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We present an improved prescription for the matter power spectrum in redshift space taking proper

account of both nonlinear gravitational clustering and redshift distortion, which are of particular

importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of

redshift distortion phenomenologically introduced but frequently used in the literature, the new model

includes the corrections arising from the nonlinear coupling between the density and velocity fields

associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based

on the improved treatment of perturbation theory for gravitational clustering, we compare our model

predictions with the monopole and quadrupole power spectra of N-body simulations, and an excellent

agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and

modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix

formalism, particularly focusing on the measurements of the Hubble parameter, angular diameter

distance, and growth rate for structure formation. We find that the existing phenomenological models

of redshift distortion produce a systematic error on measurements of the angular diameter distance and

Hubble parameter by 1%–2% , and the growth-rate parameter by �5%, which would become non-

negligible for future galaxy surveys. Correctly modeling redshift distortion is thus essential, and the new

prescription for the redshift-space power spectrum including the nonlinear corrections can be used as an

accurate theoretical template for anisotropic BAOs.

DOI: 10.1103/PhysRevD.82.063522 PACS numbers: 98.80.�k, 95.36.+x, 98.65.�r

I. INTRODUCTION

Galaxy redshift surveys via the spectroscopic measure-
ments of individual galaxies provide a three-dimensional
map of the galaxy distribution, which includes valuable
cosmological information on structure formation of the
Universe. The observed galaxy distribution is, however,
apparently distorted due to the peculiar velocity of galaxies
that systematically affects the redshift determination of
each galaxy. The anisotropy caused by peculiar velocities
is referred to as the redshift distortion, which complicates
the interpretation of the galaxy clustering data (e.g., [1,2]).

Nevertheless, redshift distortion provides a unique way
to measure the growth rate of structure formation, which
has been previously used for determining the density pa-
rameters of the Universe (e.g., [3,4]), and is now recog-
nized with great interest as a powerful tool for testing
gravity on cosmological scales (e.g., [5–9]). Redshift dis-
tortion also provides helpful information on the dark-sector
interactions [10], where the dark energy is dynamically
coupled with dark matter (e.g., [11,12]). Note that the
distortion of the galaxy clustering pattern also arises
from the apparent mismatch of the underlying cosmology
when we convert the redshift and angular position of each
galaxy to the comoving radial and transverse distances.

This is known as the Alcock-Paczynski effect [13], and
with the baryon acoustic oscillations (BAOs) as a robust
standard ruler, it can be utilized for a simultaneous mea-
surement of the Hubble parameter HðzÞ and angular di-
ameter distanceDAðzÞ of distant galaxies at redshift z (e.g.,
[14–18]).
In these respects, anisotropic clustering data from gal-

axy redshift surveys serve as a dual cosmological probe of
cosmic expansion and gravity on cosmological scales,
from which we can address properties of both the dark
energy and modification of gravity responsible for the late-
time cosmic acceleration. Although current data are not yet
sensitive enough to simultaneously measure HðzÞ, DAðzÞ
and the growth rate (see [7,19–21] for current status),
planned and ongoing galaxy redshift surveys aim at pre-
cisely measuring the anisotropic power spectrum and/or
two-point correlation function in redshift space. Thus,
accurate theoretical modeling of the anisotropic power
spectrum is crucial and needs to be developed toward
future observations.
The purpose of this paper is to address these issues based

on the analytical treatment of nonlinear gravitational clus-
tering. In the single-stream limit, cosmological evolution
of the mass distribution consisting of cold dark matter and
baryons is described by the coupled equations for an
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irrotational and pressureless fluid [22]. Recently, a detailed
study on the standard treatments of perturbation theory has
been made [23–25], and several improved treatments have
been proposed [26–38], showing that percent-level accu-
racy can be achieved for predictions of the power spectrum
or two-point correlation function in real space, over the
scales of interest for BAOs; for instance, at z ¼ 1, the
predictions are well converged to theN-body results at k &
0:23h Mpc�1 for the power spectrum [34]. With the help of
these methods, in this paper, we will develop a model of
redshift distortion, and compute the matter power spectrum
in redshift space, with particular attention paid to the
BAOs. We also discuss the impact of model uncertainty
of the redshift distortion on the acoustic-scale measure-
ment of BAOs and the estimation of the growth-rate
parