow compound of composition $\mathrm{Cs}^{\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}-1 .}$ (PMe $\left.{ }_{2}{ }^{\mathrm{Ph}}\right)_{2}(\mathrm{I})$ is isolated in ca. 80% yield and the remaining solution may be shown by (t.l.c.) to contain three other coloured compounds which are present in small quantities, together with some white $\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}$. Shaking the two reactants in methanol for 10 mins produces a single yellow compound of formula $\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right) \mathrm{Cl}(\mathrm{PMe} 2 \mathrm{Ph})_{3}$ (II) and a white solid, $\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}$, along with a very small quantity of (I). If, however, this latter reaction is carried out in the presence of excess $\mathrm{PMe}_{2} \mathrm{Ph}$, the previously known pale yellow complex, $\mathrm{OsCl}_{2}{ }^{\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{4} \text {, }}$ is isolated and this is oxidised quantitatively to mer-0sCi ${ }_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3}\right.$ and $\mathrm{Me}_{2} \mathrm{PhPO}$ on standing in CDCl_{3} (c.f. the reaction of $\left[\mathrm{RhCl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{4}\right]^{+}\right.$

Attempts to prepare compounds of the form $\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ by the reaction of (II) with $\mathrm{NaS}_{2} \mathrm{CNMe}_{2}$ in the presence of excess PMe ${ }_{2} \mathrm{Ph}$ were unsuccessful, giving only unchanged. starting material. However, (II) does react with $\mathrm{NaS}_{2} \mathrm{CNH}_{2}$ in refluxing ethanol and in the absence of excess $\mathrm{PMe}_{2} \mathrm{Ph}$ to produce, after 90 mins , (I) and the other three coloured compounds that were prepared in the earlier preparation of (I) but in this case, (I) is only obtained in ca. 50% yield.

Reaction of (II) with KS_{2} COEt in refiuxing ethanol again
produces several compounds, four of which are the same as those produced from the reaction of (II) with $\mathrm{NaS}_{2} \mathrm{CNMe}_{2}$ and the fifth is an orange compound of higher r.f. value than the others. In this case, the five complexes were separated on a dry alumina column and, after recrystallisation, were shown to have the following composition, in decreasing order of r.f value:
$\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{CNHe}_{2}\right)\left(\mathrm{S}_{2} \mathrm{COEt} \mathrm{j}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}(\mathrm{III}),(\mathrm{I}) \cdot \mathrm{Os}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right) \mathrm{Cl}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right.$ (IV) (but with different spectral propertios from (II)) $\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)(\mathrm{OEt})$ (PMe $_{2} \mathrm{Ph}_{3}$ (V) and a red oil which could not be recrystallised or identified.

The stereochemistries of these complexes will be discussed in the spectroscopic section of this chapter but it is of interest to note that, although reaction of (II) with $\mathrm{NaS}_{2} \mathrm{CNMe}_{2}$ does gire rise to the formation of (I), the yield of (I) is not as high as from the reaction of mer $-\mathrm{OsCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ with (I). Thus, althoigh (II) may be an intermediate in the formation of (I) from mer- $\mathrm{OSCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3}\right.$, a parallel pathway which does not involve (II) as an intermediate must also be operating to form (I). The mechanistic implications of this observatinn will be discussed later in this chapter.

2. Diphenyl and dimethylphosphinodithiŋato complexes

As for the dithiocarbamate, reactions of mer- $\mathrm{OsCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3}\right.$ with excess $\mathrm{NaS}_{2} \mathrm{PMe}_{2}$ or $\mathrm{NH}_{4} \mathrm{~S}_{2} \mathrm{PPh}_{2}$ in refluxing etranol lead to the formation of orange solutions from which highly crystalline complexes of formula $\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}\left(\mathrm{PN}_{2} \mathrm{e}_{2} \mathrm{Ph}\right)_{2}(\mathrm{R}=\mathrm{Me}(\mathrm{VI})$ or $\mathrm{Ph}(\mathrm{VII}))$ may be isolated in inigh yield. Solutions of these complexes rapidly turn green in the presence of air and as with cis-Ru(S $\left.\mathrm{SPFe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$, broadening of the previously sharp ${ }^{1} \mathrm{H}$ n.m.r. signals is observed indicating that oxidation to a
paramagnetic species is probably occurring. Again as for the ruthenium complexes, sharp peaks grow up in these spectra after several weeks but these are thought to arise from non-metal-containing decomposition products since the ruthenium and osmium spectra are superimposable and one of the doublets in the spectrum is assignable to $\mathrm{Me}_{2} \mathrm{PhPS}$. During one of the preparations of (VI), a pale yellov compound was isolated. This is the well known [$\mathrm{Os}_{2} \mathrm{Cl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{6}\right] \mathrm{Cl}$ which is formed when mer $^{-0 s C 1}{ }_{3}\left(\mathrm{PNe}_{2} \mathrm{Ph}\right)_{3}$ is refluxed in aqneous ethanol (see page 162).

As with mer-RhC1 ${ }_{3}$ (PNe $\left._{2}{ }^{\mathrm{Ph}}\right)_{3}$, shaking excess NaS ${ }_{2} \mathrm{PMi}_{2}$ with mer $-\mathrm{OsCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ in methanol produces a compound of formula $\mathrm{Os}_{\mathrm{s}}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right) \mathrm{Cl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ (VIII), but in this case, the compound is purple and a reaction time of 90 mins, (c.f. 10 mins , for Rh) is required for complete conversion. The analogous compound, $\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right) \mathrm{Cl}_{2}{ }^{\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}}(\mathrm{IX})$ may also be prepared, but by interaction of a methanolic solution of $\mathrm{NaS}_{2} \mathrm{PPh}_{2}$ with a solution of mer-OsCl ${ }_{3}$ (PMe $_{2} \mathrm{Ph}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by evaporation of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and collection of the methanol insoluble product. Since (IX) is more difficult to prepare than (VITI), and less amenable to $\mathbf{1}_{H} n_{0} m_{0}$ r. studies, its reactions were not investigated further, but those of (VIII) were studied in some detail.

Thus, (VIII) may be recovered unchanged if it is recrystallised quickly from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{n}$-Hexane in the cold (contraft the facile formation of trans- $\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{PHe}_{2}\right) \mathrm{Cl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ on recrystallisation of mer- $\left.\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right) \mathrm{Cl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right)$ but if the solution is warmed and allowed to siand, quantitative conversion to the red mer-0sCl ${ }_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3}\right.$ occurs, whilst prolonged reaction of (VITI) with PMe ${ }_{2} \mathrm{Ph}$ in cold $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ produces a yellow solution from which $\left[\mathrm{Os}_{2} \mathrm{Cl}_{3}\left(\mathrm{PM}_{2} \mathrm{Ph}\right)_{6}\right] \mathrm{Cl}$ may
be isolated. Recrystallisation of (VIIJ) from boiling benzene in air gives a red compound of formula $\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right) \mathrm{Cl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}(\mathrm{X})$ together with some Me ${ }_{2} \mathrm{PhPO}_{2}$, whereas if (VIII) is allowed to stand in cold benzene for two weeks, three compounds may be isolated from the resulting brown solution by fractional crystallisation with n-Hexane. These are, a purple, strongly conducting oil, which is thought te contain the cationic $\left[\mathrm{Os}_{2}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right) \mathrm{Cl}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]$ (XI), a brown crystalline solid of formula $\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right) \mathrm{Cl}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ (XII) and mer $^{-\mathrm{OsCl}_{3}}{ }^{\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}}$ Longer reaction times in cold benzene (4 weeks) produce only (XII) and mer- OsCl_{3} (PMe $\left._{2} \mathrm{Ph}\right)_{3}$. Finally, shaking (VIII) in acetone for several days again produces a highly conducting purple oil, as well as mer $-\mathrm{OsCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$, but, in this instance, none of (XII).
 reacts with carbon monoxide under mild conditions. - Thus, reaction of $\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PRP}_{2} \mathrm{Ph}\right)_{2}$ with CO in refluxing ethanol, in the presence of a small amount of elemental sulphur, produces a compound of formula $\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right) \mathrm{CO}$ (XIII) together with a brown oil which contains (i.r. and n.m.r. evidence) both Me ${ }_{2} \mathrm{PhPS}$ and a compound with two cis CO groups, of probable formula, $\mathrm{Os}^{\left(\mathrm{S}_{2} \mathrm{PMe}_{2} \int_{2}\left(\mathrm{PMe} \mathrm{P}_{2} \mathrm{Ph}\right)(\mathrm{CO})_{2}(\mathrm{XIV}) \text {. }\right.}$ If the reaction is carried out in the presence of excess $\mathrm{PMe}_{2} \mathrm{Ph}$, a yellow crystalline complex of formula $\mathrm{Os}^{\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{CO} \text { (XV) is }}$ exclusively formed. Firally, reaction of $\mathrm{Os}^{\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMie}_{2} \mathrm{Ph}\right)_{2}, ~}$ with CO in cold $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane gives another yellow complex, probably of formula $\left.\mathrm{Os}^{\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}(\mathrm{PMe}} \mathrm{P}^{\mathrm{Ph}}\right)_{2} \mathrm{CO}$ (XVI), which rapidly becomes green on exposure to air and whose structure will be discussed later in this chapter.

3. O-ethyldithiocarbonato (xanthato) complexes

The reaction of mer $^{-O S C l_{3}}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ with $\mathrm{KS}_{2} \mathrm{COEt}$ is
rather different from those with the other dithioacid anions
studied since both refluxing the reactants in ethanol for one hour and shaking them together in methanol for 10 mins . produce only one compound, which has the formula $\mathrm{Os}^{\left(\mathrm{S}_{2} \mathrm{COEt}\right) \mathrm{Cl}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3}\right)_{3}(\mathrm{XVII}) \text {, }, ~}$ Attempts to react this compound further with either KS ${ }_{2}$ COEt or $\mathrm{NaS}_{2} \mathrm{CNMe}_{2}$ proved abortive yielding only unchanged starting materials in both cases. An attempt to prepare compounds of the type $\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{COR}\right)_{2}$ (PAle $_{2} \mathrm{Ph}_{2}$ by reaction of mer- OsBr_{3} (PMe $_{2} \mathrm{Ph}_{3}$ (made by
 also proved fruitless since, although no solid product could be isolated, an n.m.r. spectrum of the resultant orange oil indicated that $\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{COR}\right) \mathrm{Br}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3}\right.$ (XVIII) was the only identifiable product. 4. Spectrosconic pronerties of dithioacid complexes
a) Infra-red spectra

Like mer- PhCl_{3} (PMe $_{2} \mathrm{Ph}_{3}$ (page 138), mer-OsCl ${ }_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ has three i.r. active Os-Cl stretching vibrations and these are assigned to the absorptions at 350,312 and $270 \mathrm{~cm}^{-1}$. Again by analogy with the rhodium complex, the band of 1 owest energy ($270 \mathrm{~cm}^{-1}$) is assigned as arising predominantly from the Os-Cl bond trans to the highest trans-influence ligand $\left(\mathrm{PNe}_{2} \mathrm{Ph}\right)$. Then, the two absorptions at 350 and $312 \mathrm{~cm}^{-1}$ are assigned as arising predominantly from the symmetric and asymmetric Cl-Os-Cl stretches. Although the exact assignment of these two stretches to γ_{s} and $V_{\text {as }}$ is not possible ${ }^{361}$, since in a molecule of this size mixing with other vibrations of the same symmetry may be occurring, this region may be used as a 'finger-print' in assigning stereochemistries to similar molecules.

Analysis of the $\mathrm{Os}-\mathrm{Cl}$ stretching regions of
$\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right) \mathrm{Cl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(\mathrm{R}=\mathrm{Me}$ or Ph$) \quad$ (Table 4.2) indicates that in both cases the chloride ion trans to phosphine has been removed, which is expected in view of the greater trans-influence of $\mathrm{PMe}_{2} \mathrm{Ph}$ as compared with chloride. This fact, coupled with the observations that absorptions in the $\mathrm{P}=\mathrm{S}$ stretching regions indicate that only unidentate $\mathrm{S}_{2} \mathrm{PR}_{2}$ grriups are present, and that $\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right) \mathrm{Cl}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ has the meridional configuration (see page 140) leads to the conclusion that compounds (VIII) and (IX) both have the structure A (see Scheme 4.1). The compound $\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right) \mathrm{Cl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ has a strong absorption at $300 \mathrm{~cm}^{-1}$ and the strength of this absorption together with its position indicates that it probably arises from a trans-Cl-Os-Cl group (C).

The similarvos-Cl frequencies of complexes (XII), (II) and (XVII), all of which have formula $\mathrm{Os}(\mathrm{S}-\mathrm{S}) \mathrm{Cl}_{1}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3}(\mathrm{~S}-\mathrm{S}=\right.$ $\mathrm{S}_{2} \mathrm{PMe}_{2}, \mathrm{~S}_{2} \mathrm{CNMe}_{2}$ or $\mathrm{S}_{2} \mathrm{COR}$), indicate that these complexes probably have a common stereochemistry. Since the other isomer of $\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right) \mathrm{Cl}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ (IV) has a lower vOs-Cl, it is likely that in this compound, the chloride ion is trans to a phosphine group (F) and is thus more labile, whilst the other compounds ((XII), (II) and (XVII)) probably have a meridional configuration (E). The other complexes, apart from those containing $C O$, all have dithioacid absorptions characteristic of bidentate co-ordination (Table 4.2) and little information as to their stereochemistries can be gleaned from their i.r. spectra, although the presence of a $\epsilon-0$ stretching frequency at $1030 \mathrm{~cm}^{-1}$ in $\operatorname{Os}\left(\mathrm{S}_{2} \mathrm{PMie}_{2}\right) \operatorname{OEt}\left(\mathrm{PMe} \mathrm{Ph}_{3}\right)_{3}$ is in the region of an ethoxy group which is directly bound to a $\operatorname{metal}\left(1000-1100 \mathrm{~cm}^{-1}\right)^{362}$.

For the carbonyl containing species, although once again the region from $700-500 \mathrm{~cm}^{-1}$ in their i.r. spectra is complicated by the presence of $C=0$ bending modes, it can be seen from Table 4.2 that the two complexes of formula $\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PM} \mathrm{e}_{2} \mathrm{Ph}\right)_{2} \mathrm{CO}$ as well as $\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)(\mathrm{CO})_{2}$ probably contain both unidentate and bidentate $S_{2} \mathrm{PMe}_{2}$ groups and that the last compound has the two CO groups in a cis configuration (two 2×0 :. The higher value of VCO for $\mathrm{Os}^{\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PHe}_{2} \mathrm{Ph}\right)} 2_{2} \mathrm{CO}$ (XVI) than for the other two monocarbonyl species indicates that the $C O$ groups in (XVI) may be trans to $\mathrm{PMe}_{2} \mathrm{Ph}$ (c.f. $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}$ (PMe $\left._{2} \mathrm{Ph}\right)_{2} \mathrm{CC}(\mathrm{E})$ (page 104)). Finally, the absence of a peak at $600 \mathrm{~cm}^{-1}$, in the i.r. spectrum of $\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right) \mathrm{CO}$ (XIII) indicates that this compound probably does not contain unidentate $\mathrm{S}_{2} \mathrm{PMe}_{2}$ groups.
b) Mass spectra

The mass spectra of $\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right) \mathrm{CO}(X I I I)$ and $\left.\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{CO}(X V)$ are identicai since (XV) readily loses $\mathrm{PMe}_{2} \mathrm{Ph}$ at high temperatures to form (XIII). Their mass spectra show well defined, intense osmium isotope patterns which correspond to $\left[\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right) \mathrm{CO}\right]^{+}(608)^{*},\left[\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{FMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)\right]^{+}$(580), $\left[\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)\right]^{+}(580),\left[\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\right]^{+}(442)$ and $\left.\left[\mathrm{Cs}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{PMe}_{2} \mathrm{Ph}\right)\right]^{2+}(290)$, as well as several weaker patterns corresponding to loss of methyl groups and large metastable ion signals at 560 and 347 a.m.u. which correspond to the loss of $C O$ from $\left[\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right) \mathrm{CO}\right]^{+}$and of $\mathrm{PMe}_{2} \mathrm{Ph}$ from $\left[\mathrm{Os}^{\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)} \mathrm{P}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)\right]^{+}$ respectively.

Numbers in brackets refer to m / e ratio of $0 s^{192}$ peak.

The mass spectrum of $\left.\mathrm{Os}_{2} \mathrm{~S}_{2} \mathrm{CNMe}_{2}\right) \mathrm{Cl}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(\mathrm{II})$ is also of interest since it not only shows the parent ion and fragmentation pattern corresponding to this compound, but also those for two other compounds, $\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2} \mathrm{PMe}_{2} \mathrm{Ph}_{2}(\mathrm{I})$ and $\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right) \mathrm{Cl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ (see Table 4.3). Since there is no evidence for (I), or an isomer of (I), in the n.m.r. spectrum of (II) and since the relative intensities of the mass spectral signals arising from these two compounds are comparable in two different samples, it seems likely that (I) is formed from (II) under the extreme conditions of the mass spectrometer $\left(200^{\circ} \mathrm{C}\right)$. However, since the intensities of the mass spectral signals arising from $\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right) \mathrm{Cl}_{2}{ }^{\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3}\right.}$ vary considerably relative to those of (II) from one sampie to another, it is likely that this compound is an impurity in (II). This is quite possible since the mode of preparation of (II) is similar to that of $\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right) \mathrm{Cl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$, and the presence of this Os (III) impurity might also explain the broadness of the signals observed in the n.m.r. signals of (II) (see later).
c) ${ }^{1_{H} n_{0} m_{0} r}$. spectra

The ${ }^{1} \mathrm{H}$ n.m.r. spectra of mer-Os $\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right) \mathrm{Cl}_{2}\left(\mathrm{FMe}_{2} \mathrm{Ph}_{3}\right)_{3}(\mathrm{R}=\mathrm{Me}(\mathrm{VIII})$
or $\mathrm{Ph}(\mathrm{IX}))$ and of trans $-\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right) \mathrm{Cl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}(\mathrm{X})$ all show ill defined, contact shifted resonances from which very little structural data may be obtained. These spectra are indicative of paramagnetic species and solution magnetic moments (see Table 4.1) (by Evans' method) 319 lie well within the range expected for one unpaired electron and are consistent with the formulation of these complexes as containing $O s(I I I)$. On account of the broadness of the signals, little structural data may be obtained from these ${ }^{1} H_{\text {n.m.r. spectra but the structures of (VIII), (IX) (A) }}$ (A) and (X) (C) indicated by their i.r. spectra are consistent with
those of the analagous diamagnetic $\mathrm{Rh}($ III) complexes (page 160) as well as with their modes of preparation which involve replacement of the most labile chloride ion in mer-OsC1 $1_{3}\left(\mathrm{PM}_{2} \mathrm{Ph}_{3}\right.$ by a unidentate (S-S) ligand ((VIII), (IX)) followed by chelation of this aithioacid ligand with concomitant loss of phosphine to form (X) (see Scheme 4.1). The remaining complexes are all diamagnetic and give rise to sharp n.m.r. signals from which their structures in solution may be unequivocally assigned. The methyl groups on the phosphine ligands of $\mathrm{Os}(\mathrm{S}-\mathrm{S}) \mathrm{X}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ $\left(X=C 1, S-S=S_{2} \mathrm{PMe}_{2}(X I I)\right.$ or $\left.S_{2} \operatorname{COEt}(X V I I) ; X-B r, S-S=S_{2} \operatorname{COEt}(X V I I I)\right)$ give rise to two virtually coupled triplets and a sharp doublet in their ${ }^{1} \mathrm{H}$ n.m.r. Epectra. The doublet must arise from a single phosphine group which has a plane of symmetry passing through the Os-P bond (since the methyl groups on that phosphine are equivalent), whereas the fact that two triplets are observed is indicative of two trans phosphines with no plane of symmetry through the Os P bonds. This, together with the presence of only one methyl doublet from the $\mathrm{S}_{2} \mathrm{PM}_{2}$ group of (XII), confirms that these complexes have the meridonal structure (E).

At low temperature, the ${ }^{1} \mathrm{H}$ n.m.r. spectra of complexes $\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right) \mathrm{X}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\left(\mathrm{X}=\mathrm{Cl}_{1}(\mathrm{IV})\right.$ or $\left.\mathrm{OEt}(\mathrm{V})\right)$ consist of two pseudo-doublets and a sharp doublet arising from the methyl groups of the phosphines as well as a sharp singlet at lower field from the methyi groups of the dithiocarbamate ligand. For (V), there are also a quertet and a triplet arising from the OEt group. This information indicates that the complexes do not contain mutually trans phosphine groups and hence must have a facial configuration (F, G). Then, the phosphines trans to the
sulphur atoms are chemically equivalent and give rise to the pseudo-doublets (there are two such pseudo-doublets since, there being no plane of symmetry through the Os-P bonds, hindered rotation about these bonds makes the two methyl groups on one phosphine inequivalent). The phosphine trans to X is unique and, since a plane of symmetry passes through that $O s-P$ bond, gives rise to a single methyl doublet. At higher temperatures, the two pseudo-doublets of (V) become coincidentg indicative of fast rotation about the Os-P bonds. The ${ }^{1}{ }^{H}$ n.m.r. spectrum of $\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right) \mathrm{Ci}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(\mathrm{II})$ is more difficult to interpret since, although immediately after the solution is made up, the resonances are relatively sharp, they rapidly become broad. This is presumably because the compound is rapidly air oxidised or, more likely, because a paramagnetic impurity is present in the solution. (II) is assigned a meridional configuration partly on the basis of decoupling studies and partly because it is different from (IV) which definitely is the facial isoner. Irradiation in the region of ${ }^{31} \mathrm{P}$ resonances causes sharpening of the slightly broad singlets at $\tau 8.20$ and

A weak e.s.r. signal is observed in the solid, but, since its position is not reproducible it is probably due to a small anount of paramagnetic impurity in the sample rather than any inherent paramagnetism of the compound itself. The nature of this impurity is unclear although the presence of $\left[\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right) \mathrm{Cl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]^{+}$in the mass spectrum of (II) could indicate that $\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2} \mathrm{Cl}_{2}\left(\mathrm{PNe} \mathrm{e}_{2} \mathrm{Ph}\right)_{3}\right.$ is the impurity but this could also be formed in the mass spectrometer (see page 170).
8. 34 which indicates that these are separate resonances with some p-H coupling. Irradiating at a different frequency in the same region decouples the doublet at $\tau 8.66$ to a singlet and thus it is most likely that the ${ }^{1} \mathrm{H}$ n.m. r_{r}. spectrum of the phosphine methyl groups is similar to those of the meridional complexes (XII), (XVII) and (XVIII) and that (II) also has the meridional configuration (E).

The low temperature ${ }^{1} \mathrm{H}_{\mathrm{n}} \mathrm{m} \cdot \mathrm{r}$. spectra of $\mathrm{Os}(\mathrm{S}-\mathrm{S})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ (S-S $=\mathrm{S}_{2} \mathrm{PMe}_{2}$ (VI), (Figure 4.1(a), page 174), $\mathrm{S}_{2} \mathrm{PPh}_{2}$ (VII) or $\mathrm{S}_{2} \mathrm{CNM} \mathrm{e}_{2}(\mathrm{I})$ (Figure 4.2(a), page 175)) are all consistent with cis stereochemistry although the non-equivalence of the methyl groups of (VII) is not seen even at 213K. As for cis- $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ (page 59), the two doublets arising from the $\mathrm{S}_{2} \mathrm{PMe}_{2}$ groups of VI broaden and coalesce on warming (Figure 4.1 (b and c), page 174) but in this case, the coalescence temperature is ca. 328 K and the fast exchange limit is not reached in CDCl_{3}. The two pseudo-doublets from the phosphine methyl groups also coalesce on warming (Figure 4.1 (b), page 174) to give a sharp signal at higher temperatures (Figure 4.1(c), page 174). This behaviour is again attributed to a rapid interconversion of the two possible optical isomers of (VI) and Arrhenius plots together with related activation parameters for the inversion in CDCl_{3} and $\mathrm{C}_{6} \mathrm{H}_{6}$ are given in Figure 4.3, (page 176). Since there is negligible difference in ΔH^{\ddagger} for this inversion on changing the solvent from CDCl_{3} to $\mathrm{C}_{6} \mathrm{H}_{6}$, it is unlikely that a solvent assisted process is operating in this case 333,339 . However, the large positive values of Δs^{\ddagger} together with the comparable values of the activation parameters for the inversions of cis-Ru($\left.\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ and of cis-Os $\left(\mathrm{S}_{2} \mathrm{Prie}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ in $\mathrm{C}_{6} \mathrm{H}_{6}$ lead us to conclude that a

Methyl region of ${ }^{1} \mathrm{H}$ n.m.r. spectrum of cis-0s $\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{Prie}_{2} \mathrm{Ph}\right)_{2}(\mathrm{VI})$ in CDCl_{3} at different temperatures;
a) 273 K
b) 306 K
c) 333 K

Methyl region of ${ }^{1} \mathrm{H}$ n.m. r . snectrum of cis-Os $\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}(\mathrm{I})$ in CDCl_{3} at different temperatures.
a) 253 K
b) 303 K
c) 333 K

Arrhenius plots $\left(\log _{10} \mathrm{k}\right.$ vs $\left.1 / \mathrm{T}\right)$ and activation parameters for cis-Os($\left.\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}$ (PMle $\left._{2} \mathrm{Ph}\right)_{2}(\mathrm{VI})$ in different solvents.
similar mechanism to that shown in Figure 2.13(b) (page 92) is operating for the inversion of cis-Os $\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ in both CDCl_{3} and $\mathrm{C}_{6} \mathrm{H}_{6}$:

On raising the temperature, the ${ }^{1} \mathrm{H} n \cdot m \cdot r$ spectrum of I also undersnes interesting changes (Figure 4.2; page 175). The two. $\mathrm{S}_{2} \mathrm{CNMe}_{2}$ methyl singlets undergo coalescence behaviour to give a sharp singlet at higher temperatures (Figure 4.2(c), page 175), whilst the two pseudo doublets from the phosphine methyl groups gradually move together without broadening. This behaviour is similar to that found for cis-Ru($\left.\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ (page 73) and cis-[Rh(S $\left.\left.\mathrm{SNMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] \mathrm{BPh}_{4}($ page 146$)$ and once again cannot be explained in terms of a metal centred inversion, but rather by separate processes involving increases in the rates of rotation about the $\mathrm{C} \mathrm{Ce}_{\mathrm{e}} \mathrm{N}$ bonds of the $\mathrm{S}_{2} \mathrm{CNM} e_{2}$ ligands and about the Os-P bonds at higher temperatures.

The low temperature ${ }^{1} \mathrm{H} \mathrm{n}_{0} \mathrm{~m} \cdot \mathrm{r}$. spectrum of $\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}$ ($\mathrm{PNe}_{2} \mathrm{Ph}$) CO (XIII) consists of six doublets arising from the six inequivalent methyl groups in the molecule and indicative of cis stereochemistry (Figure 4.4(a), page 178). However, on warming, the two doublets arising from the methyl groups on the phosphine (c and c) become coincident, presumably because of fast rotation about the Os-P bond, but also; more surprisingly, two of the dithioacid doublets (b and b^{\prime}) move together until at ca. 283 K they are exactly coincident (Figure 4.4(b), page 178). The large doublet so formed broadens on further heating (Figure 4.4(c), page 178) which presumably indicates that the chemical shifts of these two doublets are no longer identical. ${ }^{31} \mathbf{p}$ decoupling studies indicate that these two doublets arise from two methyl groups attached to the same phosphorus

Fig. 4.4

Methyl region of ${ }^{1} \mathrm{H}$ n.m.r. spectrum of cis-Os (S $\left.\mathrm{PMe}_{2}\right)_{2}$ ($\mathrm{PM} \mathrm{P}_{2} \mathrm{Ph}$) CO(XIII)
in CDCl_{3} at different temperatures.
a) 233 K
b) 283 K
c) : 333 K
(for assignments of resonances see Scheme 4.2)
atom (presumably with one of the methyl groups syn to $C O$) and the only explanation for this behaviour appears to be that small structural changes occur on warming the compound and these give rise to differing shielding effects on the two methyl groups at diffcrent temperatures.

The presence of a triplet from the methyl groups of the phosphines and two doublets from the $S_{2}{ }^{P M e}{ }_{2}$ metiyl groups in the ${ }^{1} \mathrm{H}$ nom.r. spectrum of $\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{Me}_{2} \mathrm{Ph}\right)_{2} \mathrm{CO}(X V)$ is consistent with a structure containing trans phosphines, as shown in Scheme 4.2, provided that there is free rotation about the metal phosphorus
 Figure 2.17 , page 104), the ${ }^{1}{ }_{H}$ n.m.r. spectrum indicates that in this compound, rotation about the Ru-P bonds is slow at room temperature. Another important difference between these two compounds is that whereas at elevated temperatures $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe} \mathrm{Ph}_{2} \mathrm{Ph}_{2} \mathrm{CO}\right.$ readily loses $\mathrm{PM} e_{2} \mathrm{Ph}$ to give cis-Ru($\left.\mathrm{S}_{2} \mathrm{FMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right) \mathrm{CO},(\mathrm{XV})$ may be kept in solution at 323 K for several hours or may be recovered unchanged on recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane. This is presumably a reflection of the greater inertness of Os(II) than of $\mathrm{Ru}(I I)$.

Since the four-membered rings in cis-Ru(S $\left.S_{2} \mathrm{PEt}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ are not planar in the solid state (Appendix 2), it may be that this is also the case at low temperatures for $\mathrm{cis}^{-\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{PH}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right) \mathrm{CO} \text { in }}$ solution, and that on warming, fast 'inversion' of these rings occurs which fortuitously causes equal shielding effects of the two methyl groups on one S_{2} PMie $_{2}$ ligand at 283 K .

The other isomer of $\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{CO}(\mathrm{XVI})$ gives rise to seven doublets in the ${ }^{1} \mathrm{H}$ n.m.r. spectrum and apart from small changes in chemical shift, this spectrum is temperature invariant up to 323 K and again shows no detectable decomposition at this temperature. ${ }^{31}$ p decoupling studies indicate that the doublet at $\mathcal{T} 8.26$, which has twice the intensity of the other doublets is made up of two accidentally negenerate resonances from methyl groups on different phosphine ligands. Thus, all the methyl groups in this complex are inequivalent, and in view of the similarity of preparation of this compound and that of $\left.\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}{ }^{(\mathrm{PMe}}{ }_{2} \mathrm{Ph}\right)_{2} \mathrm{CO}$ (compound E, Figure 2.17, page 104) as well as the similarity in their spectroscopic properties, (XVI) is assigned the structure shown in Scheme 4.2.

Finally, ${ }^{31}{ }^{1}$ decoupling studies on the ${ }^{1_{H}} n_{0} m_{*} r$. spectrum of the brown oil (XIV) obtained from carbonylation of cis-Os($\left.\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ in the presence of sulphur (Figure 4.5(a) page 181) shows that it consists of mixture of (XIII), Me PhPS and a compound whose n.m.r. spectrum is shown in Figure 4.5(b). The best interpretation of this spectrum is that the compound contains one $\mathrm{PMe}_{2} \mathrm{Ph}$ ligand, in which the methyl groups are inequivalent and two $\mathrm{S}_{2} \mathrm{PMe}_{2}$ ligands in one of which the methyl groups are inequivalent whilst in the other they are equivalent. We assign this compound the structure shown in Scheme 4.2 because this fits the evidence and is the most likely dicarbonyl compound to be formed irom further carbonylation of cis-Os $\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe} \mathrm{P}_{2} \mathrm{Ph}\right) \mathrm{CO}(X I I I)$. It is also the only isomer with no plane of symmetry through the Os-P bond in which there is a methyl group syn to $\mathrm{FMe}_{2} \mathrm{Ph}$ on the bidentate $\mathrm{S}_{2} \mathrm{PMe}_{2}$ ligand, which is required to explain the large
b)

a) Methyi region of ${ }^{1} \mathrm{H}$ n.m.r. spectrum of a mixture of cis-Os $\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PNe}_{2} \mathrm{Ph}\right)_{2}(\mathrm{XIII})(\mathrm{a}-\mathrm{c})$, $\mathrm{PhMe} \mathrm{C}^{\mathrm{PS}(d)}$ and $\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)(\mathrm{CO})_{2}(\mathrm{XIV})(\mathrm{e}-\mathrm{g})$.
b) line spectrum of XIV (for assignments see Scheme 4.2).
shift to high field of one of these methyl groups (e^{\prime}). Since the osmium atom in this compound is a chiral centre, the two methyl groups of the unidentate $\mathrm{S}_{2} \mathrm{PMe}_{2}$ ligand would be expected to be inequivalent (as in (XVI)) but in this case it appears that the chemical shift difference is only very small.
d) ${ }^{31}{ }^{1}$ n.m. $_{0}$. snectra

The proton-ncise-decoupled ${ }^{31} \mathbf{p}$ n.n.or. spectra of
mer-Os(S-S)Cl(PMe ${ }_{2} \mathrm{Ph}_{3}\left(\mathrm{SmS}=\mathrm{S}_{2} \mathrm{CNMe}_{2}(\mathrm{II})(\mathrm{a})\right.$ and $\mathrm{S}_{2} \mathrm{COEt}(\mathrm{XVII})(b)$) are reproduced in Figure 4.6 (pages 183-185), along with that of mer $-\mathrm{RhCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(\mathrm{c})$. The difference hetween the essentially first order $A_{M} X_{2}$ spectrum of the rhodium complexes and those of the osmium complexes is striking but may easily be explained since the osmium spectra can be shown to be second order arising from ${A B_{2}}$ spin systems. From the spectra it is possible to calculate the positions of ν_{A} and ν_{B} as well as the coupling constant $J_{A B}{ }^{363}$ and these are included alongside each spectrum. The reason why the relative positions of \mathcal{V}_{A} and \mathcal{V}_{B} reverse from (II) to (XVII) is unclear but presumably reflects the sensitivity of ${ }^{\mathbf{3 1}} \mathbf{P}$ chemical shifts to small changes in environment.
5. Stereochemical pathway for conversion of mer-OsCl $3 \underbrace{}_{2} \mathrm{PMe}_{2} \frac{\mathrm{Ph})}{3}$ to ${ }^{c}{ }^{\text {cis-Os }(S-S)} \underbrace{}_{2} \underbrace{}_{2}$

Since the only compound obtainable from the reaction of
mer $\left.-\mathrm{OsCl}_{3} \mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ with $\mathrm{KS}_{2} \mathrm{COEt}$ is mer-Os(S 2 COEt$) \mathrm{Cl}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$, it is clear that this compound does not react with KS_{2} COEt and that the chloride ion in this complex is inert:. This indicates that the sulphur atom of the S_{2} COEt moiety has a low trans-effect and is not able to labilise the chloride ion trans to it to any large extent.

$$
\begin{aligned}
& \text { EtOC } P_{B} \\
& P_{B} \\
& V_{A}=-37.3 \text { p.p.m. } \\
& V_{B}=-38.8 \text { p.p.m. } \\
& J_{A B}=18.2 \mathrm{~Hz}
\end{aligned}
$$

${ }^{31} \mathrm{P}$ n.m.r. spectrum (AMX ${ }_{2}$ type) of mer $\mathrm{RhCl}_{3}\left(\mathrm{PNe}_{2} \mathrm{Ph}\right)_{3}$
Chemical shifts are in p.p.m. to high frequency of $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$

Although little information is available on the transeffects of sulphur containing ligands, work on the reactions of fac- $\mathrm{Cr}(\mathrm{S}-\mathrm{S})\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{NO}\left(\mathrm{S}-\mathrm{S}=\mathrm{S}_{2} \mathrm{CNR}_{2}, \mathrm{~S}_{2} \mathrm{COR} \text { and } \mathrm{S}_{2} \mathrm{PR}_{2}\right)^{146-155}$ (see page 19) with Lewis bases has shown that the trans-effects of these dithioacid licands are low but of comparable magnitude. Thus, since mer- $-0 \mathrm{~s}\left(\mathrm{~S}_{2} \mathrm{CNMe}_{2}\right) \mathrm{Cl}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ (II) reacts with (S-S ${ }^{1}$) to give cis-Os $\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)\left(\mathrm{S}-\mathrm{S}^{1}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\left(\mathrm{~S}-\mathrm{S}^{1}=\mathrm{S}_{2} \mathrm{CNMe}_{2}(\mathrm{I})\right.$ or $\left.S_{2} \operatorname{COR}(I I I)\right)$, the mechanism of these reactions cannot involve direct displacement of chloride ion by $\left(S-S^{1}\right)^{-}$. However, since fac-Os($\mathrm{S}_{2} \mathrm{CNMe}_{2}$) $\mathrm{Cl}_{1}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(\mathrm{IV})$ is also obtained from these reactions, it is probable that they proceed by an isomerisation of (II) to give (IV) followed by displacement of Cl^{-}by (S-S $\left.{ }^{1}\right)^{-}$since in the facial isomer the chloride ion is trans to the high trans-effect ligand, $\mathrm{PMe}_{2} \mathrm{Ph}$. The formation of fac-Os ($\mathrm{S}_{2} \mathrm{CNM}_{2}$) OEt ($\mathrm{PMe}_{2} \mathrm{Ph}_{3}$ is then explained as arising from interaction of (IV) with solvent ethanol and loss of HCl gas.

As has already been noted (page 163), the reaction of
 than does the reaction of (II) with $\mathrm{NaS}_{2} \mathrm{CNMe}_{2}$. This can only mean that another pathway which does not involve (II) as an internediate is operative in the formation of (I) from mer $^{-O s C l}{ }_{3}{ }^{\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}}$. This pathway probably involves ionic Os(III) intermediates with the reduction to Os(II) occurring as the last step (see Scheme 4.1).

Since mer-Os $\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right) \mathrm{Cl}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(\mathrm{XII})$ is only formed on prolonged standing oi mer-Os $\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right) \mathrm{Cl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(\mathrm{VIII})$ in nonpolar solvents and since none of (XII) but only a purple ionic 0 oil and mer-OsCl ${ }_{3}$ (PMe $_{2} \mathrm{Ph}_{3}$ are formed from (VIII) in polar
solvents, it seems likely that the formation of
cis-Os $\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}{ }^{\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}}$ from mer-0sC1${ }_{3} \mathrm{PME}_{2} \mathrm{Ph}_{3}$ in refluxing ethancl does not involve (XII) as an intermediate but rather goes by the pathway which involves $O s(I I I)$ cations ourlined above. Then, the purple ionic oil probably contains $\left[\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right) \mathrm{Cl}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]^{+}(\mathrm{XI})$ and the formation of mer-OsCl $_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3}\right.$ on allowing (VIII) to stand in polar or non-polar solvents is easily explained since the chloride ion released in the formation of (XI) from (VIII) might attack

It still remains to explain why neither of these pathways is open to the reaction of mer- $\mathrm{OsCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ with $\mathrm{KS}_{2} \mathrm{COEt}$ in boiling methanol. The latter is thought to be excluded because the strongly reducing nature of $\mathrm{S}_{2} \mathrm{COEt}$ causes reduction to $\mathrm{Os}(\mathrm{II})$ before $\left[\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{COEt}\right) \mathrm{Cl}_{1}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3}\right]^{+}\right.$can react with more \mathbf{S}_{2} COEt. Since it is well documented that the ease with which isomerisations of complexes occur is dependent upon the substituents in the molecule ${ }^{364}$, we propose that mer-Os ($\mathrm{S}_{2} \mathrm{COEt}$)C1 (PMe $\left.{ }_{2} \mathrm{Ph}\right)_{3}$ (XVII) isomerises less easily to its facial isomer than does (II) and that, in fact, harsher conditions than refluxing in ethanol are required to effect this isomerisation for (XVII) and thus to allow further reaction to occur. These results are summarised in Scheme 4.1.

Experimental

General experimental methods were as in Chapter 2, and magnetic moments were obtained in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 301 K from measurements of the chemical shift difference of the tetramethylsilane (T.M.S.) peak arising from a solution containing a known concentration of paramagnetic ion and that arising from an internal capillary containing the same concentration of T.M.S. in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ but no
paramagnetic ion. All solutions were degassed before use and reactions were carried out under a nitrogen atmosphere unless otherwise stated. mer-trichlorotris(dimethylphenylphosphine) osmium(III) -($\left.\mathrm{NH}_{4}\right)_{2} \mathrm{OsCl}_{6}$ (2g) and $\mathrm{PMe}_{2} \mathrm{Ph}(3 \mathrm{mls})$ were refluxed in 2 -methoxyethanol (50 mls) containing concentrated hydrochloric acid(5mls) for 16 hours. The resulting red solution was filtered hot to remove $\mathrm{NH}_{4} \mathrm{Cl}$ and allowed to crystallise. The red crystals were collected and washed with water, ethanol and n-pentane ($3.0 \mathrm{~g}, 93 \%$). mer-tribromotris(dimethylphenylphosphine)osmium(III) -mer- $\mathrm{OSCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(0.35 \mathrm{~g})$ and $\operatorname{LiBr}(2.0 \mathrm{~g})$ were refluxed in ethanol(20mls) for 36 hours and allowed to cool. The resulting purple needles were filtered off and washed with water, ethanol and n-pentane $(0.3 g, 72 \%)$. mer-dichloro(diphenylphosphin odithioato)tris(dimethylnhenylphosphine) osmium (II) (IX) - Solutions of mer-OsCl ${ }_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3}(\mathrm{O} .15 \mathrm{~g})\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{mls})$ and $\mathrm{NaS}_{2} \mathrm{PPh}_{2}(0.2 \mathrm{~g})$ in methanol (10mls) were mixed and after passing N_{2}, the purple solution was evaporated to half volume. The purple product was collected and washed with water, methanol and n-pentane ($0.1 \mathrm{~g}, 51 \%$) . mer-dichloro(dimethylphosphinodithioato)tris(dimethylphenylphosphine) osmium (III)(VIII) mer- OSCl_{3} (PMe $\left._{2} \mathrm{Ph}\right)_{3}(\mathrm{O} .3 \mathrm{~g})$ and $\mathrm{NaS}_{2} \mathrm{PMe}_{2}(0.3 \mathrm{~g})$ were shaken in methanol(25mis) for 90 mins. The resulting purple crystals were collected and washed with water, methanol and n-pentane (0.31g, 92\%). SJo: recrystallisation of (VIII) from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{n}$-pentane gave red crystals of mer- $\mathrm{OSCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3}{ }_{3}\right.$ mer-chloro(dimethyldithiocarbamato)tris(dimethylphenylphosphine)
osmium(II) (II). From mer-OsCl ${ }_{3}$ (PMe $\left._{2} \mathrm{Ph}\right)_{3}(\mathrm{O} .3 \mathrm{~g})$ and $\mathrm{NaS}_{2} \mathrm{CNMe}_{2}(0.25 \mathrm{~g})$
in 25 mls of methanol for 10 mins. as yellow crystals ($0.22 \mathrm{~g}, 69 \%$;
and mer-chloro(O-ethyldithiocarbonato)tris (dimethylphenylphosphine)
osmium (II) (XVII) from mer-OsCl ${ }_{3}$ (PMe $_{2} \mathrm{Ph}_{3}(0.15 \mathrm{~g})$ and $\mathrm{KS}_{2} \operatorname{COEt}(0.1 \mathrm{~g})$ in methanol(15mls) for 10 mins. and evaporation to near dryness, as orange crystals ($0.11 \mathrm{~g}, 70 \%$), were similarly prepared.
(XVII) was alsc prepared by refluxing mer-OsC1 $\mathcal{M}_{3}\left(\mathrm{PM} \mathrm{e}_{2} \mathrm{Ph}\right)_{3}(0.15 \mathrm{~g})$ wiih $\mathrm{KS}_{2} \operatorname{COEt}(0.1 \mathrm{~g})$ in ethanol (20 mls) for 60 mins , evaporating to dryness and recrystallising the orange nil from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ n-hexane (0.1g, 62\%).
mer-bromo(0-ethyldithiocarbonato)tris(dimethylnhenylphosphine)
osmium(II) (XVIII) mer-OsBr ${ }_{3}$ (PMe $\left._{2} \mathrm{Ph}\right)_{3}(0.1 \mathrm{~g})$ and $\mathrm{KS}_{2} \operatorname{COEt}(0.07 \mathrm{~g})$ were refluxed in ethanol (15 mls) for 60 mins . and the orange solution evaporated to dryness. The resulting orange oil could not be recrystallised. mer-chloro(dimethylphosphinodithioato)tris (dimethylphenylphosphine) osmium(II) (XII) mer-Os ($\mathrm{S}_{2} \mathrm{PMe}_{2}$) Cl_{2} (PMe $\left._{2} \mathrm{Ph}\right)_{3}$ (O .1 g) was dissolved in benzene (5 mls) and allowed to stand in air for 2 weeks. Addition of n-hexane to the solution precipitated a purple oil (XI) from which the brown solution was decanted and allowed to crystallise slowly. The complex precipitated in low yield as brown needles and after filtration the filtrate deposited red crystals of mer $-\mathrm{OsCl}_{3}\left(\mathrm{PM}_{2} \mathrm{e}_{2} \mathrm{Ph}\right)_{3}$. If the reaction is allowed to proceed for 4 weeks, no purple oil is formed but approximately equal mole ratios of (XII) and mer-OsCl ${ }_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$. The purple oil (XI) may also be prepared by allowing mer- $0 \mathrm{O}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right) \mathrm{Cl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ to stand in acetone in the presence of air for several days. (XI) and mer $-\mathrm{OsCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3}\right.$ are then the sole products.
trans dichloro(dimethylphosphinodithicato)his(dimethylphenylphosphine)
osmium(III) (X) was prepared by refluxing mer-0s $\left(S_{2} \mathrm{PMe}_{2}\right) \mathrm{Cl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(0.07 \mathrm{~g})$
in benzene (10 mls) for 30 mins . and evaporating to near dryness. The red needles were collected and washed with n-pentane $(0.0639$, 97\%).
cis-bis(dimethylphosphinodithioato)bis(dimethylphenylphosphine)
osmium (II) (VI) mer- $\mathrm{OsCl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(0.6 \mathrm{~g})$ and $\mathrm{NaS}_{2} \mathrm{PMe}_{2}(0.5 \mathrm{~g})$ were refluxed in ethanol (25mls) for 60 mins . The orange solution was coole with nitrogen bubbling through it and the resulting orange crystals were collected and washed with water, ethanol and n-pentane ($0.4 \mathrm{~g}, 66 \%$). On one occasion, the filtrate deposited a small quantity of yellow $\left[\mathrm{Os}_{2} \mathrm{Cl}_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{6}\right] \mathrm{Cl}$.

Similarly prepared were cis-bis(diphenylphosphinodithioato)bis(dimethylphenylphosphine) osmium (II) (VII) from mer-OsCl ${ }_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(0.15 g)$ and $\mathrm{NH}_{4} \mathrm{~S}_{2} \mathrm{PPh}_{2}(0.2 \mathrm{~g})$ as orange crystals ($0.1 \mathrm{~g}, 50 \%$) and cis-bis(dimethyldithiocarbamato)bis(dimethyl-
 $\mathrm{NaS}_{2} \mathrm{CNMe}_{2}(0.1 \mathrm{~g})$ in ethanol (10mls) for 90 mins, as yellow crystals ($0.08 \mathrm{~g}, 80 \%$). A thin layer chromatograph of the filtrate from (I) (toluene on alumina) showed 4 weak bands, one of which corresponded to (I).
cis-Os(S $\left.{ }_{2} \mathrm{CNMe}_{2}\right)_{2}\left(\mathrm{PHe}_{2} \mathrm{Ph}\right)_{2}$ (I) was also prepared by the reaction of mer-0s($\left.\mathrm{S}_{2} \mathrm{CNMe}_{2}\right) \mathrm{Cl}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(0.026 \mathrm{~g})$ with $\mathrm{NaS}_{2} \mathrm{CNMe}_{2}(0.02 \mathrm{~g})$ in refluxing ethanol (5 mls) for 90 mins. the yellow solid crystallised on cooling ($0.01 \mathrm{~g}, 37^{\prime} \%$). A thin layer chromatograph (toluene on alumina) of the resulting solution showed four bands of approximately equal intensity identical in r.f. values and colours to those
 Thus, the total yield if I is c.a. 50%.
cis-(dimethyldithiocarbamato) (O-ethyldithiocarbonato)bis(dimethylphenylphosphine) osmium (II) (III), fac-chloro(dimethyldithiocarbamato) tris(dimethylphenylnhosphine) osmium (II) (IV) and fac-ethoxy (dimethyldithiocarbanato)tris (dimethylnhenylohosphine) osmium (II) (V). mer $-0 s\left(\mathrm{~S}_{2} \mathrm{CNM}_{2}\right) \mathrm{Cl}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(0.147 \mathrm{~g})$ and $\mathrm{KS}_{2} \mathrm{COEt}(0.031 \mathrm{~g})$ were refluxed in 15 mls of ethanol for 90 mins . A thin layer chromatograph of the resulting orange solution (tolutne on alumina) revealed that it consisted of five compounds, four of which were identical to those produced in the reaction of mer-0sCl ${ }_{3}\left(\mathrm{PM}_{2} \mathrm{Ph}_{3}\right.$, with $\mathrm{NaS}_{2} \mathrm{CNMe}_{2}$, and the fifth, orange, bard was of higher r.f. value than the other four. After evaporation of the solution to dryness, the orange oil was dissolved in toluene and eluted from a dry alumina column with toluene. The five bands were washed off with ether and after evaporation to dryness, the complexes were recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ n-hexane. The products, in order of decreasing r.f. value were (III) (orange), (I) (yellow), (IV) (yellow) and (V) (yellow). The band of lowest r.f. value produced an orange oil whose identity is unknown. cis-bis(dimethylphosphinodithioato)carbon- (dimethylphenylphosphine)
osmium (II) (XIII):- cis-Os (S $\left.\mathrm{SMP}_{2}\right)_{2}$ (PMe $\left._{2} \mathrm{Ph}\right)_{2}(0.1 \mathrm{~g})$ and $S_{8}(0.01 g)$ were refluxed in ethanol (15mls), with $C O$ bubbling, for 30 mins. The yellow solution was cooled, filtered through celite and evaporated to dryness. The resulting yellow oil was recrysta? ised from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ n-hexane to give a brown oil which contains (XIV), (XIII) and Me ${ }_{2}$ PhPS (see text). The yellow supernatant liquid mas decanted and allowed to crystallise to give the product as yellow crystais ($0.04 \mathrm{fg}, 47 \%$).

bis (dimethylphosphinodithioato) carbonylbis (dimethylphenylphosphine)

osmium (II) (XV) \quad cis-Os $\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}(\mathrm{O} .1 \mathrm{~g})$ and 0.2 mls Ple ${ }_{2}$ Ph were carbonylated in refluxing ethanol (15 mls) for 30 mins . On cooling the resulting yellow solution gave yellow crystals of the procuct $(0.07 \mathrm{~g}, 67 \%)$.
bis(dimethylnhosnhinodithioato) carbonvlbis (dimethylphenylphosphine)
osmium (II) (XVI) cis-Os (S $\left.\mathrm{S}_{2} \mathrm{Pe}_{2}\right)_{2}\left(\mathrm{PM} \mathrm{e}_{2} \mathrm{Ph}\right)_{2}(\mathrm{C} .05 \mathrm{~g})$ was
carbonylated in 1:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ n-hexane at room temperature for two
minutes. The solvent was evaporated by passing N_{2} and the yellow solid collected in quantitative yeild.

Analytical data for some osmium dithioacid complexes

Complex
$\operatorname{mer}-\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{FMe}_{2}\right) \mathrm{Cl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(\mathrm{VIII})$
$\operatorname{mer-Os}\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right) \mathrm{Cl}_{2}$ (PMe $\left._{2} \mathrm{Ph}\right)_{3}(\mathrm{IX})$
trans-Os $\left.\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right) \mathrm{Cl}_{2} \mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}(\mathrm{X})$
mer- $-\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right) \mathrm{Cl}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(\mathrm{XII})$
mer-Os ($\mathrm{S}_{2} \mathrm{CNMe} \mathrm{Cl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ (II)
\left.${\mathrm{fac}-\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{CMM}\right.}_{2}\right) \mathrm{Cl}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ (IV)
fac-Os $\left(\mathrm{S}_{2} \mathrm{CMM} \mathrm{C}_{2}\right) \mathrm{OEt}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(\mathrm{~V})$
$\underline{\operatorname{mer}-O s\left(\mathrm{~S}_{2} \mathrm{COEt}\right) \mathrm{Cl}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(\mathrm{XVII})}$
cis-Os(S $\left.\mathrm{SMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Fh}\right)_{2}(\mathrm{VI})$
$\underline{\text { cis-Os }\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}(\mathrm{VII})}$
cis-Os($\left.\mathrm{S}_{2} \mathrm{CMMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}(\mathrm{I})$
cis-Os ($\mathrm{S}_{2} \mathrm{CMMe}_{2}$)($\left.\mathrm{S}_{2} \mathrm{COEt}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ (III)
cis-Os $\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PNe}_{2} \mathrm{Ph}\right) \mathrm{CO}(\mathrm{XIII})$
$\mathrm{Os}^{\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{CO}(\mathrm{XV})}$

Colour	M.p. $\left({ }^{\circ} \mathrm{C}\right)$	C	H	N	C	H	N
purple	$140-142$	39.0	4.9	-	39.8	4.9	-
purple	$104-105$	46.7	4.7	-	46.6	4.6	-
red	$207-210^{\mathrm{d}}$	32.6	4.2	-	32.6	4.3	-
brown	$198-200$	40.8	5.10	-	39.9	4.7	-
yellow	$140-150^{\mathrm{d}}$	42.7	5.1	1.8	42.6	5.3	1.7
yellow	$172-14^{\mathrm{d}}$	42.7	5.1	1.8	42.4	5.2	1.9
yellow	$206-210^{\mathrm{d}}$	45.3	5.7	1.8	41.5	5.2	1.7
orange	$123-125$	42.6	5.0	-	42.5	5.2	-
orange	$189-190^{\mathrm{d}}$	33.5	4.8	-	33.5	4.9	-
orange	238^{d}	49.7	4.4	-	49.5	4.5	-
yellow	$172-174$	37.4	4.8	4.0	37.5	4.9	4.1
orange	$84-86$	37.3	4.7	2.0	37.1	4.6	1.8
yellow	$120-122$	25.7	3.8	-	25.8	3.8	-
yellow	$155-158^{\mathrm{d}}$	33.9	4.6	-	34.0	4.7	-

Meff (B.M.)

1.82
1.81
1.97

Comnlex
 ${\mathrm{fac}-\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right) \mathrm{OEt}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}(\mathrm{~V})}^{(}$ mer-Os $\left(\mathrm{S}_{2} \mathrm{COEt}\right) \mathrm{Cl}\left(\mathrm{FMe}_{2} \mathrm{Ph}\right)_{3}(\mathrm{XVII})$ cis-Os $\left.\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}(\mathrm{VI})$
cis-Os $\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}(\mathrm{VII})$
cis-Os $^{\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}(\mathrm{I})}$
 $\underline{\mathrm{cis}-\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right) \mathrm{CO}(\mathrm{XIII})}$
$\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)(\mathrm{CO})_{2}(\mathrm{XIV})$
$\mathrm{Os}\left(\mathrm{S}_{2} \mathrm{FMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{CO}(\mathrm{XV})$
$\mathrm{Os}_{2}\left(\mathrm{~S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{CO}(\mathrm{XVI})$
$1515(\mathrm{~m})^{c} \quad 1040(\mathrm{vs})^{\mathrm{d}}$
$1250(v s)^{e} 350(w)$

Dithioacid vibrations \quad VM-Cl.
$350(\mathrm{~m}), 312(\mathrm{~s}), 270(\mathrm{~m})$
600 (vs) $^{\text {a }} \therefore \quad \because 350(w), 310(s)$
$645(\mathrm{~s})^{\mathrm{a}}, 540(\mathrm{~s})^{\mathrm{a}} \quad 350(\mathrm{w}), 318(\mathrm{~m})$
$582(\mathrm{~m})^{\mathrm{b}} \quad \because \quad 300(\mathrm{~s}, \mathrm{br})$
$580(\mathrm{~m})^{\mathrm{b}} \quad \because 340(\mathrm{w})$
$1510(\mathrm{~m})^{c} \quad 348(\mathrm{w})$
$1505(\mathrm{~m})^{\mathrm{c}} \quad 330(\mathrm{vw})$
Others

	$350(\mathrm{~m}), 312(\mathrm{~s}), 270(\mathrm{~m})$
$600(\mathrm{vs})^{\mathrm{a}}$	$350(\mathrm{w}), 310(\mathrm{~s})$
$645(\mathrm{~s})^{\mathrm{a}}, 540(\mathrm{~s})^{\mathrm{a}}$	$350(\mathrm{w}), 318(\mathrm{~m})$
$582(\mathrm{~m})^{\mathrm{b}}$	$300(\mathrm{~s}, \mathrm{br})$
$580(\mathrm{~m})^{\mathrm{b}}$	$340(\mathrm{w})$
$1510(\mathrm{~m})^{c}$	
$1505(\mathrm{~m})^{c}$	

580(s) ${ }^{\text {b }}$	-	1908(vs) ${ }^{\text {f }}$
$600(s)^{2,9}$	-	2010(s) ${ }^{\text {f }} 1550(s)^{\text {f }}$
602(s) , $570(\mathrm{~m})^{\text {b }}$	-	1923(vs) ${ }^{\text {f }}$
602(s) ${ }^{\text {a }} 575(\mathrm{~m})^{\text {b }}$	-	1942(vs) ${ }^{\mathbf{f}} 1923$ (vs) ${ }^{\text {f }}$
		1941(vs) ${ }^{\text {fmh }}$

a) Coupled $\nu P=S$ characteristic of a unidentate $S_{2} P R_{2}$ group 15,16.
b) Coupled $\nu P=S$ characteristic of a bidentate $S_{2} P R_{2}$ groun ${ }^{15,16}$.
c) $\nu C \cdot N$ characteristic of bidentate $S_{2} \mathrm{CNMe}_{2}$ groun ${ }^{14,233}$.
d) $V \mathrm{C}-\mathrm{O}$ of OEt group 362
e) $\mathrm{VC}-0$ of $\mathrm{S}_{2} \operatorname{coEt}$ group ${ }^{103}$.
f) $V \mathrm{C}=0$ of CO group.
g) Spectrun is of a mixture of (XIII) and (XIV) so lower $P=S$ is obscured.
h) In CDCl_{3} solution.

TABLE 4.3

Main osmium containing fracments observed in the mass spectrum of ${\underline{\text { mer-Os }}\left(\mathrm{S}_{2} \mathrm{CNHe}_{2}\right) \mathrm{Cl}\left(\mathrm{PM} \mathrm{e}_{2} \mathrm{Ph}\right)}_{3}$ (II) at $200^{\circ} \mathrm{C}$ m / e for $0 \mathrm{~s}^{192}$ peak $^{\mathrm{a}} \quad$ Probable ion

795
761
708
658
623
570
520
485
458^{b}
432
354
$328^{\text {b }}$

$$
\begin{aligned}
& {\left[\mathrm{Os}\left(\mathrm{~S}_{2} \mathrm{CNMe}_{2}\right) \mathrm{Cl}_{2}\left(\mathrm{PNe}_{2} \mathrm{Ph}\right)_{3}\right]^{+}} \\
& {\left[\mathrm{Os}\left(\mathrm{~S}_{2} \mathrm{CNMe} \mathrm{e}_{2}\right) \mathrm{Cl}\left(\mathrm{PMe}_{2} \mathrm{Ph}_{3}\right]^{+}\right.} \\
& {\left[\mathrm{Os}\left(\mathrm{~S}_{2} \mathrm{CMMe} \mathrm{C}_{2}\right)_{2}\left(\mathrm{PMe}{ }_{2} \mathrm{Ph}\right)_{2}\right]^{+}} \\
& {\left[\mathrm{Os}\left(\mathrm{~S}_{2} \mathrm{CMMe}_{2}\right) \mathrm{Cl}_{2}\left(\mathrm{PMS}_{2} \mathrm{Ph}\right)_{2}\right]^{+}} \\
& {\left[\mathrm{Os}\left(\mathrm{~S}_{2} \mathrm{CMMe}_{2}\right) \mathrm{Cl}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]^{+}} \\
& {\left[\mathrm{Os}\left(\mathrm{~S}_{2} \mathrm{CMMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)\right]^{+}} \\
& {\left[\mathrm{Os}\left(\mathrm{~S}_{2} \mathrm{CMM} \mathrm{e}_{2}\right) \mathrm{Cl}_{2}\left(\mathrm{PM} \mathrm{e}_{2} \mathrm{Ph}\right)\right]^{+}} \\
& {\left[\mathrm{Os}\left(\mathrm{~S}_{2} \mathrm{CNM} \mathrm{e}_{2} \mathrm{Cl}\left(\mathrm{PMe} \mathrm{P}_{2} \mathrm{Ph}\right)\right]^{+}\right.} \\
& 708 \longrightarrow 570 \\
& {\left[\mathrm{Os}\left(\mathrm{~S}_{2} \mathrm{CNM} \mathrm{e}_{2}\right)_{2}\right]^{+}} \\
& {\left[\mathrm{Os}\left(\mathrm{~S}_{2} \mathrm{CMMe}_{2}\right)_{2}{ }^{\left(\mathrm{PM} \mathrm{e}_{2} \mathrm{Ph}\right)_{2}}\right]^{++}} \\
& 570 \longrightarrow 432
\end{aligned}
$$

a - all peaks show the characteristic osmium $\overline{\text { ans }}$ otopic pattern.
b - metastable ions (broad signals).

$$
\begin{aligned}
& \text { Dithioacid ligand } \\
& 8.47^{\mathrm{d}}(14.5)^{\mathrm{a}} \\
& 6.92^{c} \\
& 7.10^{s} \\
& 7.24^{\text {s }} \\
& 7.21^{s} \\
& 5.70^{q}(7.0)^{f} 8.57^{t}(7.0)^{f} \\
& 5.80^{\mathrm{q}}(7.0)^{\mathrm{f}} 8.61^{\mathrm{f}}(7.0)^{\mathrm{f}} \\
& 7.90^{\mathrm{d}}(12.5)^{\mathrm{a}} 8.32^{\mathrm{d}}(12.5)^{a} \\
& 8.11^{\text {c }} \\
& 6.75^{\mathrm{s}} \quad 6.82^{\mathrm{s}} \\
& 6.84^{\text {s. }}
\end{aligned}
$$

$$
\begin{aligned}
& 7.91^{d}(13.0)^{a} 8.11^{d}(12.5)^{a} 8.56^{\text {d }}(12.5)^{a} \\
& 7.91^{d}(11.0)^{a} 7.93^{d}(12.0)^{n} 8.79^{d}(12.5)^{a} \\
& 8.09^{\mathrm{d}}(12.0)^{\mathrm{a}} 9.00^{\mathrm{d}(12.0)^{a}}
\end{aligned}
$$

τ value
Other
$\frac{\text { Phosphine Me groups }}{8.00^{t}(8.0)_{8.18}^{B_{8}}(8.5)_{8.64}^{(10.5)^{a}}}$
Phenyl resonances
$8.20^{\mathrm{s}} 8.34^{\mathrm{s}} 8.66^{\mathrm{d}}(7.0)^{\mathrm{a}}$
2.1-3.0
2.4-3.4

8.09f(7.0)8.04 (7.0)8.65 (8.0) ${ }^{\text {a }}$ $8.08^{e}(8.0)^{\mathrm{b}} 8.68^{\mathrm{d}}(8.0)^{\mathrm{a}}$
$8.1^{\text {t }}(6.5)^{\text {b }} 8.35^{t}(6.5)_{8.59^{d}(8.5)^{a}}$
$8.15^{5}(6.5)_{8} .25^{t}(6.5) 8.50^{i}(8.0)^{a}$
$8.29^{e}(8.5)^{b} 8.36^{e}(8.5)^{b} \quad 2.7-3.3$
$8.33^{e}(8.5)^{b}$
$8.43^{e}(12.5)^{b} \quad 1.9-3.3$
$8.38^{e}(8.0)^{\mathrm{b}} 8.46^{\mathrm{e}}(8.0)^{\mathrm{b}} \quad 2.7-3.1$
$8.40^{e}(8.5)^{b} 8.45^{e}(8.5)^{b} \quad 2.7-3.1$
$7.96^{d}(9.5)^{a} 7.98^{d}(9.5)^{\mathrm{a}} \quad 2.3-2.7$
$8.03^{d}(9.5)^{a}$
$7.91^{d}(11.0)^{\mathrm{a}} 7.98^{\mathrm{d}}(10.0)^{\mathrm{a}}$
2.3-2.7
1.9-2.1
2.2-2.8
'8.2.2f 9.5 I8.26 $6^{d}(9.5)^{f 8} .384(9.5)^{a}$
s-singlet
d - dov:ilet
t - triplet
q - quartet
$\mathrm{P}=\mathrm{PMR}_{2} \mathrm{Ph}$
A. $\quad \begin{array}{r}S-S=S_{2} P \mathrm{Se}_{2}(V I I I) \\ \mathrm{S}_{2} \mathrm{PPh}_{2}(X)\end{array}$
C $\quad \mathrm{S}-\mathrm{S}=\mathrm{SPMR}_{2}($

Proposed mechanism of carbonylation of ciscOs ($\left.\mathrm{S}_{2} \mathrm{FMe}_{2}\right)_{2}{\left.\text { (} \mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \text { (VI). } . ~ . ~}_{\text {(VI }}$

Appendix 1

Calculation of Activation Parameters for a Two Site Exchange

It can be shown ${ }^{334}$ that when magnetic nuclei in two different magnetic environments exchange with-one another, changes in the n.m.r. spectra arising from those nuclei occur. Under conditions of slow exchange, two sharp signals are seen whereas, $1 i$ the exchange is fast, a single sharp resonance midway between the positions of the slow exchange signals results. Between these two limits, broadened spectra are observed whose shape may be predicted using the Bloch equations 334 , as modified by Gutowsky and Holm ${ }^{365}$. The shape of the spectra may be shown to be dependent not only upon the rate of exchang $=$ of the nuclei between environments, but also on the separation of the resonances; the spin-spin relaxation time for the molecule, (wich is related to the natural line width of the signals) and the coupling constant if each resonance is a multiplet, all under slow exchange conditions ${ }^{334}$.

Nakagawa ${ }^{345}$ has used these modified Bloch equations to write a progism for calculating the line shape at a given lifetime for exchange between two nuclei (or sets of equivalent nuclei), provided t^{2} at the exchanging nuclei are not coupled to other magnetic nuclei in the molecule, and this has been modified by D. F. Steel e to allow for such coupling ${ }^{366}$.

Thus, if the relative populations of the two sites between which exchange is occurring, the natural line width (at half peak height) of the resonances, the frequency separation of the signals of the exchanging nuclei and the coupling constant if they are
multiplets are supplied to the computer, the print-out consists of different simulated spectra arising from the different lifetimes fed into the computer.

In the general situation where exchange between two sites A and B of different populations, is occurring.

$$
A \rightleftharpoons B
$$

we define

$$
\begin{aligned}
& \boldsymbol{P}_{A}=\text { population of site } A \\
& \boldsymbol{P}_{B}=\text { population of site } B \\
& \tau_{A}=\text { lifetime in } A \\
& \tau_{B}=\text { lifetime in } B
\end{aligned}
$$

Then the rate constants for the forward (k_{A}) and back (k_{B}) reactions are $\frac{1}{\tau_{A}}$ and $\frac{1}{\tau_{B}}$ respectively.

The equilibrium constant, $K=\frac{[B]}{[A]}=\frac{P_{B}}{P_{A}}=\frac{k_{A}}{k_{B}}=\frac{\tau_{B}}{\tau_{A}}$

$$
\text { i.e. } P_{B} \tau_{A}=P_{A} \tau_{B}
$$

The computer program is arranged so that the input lifetime is τ_{A} and the input population is P_{A}. Then, since for equal populations of sites A and B,

$$
\tau_{A}=\tau_{B}
$$

the rates of the forward and back reaction are equal so that the rate of exchange (k_{r}) may be found directly from the relationstip

$$
\frac{1}{\tau_{A}}=\frac{1}{\tau_{B}}=k_{A}=k_{B}=k_{r}
$$

Thus, by comparing computed spectra with spectra obtained experimentally at different temperatures (T), the rates of exchange ($\mathbf{k}_{\mathbf{r}}$) at these temperatures may be found.

Then, using the Arrhenius equation ${ }^{341}$

$$
\operatorname{lnk}_{r}=-\frac{E_{A}}{R T}+\text { const }
$$

the activation energy, E_{A}, may be obtained from the slope of a graph of $\ln k_{r}$ against $\frac{1}{T}$ by multiplying by -R. (The slope and intercept of the graph are obtained by a least-squares method and the errors in these parameters are used to calculate errors in activation parameters.

$$
\begin{aligned}
& \Delta H_{298}^{\neq} \text {may be obtained from } E_{A} \text { using the equation } \\
& \Delta H_{298}^{\ddagger}=E_{A}-R \times 298 . \\
& \text { Also, since } G=-R T \ln \left(K^{\ddagger}\right) \\
& \text { and } K^{\neq}=\frac{\mathbf{r h}}{k T} \quad \text { where } \quad \begin{aligned}
k & =\text { Boltzmann's constant } \\
\mathbf{h} & =\text { Planck's constant } \\
T & =\text { Temperature }
\end{aligned}
\end{aligned}
$$

$$
\Delta G^{\neq}=R T \cdot \ln \cdot \frac{k_{r} h}{k T}
$$

Thus ΔG_{298}^{\neq}may be calculated
and $\Delta \mathrm{S}_{298}^{\ddagger}$ follows from the relationship

$$
\Delta G_{298}^{\neq}=\Delta H_{298}^{\ddagger}-T \Delta S_{298}^{\ddagger}
$$

Appendix 2

The Crystal Structure of cis-Ru(S $\left.\mathrm{S}_{2} \mathrm{PEt}_{2}\right)_{2}$ (PM $_{2} \mathrm{Ph}_{2} \mathbf{P}_{2}$
The crystal structure of cis-Ru($\left.\mathrm{S}_{2} \mathrm{PEt}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ has been detérmined by Dr. J.D. Owen. Table A2 lists some interatomic distances within the molecule and Figure A2 shows the molecule viewed down its approximate two-fold axis, which bisects the P-Ru-P angle.

Various features of the structure should be noted since they are relevant to the chemistry of this and similar molecules (see Chapters 2-4). Thus, the Ru-S bonds trans to $\mathrm{PMe}_{2} \mathrm{Ph}$ have a mean distance of $2.584 \AA^{\circ}$ whereas those trans to a sulphur atom average 2.428 . This large difference is explained by the higher trans-influence of $\mathrm{PMe}_{2} \mathrm{Ph}$ than of the $\mathrm{S}_{2} \mathrm{PEt} \mathrm{P}_{2}$ ligand and confirms that, at least in the solid state, the Ru-S bonds trans to $\mathrm{PMe}_{2} \mathrm{Ph}$ are the weakest in the molecule. The comparitively short Ru-P bonds ($2.257 \AA$, c.f. the range of 2.2-2.4 \AA found for $\mathrm{Ru}(I I)$ complexes $288,327,367-369$) again reflect the low trans-infiuence of the $S_{2} \mathrm{PEt}_{2}$ group. The M-S-P-S-M rings are found to be non-coplanar, and this is thought to be due to steric repulsions of the ethyl groups away from the phosphine ligand. Finally, although the individual molecules do not possess a centre of symmetry, the unit cell is found to be centro-symmetric and must, therefore, contain a racemic mixture of the two optical isomers of cis-Ru($\left.\mathrm{S}_{2} \mathrm{PEt}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$. This indicates that both isomers were present in the solution from which the compound was crystallised.

Fig. A2
1月

Structure of cis-Ru($\left.\mathrm{S}_{2} \mathrm{PEt}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ viewed down the approximate two-fold axis.

Table A2

Erratum

The compound formulated as $\mathrm{K}\left[\mathrm{RhCl}_{2}\left(\mathrm{~S}_{2} \mathrm{CO}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ (see Chapter 3) has been shown by X-ray crystallography 370 to be $\mathrm{X}\left[\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{CO}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] \cdot \quad 3 \mathrm{H}_{2} \mathrm{O}$ with the anion having the trans configuration. Our assigment of the structure of this compound was based on analytical figures for Carbon and hydrogen which are close for each formulation. Our failure to detect water in the ${ }^{\mathbf{i}_{H}}$ nom.r. spectrum arises from the fact that the spectrum was run in $\left(\mathrm{CD}_{3}\right){ }_{2} \mathrm{CO}$ which already contains some HDO thus masking the water of crystallisation of the molecule.

We appreciated that the analytical and spectroscopic properties could equally well be explained by either formulation but opted for the chloro containing species since chlorine was detected gralitatively in the X-ray fluorescence spectrum of the sample. Finally, the assignnent of the peak at $320 \mathrm{~cm}^{-1}$ in the i.r. spectrun of the complex to $\mathrm{Rh}-\mathrm{Cl}$ shows the great care that must be taken in interpreting the far infra-red spectra. of complex molecules.

The complex is presumably formed by attack of excess $\mathrm{KS}_{2} \mathrm{COEt}$ on trans $-\mathrm{Rh}\left(\mathrm{S}_{2} \mathrm{CO}\right)\left(\mathrm{S}_{2} \mathrm{COEt}\right)(\mathrm{PMe} 2 \mathrm{Ph})_{2}$.

REFERENCES

1. G. CONTRERAS, R. SCFMIDT; J.Inorg. Nucl. Chem. 1970, 32, 127
2. T.R. REDDY, R. SRINIVASAN; J.Chem. Phys. 1965, 43, 1404
3. P.M. SCLOZHENKIN, N.I. KOPITSAYA; Zh.Struct.Khim. 1967, 8, 534
(Chem. Abstr. 1967, 67, 112697x)
4. J.P. FACKLER, D.G. HOLAN; Inorg. Nucl.Chem.Lett. 1966, 2,251
5. W. KUChen, A. Judat; Chem. Ber. 1967, 100, 991
6. R.G. CAVELL, E.D. DAY, W. BYERS, P.M. WATKINS; Inorg. Chem. 1972, 11, 1759
7. J. ChATT, L.A. DUNCANSON, L.M. VENANZI; Nature 1956, 177, 1042
8. J. CHATT, L.A. DUNCANSON, L.M. VENANZI; Suomen Kimistilehti 1956,

298, 75 (Chem.Abstr. 1957, 51, 5559d)
9. A.T. PILIPENKO, N.V. MEL'NIKOV; Zh.Neorg. Khim. 1970, 15, 1186
10. S. MERLINO; Acta Crystallogr. 1969, B25, 2409
11. S. MERLINO; Acta Crystallogr. 1968, B24, 1441
12. J.N. SMITH, T.N. BROWN; Inorg. Nucl. Chem. Lett. 1970, 6, 441
13. H.C. BRINKHOFF, A.M. GROTEUS; Recl.Trav.Chim. Pays - Bas 1971, 90, 252
14. D.C. BRADLEY, M.H. GITLITZ; J.Chem. Soc (A) 1969, 1152
15. J.M.C. ALISON, T.A. STEPHENSON, R.O. GOULD; J.Chem.Soc.(A) 1971, 3690
16. D.F. STEELE, T.A. STEPHENSON; J.Chem. Soc. Dalton Trans 1973, 2124
17. G. St.NIKOLOV; Inorg. Nucl. Chem. Lett. 1971, I, 1213
18. J.P. FACKLER, W.C. SEIDEL, J.A. FETCHIN; J.Amer.Chem.Soc. 1968; 90, 2707
19. J.M.C. ALISON, T.A. STEPHENSON; J.Chem. Soc. Dalton Trans 1973, 254
20. L. RICARD, J. ESTIENNE, R. WEISS; J.Chem. Soc. Chem. Commun. 1972́, 906
21. L. RICARD, J. ESTIENNE, R. WEISS; Inorg. Chem. 1973, 12, 2182
22. D.F. STEELE, T.A. STEPHENSON; Inorg. Nucl. Chem. Lett. 1973, 2, 777
23. N. TAMMINEN, E. HJELT; Suomen Kimistilehti 1950, 23B, 39
(Chem. Abstr. 1951, 45, 2355b)
24. A. FREDGA; Recl. Trav. Chim. Pays-Bas 1950, 69, 416
25. I.S. SAMSONOVA, L.G. IL'CHENKO, T.L. ROD'KINA; lzv.Akad.Nauk Kaz, SSR, Ser. Khim. 1971,21,61 (Chem.Abstr. 1971, 75, 147265x)

26a. W. KUCHEN, H. MAYATAPEK; Chem. Ber. 1968, 101, 3454
b. R.N. MUKHER JEE, V.V. KRISHNA RAO, J. GUPTA; Indian J.Chem. 1966, 4, 209 (Chem. Abstr. 1966,65, 8315c)
27. F.N. TEBBE, E.L. MUETTERTIES; Inorg. Chem 1970, 2, 629
28. S. AKERSTROM; Arkiv. Kemi. 1959, 14, 387
29. C. KOWALA, J.M. SWAN; Aust. J. Chem. 1966, 19, 999
30. V.I. ZELENOV, E.V. YAVORSKAYA; Tr.,Tsent. Nauch.-Issled. Gornorazved Inst. 1969, 82, 22 (Chem.Abstr. 1970, 73, 68815g)
31. R.N. MUKHERJEE, A.Y. SONSALE, J. GUPTA; Indian J.Chem. 1966; 4, 500 (Chem. Abs, 1967, 66, 81972f)
32. K. LESZ, T. LIPIEC; Chem. Anal. 1966, 11, 523
33. T. TAKAGUCHI, M. ABE, K. KUROSAKI; E. ASADA, M. NAKAGOME;

Kcgyo Kagaka Zasshi 1967, 70, 1182 (Chem.Abstr. 1968,68,22046a)
34. R. HESSE; Arkiv. Kemi. 1963, 20, 481
35. R. HESSE, L. NILSON; Acta. Chem. Scand. 1969, 23, 825
36. R. HESSE, P. JENNISCHE; Acta. Chem. Scand. 1972, 26, 3855
37. S. AKERSTRÖM; Arkiv. Kemi. 1959, 14, 403
38. T. V̊ANNGA!PD, S. AKERSTRÖM; Nature 1959, 184, 183
39. I. OJIMA, T. ONISHI, T. IWAMOTO, N. INAMOTO, K. TANARU; Inorg

Nuc1. Chem. Lett. $1970,6,65$
40. I.N. PLASKIN, N.A. SU̇VCROVSKAYA, V.V. SHIKOVA; Zhur. Priklad Khim. 1959, 32, 1876. (Chem. Abstr. 1959, 53, 21335f)
41. L. Malatesta; Gazz. Chim.It. 1947, 77, 509
42. J.R. WASSON; Inorg. Chem. 1971, 10, 1531
43. A. PIGNOLEDI; Atti. Soc. Nat. Mat. Modena. 1961, 92, 134
(Chem. Abstr. 1965, 63, 6377h)
44. J.F. VILLA, D.A. CHARFIELD, M.M. BURSEY; W.E. HATFIELD; Inorg.
45. L. Malatesta, A.A. MELLA; Gazz. Chim. It. 1937, 67, 738
46. E.A. SHUGAM, L.M. SHKOL'NIKOVA; Kristallografiya 1958, 3, 749
(Chem. Abstr. 1959, 53; 749)
47. G. PEYRONEL, A. PIGNOLEDI; L.ANTOLINI; Acta. Crystallogr. 1972, B28, 3596
48. M. BONAMICO, G. DESSY, A. MUGNOLI, A. VACIAGO , L. ZAMBONELLI;

Acta Cr;3tallogr 1965, 19, 886
49. K.T. McGREGOR, D.J. HODGSON, W.E. HATFIELD; Inorg. Chem. 1973, 12; 731

SO. J.F. VILLA, W.E. HATFIELD; Inorg. Chim. Acta. 1971, 5, 145
51. J.F. VILLA, W.E. HATFIEID; Inorg. Chem. 1971, 10, 2.038
52. J.G.M. VAN RENS, E. VAN DER DRIFT, E. De BOER; Chem. Phys. Lett. 1972, 14, 113
53. J.M. MARTIN. P.W.G. NEMMAN, B.W. ROBIMSON, A.H. WHITE;
J. Chem. Soc. Dalton Prans. 1972, 2233
54. F.M. TULYUPA, Yu. I. USATENKO, Z.F. GARUS, L.M. TKACHEVA; IZV. Siß. Otd. Akad. Nauk SSSR ; Ser, Khim. Nauk 1970, $\underline{4}, 110$ (Chem. Abstr. 1971, 74, 804 13c)
55. Z.F. GARUS, F.M. TULYUPA, Yu. I. USATENKO; Ihim. Technol. Respub. Mezhved Nauch.-Tekh.S.B. 1969,15,106 (Chem. Abstr. 1971, 74, 146982w)
56. V.V. KRISHNA RAO; A. MUELLER; Z.Chem. 1970, 10, 197
(Chem. Abstr. 1971, 73, 41315g)
57. P.T. BEURSKENS, H.J.A. BLAAUW, J.A. CRAS, J.J. STEGGERDA; Inorg. Chem. 1968, I, 805
58. P.T. U.URSKENS, J.A. CRAS, J.G.M. Van Der LINDEN; Inorg. Chem. 1970, 9. 475
59. J.H. NOORDIK; Cryst. Struct. Commun. 1973, 2, 81
60. J.D. OWEN, D.F. STEELE; Unpublished Work.
61. J.G.M. Van Der LINDEN; Recl. Trav. Chim. Pays-Bas. 1971, 90, 1027
62. R.M. GOLDING, C.M. HARRIS, K.J. JESSOP, W.C. TENNANT; Aust. J. Chem. 1972, 25, 2567
63. J.C. WIJNHOVEN, Th. E.M. Van Den HARK, P.T. BEURSKENS; J. Cryst. Mol. Struct. 1972, 2, 189
64. J.A. CRAS. J. WILLEMSE, A.I. GAL, B.G.M.C. HUMMELINK-PETERS;

Recl. Trav. Chim. Pays-Bas 1973, 92, 641
65. P.H. RIEGER, B.J. CORDEN; Innrg. Cher. 1971, 10, 263
66. J.B. FARMER, F.G. HERRING, R.L. TAPPING; 'Can.J.Chem. 1973, 51, 1530
67. G. CAUQUIS, D. LECHENAL; J. Electroanal. Cher. Interfacial Electro

Chem. 1973, 46,41 (Chem. Abstr. 1973, 79, 108681t)
68. A.A. SHKLYAEV, V.F. ANURIENKO; Zh. Struct. Khim. 1971, 12, 601
(Chem. Abstr. 1971, 75, 146124p)
69. V.V. SHUKOV, I.N. MAROV, O.M. PETRUKHIN, A.N. ERMAKOV; Zh. Neorg. Khim. 1973, 18, 2863
70. C. KOWALA, J.M. SWAN; Aust. J. Chem. 1966, 19, 555
71. E.L. MUETTERTIES, C.W. AleGRANTI; J. Amer.Chem.Soc. 1970, 92, 4114

72, E.L. MUETTERTIES, C.W. ALEGRANRI; J. Amer.Chem. Soc. 1972, 94, 6386
73. H.J.A. BLAAUW, R.J.F. NIVARD, G.J.M. Van Der KERK; J. Organomet.

Chem. 1964, 2, 236
74. Y. NIGO, I. MASUDA, K. SHINRA; J. Cbem. Soc. (D) 1970, 476
75. P.T. BEURSKENS, J.A. CRAS, J.J. STEGGERDA; Inorg. Chem. 1968, 7, 810
76. H.C. BRIMKHOFF, J.A. CRAS, J.J. STEGGERDA, J. WILLEMSE; Rec1.

Trav. Chim. Pays-Bas 1969, 88, 633
77. N.D. IORENNOV; Teor. Eksp. Khim. 1973, 2, 706 (Chem.Abstr. 1974, 80,41529z)
78. L.A. BYLINSKAYA, I.V. OVCHINNIKOV; Zh. Neorg. Khim. 1972, 17, 3237
79. B.S. PRABhananda, S.p. PaI, B. VENKATARAMAN; Proc.Chem. Symp. 1st 23-26, 1969, 1, 108 (Chem. Abstr. 1971, Z4, 16100w)
80. J.H. NOOPDIK, Tin.W. HUMELELINK, J.G.M. Van Der LINDEN; J. Coord.Chem. 1973, 2, 185
81. G. CHANDRA, A.D. JENKINS, M.F. LAPPERT, R.C. SRIVASTAVA; J. Chem.Soc. (A) 1970, 2550
82. A.N. BHAT, R.C. FAY, D.F. LEWIS, A.F. LINDMARK, S.H. STRAUSS; Inorg. Chem. 1974, 13, 886
83. M.F. LAPPERT, A.R. SANGER; J. Chem. Soc. (A) 1971, 1314
84. E.C. ALYEA, D.C. BRADLEY, M.F. LAPPERT, A.R. SANGER; J.Chem.Soc. (D)

1969, 1064
85. M. COLAPIETRO, A. VACIAGO, D.C. BRADLEY, M.B. HURSTHCUSE, I.F. RENDALL; J.Chem.Soc. (D) 1970, 743
86. D.C. BRADLEY, I.F. RENDALL, K.D. SALES; J.Chem.Soc. Dalton Trans. 1973: 2228
87. E.L. MUETTERTIES; Inorg. Chem. 1973, 12, 1963
38. E.L. METTERTIES; Inorg. Chem. 1974, 13, 1011
89. R.G. CAVELL, A.R. SANGER; Inorg. Chem. 1972, 11, 2016
90. R.N. MUKHERJEE, A.K. CHATTERJEE, J. GUPTA; Indian. J.Chem.

1965, 3, 514
91. R.S.P. COUTTS, P.C. WAILES, J.V. KINGSTON; Aust. J.Chem. 1970, 23, 463
92. R.S.P. COUTTS, P.C. WAILES, J.V. KINGSTON; Fust. J.Chem. 1970, 23, 469
93. A. MUELLER, V.v. KRISHNA RAO, E. DIEMANN; Chem. Ber. 1971, 104, 461
94. H. HERTEL; W. KUCHEN; Chem. Ber. 1971, 104, 1740
95. R.G. CAVELL, E.D. DAY, W. BYERS, P.M. WATKINS; Inorg. Chem 1971, 10, 2716
96. E.C. ALYEA, D.C. BRADLEY; J.Chem. Soc.(A) 1969, 2330
97. D.C. BRADLEY, R.H. MOSS, K.D. SALES; च̄.Chem.Soc.(D) 1969, 1255
98. G.N. KOSHKINA, I.V. OVCHINNIKOV, A.D.TROITSKAYA; Zh.Obshch.Khim. 1973, 43 , 956 (Chem. Abstr. 1973, 79, 108683v)
99. J. N. SMITH, T.M. BROWN; Inorg. Nucl. Chem. Lett. 1970, 6, 441
100. B.J. I-CORMICK; Inorg. Chem. 1968, I; 1965
101. N.S. GARIF'YANOV, B.M. KOZYREV; Teor.i.Esperim. Khim. Akad. Nauk SSR 1965, 1, 525 (Chem.Ahstr. 1965, 64, 2892f)
102. R.G. CAVELL, E.D. DAY, W. BYERS, P.M. WATKINS; Inorg. Chen 1972,11,1591 and references therein
103. SEE: D. COUCOUVANAIS; Progress in Inorganic Chemistry 1970, 11, 234
104. B.J. МеCORMICK; Canad.J.Chem. 1969; 47, 4283
105. G.A. MILLER, R.E.D. CLUNG; Inorg. Chem. 1973, 12, 2552
106. A.T. CASEY, D.J. MACKEY, R.L. MARTIN, A.H. WHITE; Aust.J.Chem.
107. J.C. DEWAN, D.L. KEPERT, C.L. RASTON, A.H. WHITE, E.W. MASLEN;
J.Chem.Soc. Dalton Trans. 1973, 2082
108. D.C. PANTALEO, R.C. JOHNSON; Inorg. Chem. 1970, 9, 1248
109. P.R. HECKLEY, D.G. HOLAH, D. BROWN; Canad.J.Chem. 1971, 49, 1151
110. A.T. CASEY, J.R. THACKERAY; Aust. J.Chem. 1972, 25, 2085

1974, 773
112. L.F. LiAKKORTHY, R.R. PATEL; Inorg. Nucl. Chem. Lett. 1972, 8, 139
113. L. RICARD, P. KARAGIANNIDIS, R. WEISS; Inorg• Chem. 1973, 12, 2179
114. L. MALATESTA; Gazz: Chim. It. 1939, 69, 752
115. F. GALSBOL, C.E. SCHAFFER; Inorg. Syn. 1967, 10, 42
116. CHEMISCHE. FABRIK KALK G.m.b.H. Ger. 1, 137, 732 (1962)
(Chem. Abstr. 1963, 58, Fك863c)
117. W. KUCHEN. A. ROHRBECK; Chem. Ber. 1972, 105, 132
118. B.N. FIGGIS, G.E. TOOGOOD; J.Chem.Soc.Dalton Trans. 1972, 2177
119. R.G. CAVELL, W. BYERS, E.D. DAY; Inozg. Chem. 1971, 10, 2710
120. S. MERLINO, F. SARTORI; Acta. Crystallcgr.: 1972,B28,972
121. A.A.G. TOMLINSON; J. Chem. Soc. (A) $1971,10,1409$
122. K. De ARMOND, J.N. MITCHELL; Inorg. Chem. 1972, 11, 181
123. G. StNIKOAOV; Inorg. Chim. Acta. 1970, 4, 610
124. R.G. CAVELL, A.R. SANGER; Inorg. Chem. 1972, 11, 2011
125. R.N. IFWITT, P.C.H. MITCHELL; Inorg. Nucl. Chen. Lett. 1968, 4, 39
126. D.C. BRADLEY, M.H. CHISHOLM; J. Chem. Soc. (A) 1971, 2741
127. A. NIEUPCORT, J.H.E. MOONEN, J.A. CRAS; Recl. Trav. Chim.

Pays-Bas 1973, 92, 1086
128. J.G. WIJNHOVEN; Cryst. Struct. Commun. 1973, 2, 637
129. L.M. KUL'BERG, A.G. KOVALEVA; Dolclady Akad. Nauk SSSR

1954, 98, 79 (Chem. Abstr. 1955, 49, 11559h)
130. F.W. MOORE, M.L. LARSON; Inorg. Chem 1967, 6, 998

131a. W.E. NEWTON, J.L. CORBIN, D.G. BRAVARD, J.E. SEARLES, J.W. MCDONALD;
Inorg. Chem. 1974, 13, 1100
131b. W.E. NEWTON, J.L. CORBIN, J.W. McDONALD; J.Chem.Soc. Dalton Trans. 1974, 104.4
132. A.T. PILIPENKO, G.I. GRIDCHINA; Trudy. Komisii Anal. Khim,

Akad. Nauk SSSR 1951, 3, 178 (Chem. Abstr. 1953, 47, 2648b)
133. A. KOPWILLEM, P. KIERKEGAARD; Acta. Chem. Scand. 1969, 23, 2184
134. ${ }^{-}$F.W. it:ORE, R.E. RICE; Inorg. Chem. 1968, I, 2510
135. R. COITON, G.G. ROSE; Aust. J. Chem. 1970, 23, 1111
136. A.B. BLAKE, F.A. COTTON, J.S. WOOD; J. Amer. Chem.Soc. 1964, 86, 3024 .
137. J.R. KNOX, C.K. PROUT; Acta. Crystallogr. 1969, 25B, 2281
138. R.N. JONITT, P.C.H. MITCHELL; J. Chem. Soc.(A) 1969, 2632
139. R. BARRAL, C. BOCARD, I. SEREE De ROCH, L. SA.JUS; Tetrahedron

Lett. 1972, 1693
140. P.W. SCHNEIDER, D.C. BRAVARD, J.W. McDONALD, W.E. NEWTON; J. Amer. Chem. Soc. 1972, 24, 8640
141. B.F.G. JOHNSO:, K.H. AL-OBAIDI, J.A. McCLEVERTY; J. Chem.Soc. (A) 1969, 1668
142. R.L. CARLIN, F. CANZIANI, W.K. BRATTON; J. Inorg. Nucl. Chem. 1964, 26; 898
143. B.F.G. JOHNSON, R. DAVIS, M.N.S. HILL, C.E. HOLLOWAY, K. H. AL-OBAIDI; J. Chem. Soc. (A) 1971, 994
144. N.G. CONNELLY, L.F. DAHL; J. Chem. Soc. (D) 1970, 880
145. B.F.G. JOHNSON, K.H. AL-OBAIDI; Chem. Commun 1968, 876
146. N.S. GARIF'YANOV, S.A. LUCHKINA; Teor. Eksp. Khim. 1967, 2, 571
(Chem. Abstr. 1970, 72, 49496s)
147. E.V. SEMENOV, P.M. SOLOZHENKIN; N.I. ZEALYANSKII, O.N. GRISHINA, YA.I. MEL'NIK; Dokl. Akad.Nauk Tadzh.SSR 1972, 15, 37 (Chem. Abstr. 1972, 77, 120553n)
148. N.S. GARIFIYANOV, S.A. LUCHKINA; Dokl. Akad. Nauk SSSR 1969, 189, 543 (Chem. Abstr. 1970, 72, 49502r)
149. N.S. GARIF'YANOV, A.D. TROITSKAYA, A.I. RAZUMOV, I.V. OVCHINNIKOV, P.A. GUREVICH, O.I. KONDRAT'EVA; Dokl. Akad. Nauk SSSR 1971, 196, 1346 (Chem. Abstr. 1971, 75, 13266q)
150. N.S. GARIF'YANOV, A.D. TROITSKǐA. A.I. RAZUYOV, P.A. GUREVICH, O.I. KONDRAT'EVA; Zh. Obshch. Khim. 1971, 41, 710 (Chem. Abstr. $1971,75,56521 \mathrm{~m})$
151. N.S. GARIF'YANOV, A.D. TROITSKAYA; A.I. RAZUMOV, I.V. OVCHINNIKOV, P.A. GUREVICH; O.I. KONDRAT'EVA; Russ J. Inorg. Chem. 1972; 17, 697
153. O.I. KONDRAT'EVA, A.D. TROITSKAYA, N.A. CHADAEVA, G.M. USACHEVA, A.E. IVANTSOV; Zh. Obshch. Khim. 1973, 43, 2087 (Chem. Abstr. 1973, 79; 142429b)
154. N.S. GARIF'YANOV, O.I. KONDRAT'EVA; Teor. Eksp. Khim. 1971, 7, 258 (Chem. Abstr. 1971, 75, 69353h)
155. N.S. GARIF'YANOV, A.D. TROITSKAYA, A.I. RAZUMOV, R.A. GUREVICH, O.I. KONDRAT'EVA; Zh. Neorg. Khim. 1971, 16, 1059
156. J.A. McCLEVERTY, W.G. KITA, M.K. LLOYD; J. Cnem. Soc. (D) 1971, 420
157. R: COLTON, G.R. SCOLLARTY, I.B. TOMKINS; Aust. J. Chem. 1968, 21, 15
158. R. COLTCN, G.R. SCOLLARTY; Aust. J. Chem. 1968, 21, 1427
159. M. LUSTIG, L.W. HOUK; Inorg. Nucl. Chem. Lett. 1969, 2, 851
160. E.W. ABEL, M.O. DUNSTER; J. Chem. Soc. Dalton Trans. 1973, 98
161. W.K. GLASS, A. SHIELS; J. Organomet. Chem. 1974, 67, 401
162. E. LINDNER, K.M. MATAJCEK; Z. Naturforsch 1971, B26, 854
(Chem. Abstr. 1972, 76, 25396r)
163. F.A. COTTON, J.A. McCLEVERTY; Inorg. Cher. 1964, 3, 1398
164. W.K. GlasS, A. SHIELS; Inorg. Nucl. Chem. Lett. 1972, 8, 257
165. J.K. RUFF, M. LUSTIG; Inorg. Chem. 1968, 7, 2171
166. N.G. CONNELLY; J. Chem. Soc. Dalton Trans. 1973, 2183
167. L. CAMBI, A. CAGNOSSO; Atti. Acad. Lincei 1931, 14, 71
(Chem. Abstr. 1932, 26, 2172)
168. D.G. HOLAN, R.N. MURPHY; Canad. J. Chem. 1971, 49, 2726
169. R.G. CAVELI, W. BYERS, E.D. DAY, P.M. WATKINS; Inorg. Chem.

1972, 11, 1598
170. Yu. I. USATENKO, N.P. FADESH; Ir. Komis. Po. Analit. Khim, Akad. Nauk SSSR, Inst. Geokhim i Analit. Khim 1963, 14, 183 (Chem. Abstr. $1963,59,13397 \mathrm{~g})$
171. S. LAHIRY, V.K. ANAND; J. Chem. Soc.(D) 1971,1111
172. A. VACIAGO, A. CABRINI, C. MARIANI; Ric. Sci. Suppl. 1960, 30, 2519 (Chem. Abstr. 1964, 60, 8731d)
173. R.M. GOLDING, P.C. HEALY, A.H. WHITE; Trans. Farad. Soc. 1971, 67,

1672
174. R.M. GCLDING, P.C. HEALY, P. NEWMAN, E. SINN, W.C. TENNANT, A.H. WHITE;
J. Chem. Phys. 1970, 52, 3105
175. P.C. HEALY, A.H. WHITE; J. Chem. Soc. Dalton Trans. 1972, 1883
176. L. QUE, L.H. PIGNOLET; Inorg. Chem. 1974, 13, 351

177a. J.F. ROWBOTTOM. G. WILKINSON; J. Chem. Soc. Dalton Trans. 1974, 684
b. S.R. FLETCHIER, A.C. SKAPSKI; J. Chem. Soc. Dalton Trans. 1974, 486
178. W. HIEBER, F. LUX, G. HEGERT; Z Natiarforsch 1965, 20, 1159 (Chem.

Abstr. 1966. 64, 13735e)
179. R.L. I.AMBERT; T.A. MANUEL; Inorg. Chem. 1966, 5, 1287
180. E. LINDNER, K.M. MATAJCEK; J. Organomet. Chem. 1971, 29, 283
181. G. THIELE, G. LTEHR, E. LINDNER; Chem. Rer. 1974, 107, 442
182. E. LINDNER, H: BERKE; J. Organomet. Chem. 1972, 39, 145
183. E. LINDNER, K.M. MATAJCEK; J. Organonet. Chem. 1972, 3ly, 195
184. E. LINDNER, H. BERKE; Z. Naturforsch 1972, B27, 767 (Chem. Abstr.

$$
1972,77,121604 \mathrm{~g})
$$

185. R.A. WALTON, D.G. TISLEY, D.L. WILLIS; Inorg. Nucl. Chem.Lett. 1971,
186. A.C. SKAPSI, S.R. FLETCHER, J.F.ROWBOTTOM, G. WILKINSON;
J. Chem. Soc.(D) 1970, 1572
187. D.G. HOLAH, C.N. MURPHY; Inorg. Nuc1. Chem. Lett. 1972, 8, 1069
188. N.S. GARIFYANOV, S.A. LUCHKINA; Isv.Akad. Nauk. SSSR Ser. Khim. 1959, 471 (Chem. Abstr. 1969, 70, 110414r)
189. J.A. McCLEVERY, D.G. ORCHARD; T. Chert. Soc.(A) 1970, 3315
190. R. COLTON, R. LEYITUS, G. WILKINSON; J. Chem. Soc.(A) 1960, 5275
191. J.L.K.F. De VRIES, J.M. TROOSTER, E. De BOER; Inorg. Chem. 1973,

$$
\text { 12, } 2730
$$

192. M. DELEPINE; Compt. Rend. 1907, 144, 1125
193. J.V. DUBSKY; J. Prakt. Chem. 1916, 93, 142 (Chem. Abstr. 1917, 11, 1631)
194. W. KUCHEN, A= JUDAT; Chem. Ber. 1967, 100, 991
195. A.H. EWAID, R.L. MARTIN, E. SINN, A.H. WHITE; Inorg. Chem. 1969. 8, 1837
196. L. CAMBI, L. SZËGO; Ber. 1933, 66B, 656
197. A.H. EWALD, R.L. MARTIN, I.G. ROSS, A.H. WHITE; Proc. Roy. Soc. 1964, A280, 235
198. J.G. LEIPOLDT, P. COPPENS; Inorg. Chem. 1973, 12, 2269
199. B.F. HOSKINS, B.P. KELLY; Chem. Commu:i. 1968, 1517
200. P.C. HEALY, A.H. WHITE; J. Chem. Soc. Dalton Trans. 1972, 1163
201. B.F. HOSLIJNS, B.P. KELLY; J. Chem. Soc. (D) 1970, 45
202. R.R. ELEY, R.R. MYERS, N.V. DUFFY; Inorg. Chem. 1972, 11, 1128
203. L. MAI. ${ }^{4}$ TESTA; Gazz. Chim. It. 1938, 68, 195
204. R.A. BOZIS; Univ. Microfilms 72-14,064 (Chem. Abstr. 1972, 77, 108887y)
205. W. KUCHEN, H. HERTEL; Angew. Chem. (Int.Ed.) 1969, 8 , 89
206. E.A. PASEK, D.K. STRAUB; Inorg. Chem. 1972, 11, 259
207. G. CaUQUIS, D. LaCHENAL; Inorg. Nucl. Chem. Lett. 1973, 2, 1095
208. L.H. PIGNOLET, D.J. DUFFY, L. QUE; J. Amer. Chem. Soc. 1973, 25, 295
209. M.C. PALAZZOTTO, D.J. DUFFY, B.L. EDGAR, L. QUE, L.H. PIGNOLET;
J. Amer. Chem. Soc. 1973, 95, 4537 and references therein
210. L.R. GAHAN, M.J. O'CONNOR; J. Chem. Soc. Chem. Commun. 1974, 68
211. J.F. GIBSON; Nature 1962, 196, 64
212. L. CAMBI, A. CAGNOSSO; Atti. Acad. Lincei 1931, 13, 254
(Chem. Abstr. 1932, 26, 41)
213. N.S. GARIF'YANOV, S.A. LUCHKINA; Str. Mol. Kvantovaya Khim. 1971, 62
(Chem. Abstr. 1971, 74, 150585m)
214. J. DANON; J. Chem. Phys. 1964: 41, 3378
215. M. CC...PIETRO, A. DOMENICANO, L. SCARAMUZZA, A. VACIAGO,
L. ZAMBONELLI; Chem. Commun. 1967, 583
216. G.R. DAVIES, R.H.B. MAIS, P.G. OWSTON; Chem. Commun. 1968, 81
217. G.R. DAVIES, J.A.J. JARVIS, B.T. KILBCURN, R.H.B. MAIS, P.G. OWSTON;
J. Chem. Phys. 1970, 52, 3105
218. B. HALEPP; Sb. Aspir. Rab. Kazan Univ. Tochn. Nauk, Mekh. Fiz.

1970, 161 (Chem. Abstr. 1972, 76, 119311m)
219. D,M. ADAMS; J. Chem. Soc. (A) 1969, 87
220. C.M. GUZY, J.B. RAYNOR, M.R.C. SYMONS; J. Chem. Soc. (A) 1969, 2987
221. H. BUETTNER, R.D. FELTHAM; Inorg. Chem. 1972, 11, . 971
222. S.A. COTTON, J.F. GIBSON: J. Chem. Soc. (A) 1971, 803
223. L. CaMbI, L. Malatesta; Rend. 1st. I.ombardo Sci. 1938, 71, 118
(Chem. Abstr. 1940, 34, 3200)
224. A. DOMENIOANO, A. VACIAGO, L. ZAMBONELLI, P.L. LOADER, L.M. VENANZI; Chem. Commun. 1966, 476
225. H. H. WICKMAN, A.M. TROZZOLO; Inorg. Chem. 1968, I, 63
226. R.L. MARTIN, A.ii. WHITE; Inorg. Chem. 1967, 6, 712
227. H. H. WICKMAN, C.F. WAGNER; J. Chem. Phys. 1969, 51, 435
228. G.C. BRACKETT, P.I., RICHARDS, H.H. WICKMAN; Chem. Phys. Lett.

1970, 6, 75
229. E. De BOER, J.L.K.F. De VRIES, J.M. TROOSTER; Inorg. Chem.

1971, 10, 81
230. J.A. MCCLEVERTY, D.G. ORCHARD, K. SMITH; J. Chem. Soc. (A) 1971, 707
231. R.H. HOLM, L.H. PIGNOLET, R.A. LEWIS; J. Amer. Chem. Soc. 1971, 23, 360
232. L.H. PIGNOLET, R.A. LEWIS, R.H. HOLM; Inorg. Chem. 1972, 11, 99
233. C. O'CONNOR, J.D. GILBERT, G. WILKINSON; J. Chem. Soc. (A) 1969, 84
234. P. POWELL; J. Crganomet. Chem. 1974, 65,.89
235. J.V. KINGSTON, G. WILKINSON; T. rnorg. Nuc1. Chem. 1966, 28, 2709
236. W.P. GRIFFITH, I. PAWSON; J. Chem. Soc. Dalton Trans. 1973, 1315
23.7. L.F. EiivYDKA, Yu.I. USATENKO, F.M. TULYUPA; Zh. Neorg. Khim. 1973, 18, 756
238. S. Allison; Nat. Inst. Met., Repub. S.Afr., Rep. 1971, 1125 (Chem. Abstr. 1971, 75, 91797c)
239. K. LESZ, T. LIPIEC; Rocz. Chem. 1967, 41, 463 (Chem. Abstr. 1967, 67, 77644d)
240. B.D. PADALIA, V. KRISHNAN; Indian J. Pure Appl. Phys. 1971, 2, 813 (Chem. Abstr. 1972, 76, 65802b)
241. C.G. SCENEY, R.J. MAGEE; Inorg. Nucl. Chem. Lett. 1973, 2, 595
242. A. MUEILER, V.V. KRISHNA RAO, G. KLINKSIEK; Chem. Ber. 1971, 104, 1892
243. G.W. WATT, B.J. MCCOPMICK; J. Inorg. ivacl. Chem. 1965, 27, 898
244. L.R. GRAHAM, J.G. HUGHES, M.J. OPCONNOR; J. Amer. Chem. Soc. 1974,96,2271
245. P.R.H. ALDERMAN, P.G. OWSTON, J.M. ROWE; J. Chem. Soc. 1962, 668
246. P.R.H. ALDERMAN, P.G. OWSTON; Nature 1956, 178, 1071
247. J.H. TVEMARK, R.D. FELTHAM; J. Chem. Soc. Dalton Trans. 1972, 718
248. K. DIEMERT, W. KUCHEN; Chem. Ber. 1971; 104, 1892
249. H.C. BRINKHOFF; Inorg. Nucl. Chen. Lett. 1971, I, 413
250. S. FUJINAMI, M. SHIBATH; Bull, Chem. Soc. Japan. 1973, 46, 3443
(Chem. Abstr. 1974, 80, 43572g)
251. F.A. HARTMAN, M. LUSTIG; Inorg. Chem. 1968, I, 2669

252 D. COMNEREUC, I.C. DOUEK, G. WILKINSON; J. Chem. SOC. (A) 1970, 1771
253. R.W. MITCHELL, J.D. RUDDICK, G. WILKINSON; J. Chem. Soc. (A) 1971, 3224
254. A.A. ARANEO, T. NAPOLETANO; Inorg. Chim. Acta. 1972, 6, 363
255. A. ARANEO, F. BONATI, G. MINGHETTI; Inorg. Chim. Acta. 1970, 4, 61
256. FOR EXAMPLE: L. MALATESTA, R. PIZZOTTI; Gazz. Chim. It. 1946, 76, 167
257. G.S. WHITBY, G.L. MATHESON; Trans. Roy. Soc. Can. (Sec III), 1924 ,

18, 111
258. P.E. JONES, G.B. ANSELL, L. KAZ7.; Acta. Crystallogr. 1969, B25, 1939
259. M. BONAMICO, G. DESSY, C. MARIANI, A. VACIAGO, L. ZAMBONELLI;

Acta Crystallogr. 1965, 19, 619
260. G. PEYRONEL, A. PIGNOLEDI; Acta Crystallogr. 1967, 23, 398
261. I.E.A. SHUGAM, V.M. AGRE; Tr., Vses. Nauch.-Issled. Inst. Khim. Reactinov Osóbo Chist. Khim Veshchesty. 1967, 30, 364 (Chem. Abstr. 1968, 69, 71310m)
262. J. McC्ORMICK, R.I. KAPLAN; Canad. J. Chem. 1970, 48, 1876
263. M. BOBTELSKY, J. EISENSTADTER; Bull. Soc. Chim. France 1957, 708
264. F. BASOLO, W.R. MATOUSHI; J. Amer. Chem. Soc. 1953, 75, 5663
265. D. COUCOUVANIS, J.P. FACKLER; Inorg. Chem. 1967, 6, 2047
266. M. CORNOCK, D.F. STEELE, T.A. STEPHENSON; Unpublished Work
267. P.M. SOLOZHENKIN, N.I. KOPITSAYA; Dokí. Akad. Nauk Tadzh. SSR

1969, 12, 30 (Chem. Abstr. 1969, 71, 118234y)
268. H.C. BRI Nïhoff; Rec1. Trav. Chim. Pays-Bas 1971, 90, 377
270. J.P. \because :CKLER, A. AVDEEF, R.G. FISCHER; J. Amer. Chem. Soc. 1973, 95, 774
271. P.L. MAXFIELD; Inorg. Nucl. Chem. Lett. 1970, 6, 693

272 C. BLEJEAN, J.L. CHENOT; J. Inorg. Nucl. Chem. 1971, 33, 3165
273. J. WILLEMSE, J.A. CRAS, J.G. WIJNHOVEN, P.T. BEURS KENS;

Recl. Trav. Chim. Pays-Bas 1973, 92, 1199
2740 J. WILLEMSE, P.H.F.M. ROWETTE, J.A. CRAS; Inorg. Nucl. Chem. Lett 19.72, 8 , 389
275. R.L. CARLIN, A.E. SIEGEL; Inorg. Chem. 1970, 2, 1587

276．P．PORTA，A．SGAMELLOTTI，N．VINCIGUERRA；Inorg．Chem． 1971，10， 541

277．J．R．ANGUS，G．M．WOLTERMANN，J．R．WASSON；
J．Inorg．Nucl．Chem． 1971，33， 3967

278．P．S．SHETTY；Q．FERNANDO；J．Amer．Chem．Soc．1970，92， 3964
279．A．SGAMELLOTTI，C．FURLANI，F．MAGRTNI；J．Inorg．Nuci．Chem．
1968，30， 2655
280．C．A．LigRERA，G．M．WOLTERMANN，J．R．WASSON；Tetrahedron Lett． 1971，4485

281．J．P．FACKLER，W．C．SEIDEL；Inorg．Chem．1969，8； 1631
282．A．G．KREUGER，G．WINTER；Aust．J．Chem．1972，25， 2497
283．K．DIEMERT，Y．KUCHEN；：Chem．Ber．1971，104， 2592
284＊M．NANJO；Tohoku Diagaku Senko Seiren Kenkylsho．Iho．1972，28，191
（Chem．Abstr．1973，79，59778u）
285．J．POWELL，W．L．CHAN；J．Organomet．Chem．1972，35， 203
286．SEE ALSO a）＂Transition Metal Complexes of Phosphorus，Arsenic and Antimony Ligands＂（C．A．McAULIFFE：Ed）．Macmillan 1973
b）W．P．GRIFFITH；＂The Chemistry of the Rarer Platinum Metals＂
Interscience Publishers 1967
287．T．A．STE゙ーHENSON；G．WILKINSON；J．Inorg．Nucl．Chem．1966，28， 945
288．S．J．LA PLACA，J．A．IBERS；Inorg．Chem．1965，生， 778
289．J．CHETT，R．G．HAYTER；J．Chem．Soc．1961， 896
290．R．S．NYHOLM，G．J．SUTTON；J．Chem．Soc．1958， 567
291．P．W．ARMIT，T．A．STEPHENSON；J．Organomet．Chem．1973，57，C80
252．J．J．LEVISON，S．D．ROBINSON；J．Chem．Soc．（A）1970， 639
293．J．CHATT，G．J．LEIGH，D．M．P．MINGOS，R．J．PASKE；J．Chem．Soc．（A） 1968， 2636

294．J．CHATT，B．L．SHAW，A．E．FIELD；J．Chem．Soc．1964， 3466

295．M．S．LUPIN，B．1．．SHAir；J．Chem．Soc．（A）1968， 741
296. R.H. PRINCE, K.A. RASPIN; J. Inorg. Nuc1. Chem. 1969, 31, 695
297. K.A. RASPIN; J. Chem. Soc. (A) 1969, 461
298. G. CHIOCCOLA, J.J. DALY, J.K. NICHOLSON; Angew. Chem. (Int. Ed.) 1968, 7, 131
299. N.W. ALCOCK, K.A. RASPIN; J. Chem. Soc.(A) 1968, 2108
300. G. CHIOCCOLA, J.J. DALY; J. Chem. Soc.(A) 1968, 1981.
301. J.D. GILBERT, G. WILKINSON; J. Chem. Soc. (A) 1969, 1749
302. L. RU_7-RAMIREZ, T.A. STEPHENSON, E.S. SHITKES; J. Chem. Soc. Dalton Trans. 1973, 1770
303. D. ROSE, J.D. GILEERT, R.P. RICHARDSON, G. WILKINSON; J. Chem. Soc. (A) 1969, 2610
304. T. BLACKMORE, M.I. ERUCE, F.G.A. STONE; J. Chem. Soc. (A) 1971, 2376

3C5. P.S. HALLMAN, B.R. McGARVEY, G. VILKINSON; J. Chem. Soc.(A) 1968, 3143
306. J.J. LEVISON, S.D. ROBINSON; J. Chem. SOC. (A) 1970, 2947
307. A. YAMAMOTO, S. KITAZUME, S. IKEDA; J. Amer. Chem. Soc, 1968, 90, 1089
308. K.C. DEWHIRST, W. KEIM, C.A. REILLY; Inorg. Chem. 1968, 7, 546
309. T.I. ELIADES, R.O. HARRIS, M.C. ZIA; Chem. Commun. 1970, 1709
3103. R.O. HARRIS, N.K. HOTA, L.S. DADAVOY, J: YUEN; J. Organomet. Chem.

1973, 54, 259
3105. R.O. HARPTS, L.S. SADAVOY, S.C. NYBURK, F.H. PICKARD; J. Chem. Soc. Dalton Trans. 1973, 2646
311. P. MEAKIN, L.J. GUGGENBERGER, J.P. JESSON, D.M. GERLACH, F.N. TEBBE, N. G. PEET, E.L. MUETTERTIES; J. Amer. Chem. Soc. 1970, 92, 3482
312. D. PAWSON, W.P. GRIFFITH; Inorg. Nucl. Chem. Lett, 1974, 10, 253
313. I.P. EVANS, A. SPENCER, G. WILKINSON; J. Chem. Soc. Dalton Tranc. 1973, 204
314. J.S. MILLER, A.L. BALLCH; Inorg. Chem. 19'71, 10, 1410
315. I. BERNAL, A. CLEARFIELD, E.F. EPSTEIN, J.S. RICCI, A.L. BALCH, J.S. MIILER; Chem. Commun. 1973, 39

316 T.A. STEPHENSON; J. Chem. Soc.(A) 1970, 889
317. P.W. ARMIT, T.A. STEPHENSON; Unpublished Work
318. B. LOEV, M.M. GOODMAN; Chem. and Ind. 1967, 2026
319. D.F. EVANS; J. Chem. Soc. 1959, 2003
320. D.H. GERLACH, W.G. PEET, E.L. MUETTERTIES; J. Amer. Chem. Soc. 1972, 24, 4545
321. P.G. DOUGLAS, B.L. SHAW; J. Chein. Suc. (A) 1970, 1556 and references therein
322. PI-CHANG KONG, D.M. ROUNDHILL; Inorg. Chem. 1972, 11, 749
323. M.J. CLEARE, W.P. GRIFFITH; J. Chem. Soc. (A) 1969, 372
324. R. HARRIS; Canad. J. Chem. 1964, 42, 2275
325. J.M. JENKINS, M.S. LUPIN, B.L. SHAW; J. Chem. Soc.(A) 1966, 1787
326. M.J. CHURCH. M.J. MAYS; J. Inorg. Nucl. Chem. 1971, 33, 253
327. S.R. FIETCHER, A.C. SKAPSKI; J. Chem. Soc. Lalton Trans. 1972, 535
328. B. E.- PRATER; J. Organomet. Chem. 1972, 34, 379
329. G.E. MANOUSSAKIS, C.A. TSIPIS; Z.Anorg. Chem. 1973, 398, 88
330. See J.W. EMSLEY, J. FEENEY; L.H. SUTCLIFFE; "High Resolution

Nuclear Magnetic Resonance Spectroscofy" Pergamon Press 1965
331. For method, see: S. FORSEN; R.A. HOFFMAN; J. Chem. Phys. 1963, 39, 2892
332. N. SERPONE, D.G. BICKLEY; Progr. Inorg. Chem. 1972, 17. (part II) 416
333. D.A. CASĖ, T.J. PINNAVIA; Inorg. Chem. 1971, 10, 482
334. J.A. POPLE, W.G. SCHNEIDER, H.J. BERNSTEIN; "High Resolution Nuclear. Magnetic Resonancell McGraw-Hil1, New York, 1959, p223
335. J.C. BAILAR; J. Inorg. Nucl. Chem. 1958, 8, 165
336. See Inorg. Chem. 1970, 2, 1
337. P. RÂY, N.K. DUTT; J. Indian, Chem. Soc. 1943, 20, 81

338, E.L. MUETTERTIES; J. Amer. Chem. Soc. 1968, ©0, 5097
339. A.Y. GIRGIS, R.C. FAY: J. Amer. Chem. Soc. 1970, 92, 7061
340. A. PIDCOCK, R.E. RICHARDS, L.M. VENANZI; J. Chem. Soc.(A) 1966, 1707
341. See A.A. FROST, R.G. PEARSON; "Kinetics and Mechanism", 2nd edn.
342. For a review of this subject, see; T.G. APPLETON, H.C. CLARK, L.E. MANZER; Coord. Chem. Reviews 1973, 10, 335
343. J. CHATT, G.J. LEIGH, A.P. STORACE; J. Chem. Soc.(A) 1971, 1380
344. S.D. ROBINSON, M.F. UTTLEY; J. Chem. Soc. Dalton Trans 1973, 1912
345. T. NAKAGAWA; Bull. Chem. Soc. Japan 1966; 39, 1006
346. W. HEWERTSON, H.R. WATSON; J. Cher. Soc. 1962, 1490
347. W. KUCHEN, W. STROLENBERG, J. METTEN; Chem. Ber. 1963, 96, 1733
348. J. CHATT, N.P. JOHNSON, B.L. SHAW; J. Chem. Soc. (A) 1964, 2508
349. P.R. BROOKES, B.L. SHAW; Chem. Commun. 1968, 919

350, P.R. BROCKES, B.L. SHAW; J. Chem. Soc.(A) 1967, 1079
351. F.H. ALLEN, K.M. GABUGI; Inorg. Nucl. Chem. Lett. 1971, I; 833
352. M.A. BENNETT; P.A. LONGSTAFF; Chem. Ind. 1965, 846
353. J.A. OSBORN, F.H.J. JARDINE, J.F. YOUNG, G. BTLKINSON; J. Chem.

Soc. (A) 1966, 1711
354. M.C. PAIRD, G. HARTWELL, G. WILKINSON; J. Chem. Soc.(A) 1967; 2037
355. C. FURLANI, M.L. LUCIANI; Inorg. Chem. 1968, 7, 1586
356. See: L.M. HAINES; Inorg. Chem. 1971, 10, 1693
357. See: L.M. HAINES; Inorg. Chem. 1971, 10, 1685
358. P.G. DOUGLAS, B.L. SHAF; J. Chem. Soc.(A) 1970, 2947
359. J. CHATI; G.J. LEIGH, R.L. RICHARDS; J. Chem. Soc.(A) 1970, 2243
360. L.D. KULIKOVA, G. MEZARAUPS, E. JANSONS; Latv. PSR Zinat. Akad. Vestis, Kim. Ser. 1973, 22 (Chem.Abs.1973, 78, 143296x)
361. D.M. ADAMS; "Metal-Ligand and Related Vibrations" EDWARD ARNOLD 1967
362. W.J. REAGAN, C.H. BRUBAKER; Inorg. Chem. 1970, 9, 827
363. For method, see: J.D. ROBERTS; "An Introduction to Spin-Spin Splitting in High Resolution Nuclear Magnetic Resonance Spectral W,A., BENJAMIN, 1962
364. J. CHATT, R.S. COFFEY, B.L. SHAW; J. Chem. Soc. 1965, 7391
365. H.S. GUTOWSKY, C.H. HOLM; J. Chem. Phys. 1956, 25, 1228
366. D.F. STEELE; Ph.D. Thesis, University of Edinburgh 1973
367. C.G. PIERPONT, R. EISENBERG; Inorg. Chem. 1972, 11, 1088
368. C.G. PIERPONT, R. EISENBERG; Inorg. Chem. 1972, 11, 1094
369. U.A. GREGORY, S.D. IBEKWE, R.T. KILBOURN, D.R. RUSSELL;
J. Chem. Soc. (A) 1971, 1118
370. A. GUNN, R.O. GOULD; Unpublished Results.

Post Graduate Courses Attended

```
"Principles of Nuclear Mannetic Resonance Spectroscopy"
    by Dr. R.M. LYNDON-BELL.
    by Dr. M.H. PALMER.
"Electron Paramagnetic Resonance Spectroscopy" by Dr. I.R. LEITH.
MMagnetic Resonance" by Dr. I.H. SADLER.
HESCA and Photoelectron Spectroscopy" by Dr. S. CRADDCCK.
"Crystal Structure Determination" by Dr. R.O. GOULD
                            Dr. M.M. HARDING
                                Dr. D.W. GREEN
Also Leeds-Sheffield Organometallic Conference April 1973.
    University of Strathclyde Inorganic Club Conferences 1973 and 1974.
Various departmental research Seninars and colloquia.
```


[^0]: (Configuration D)

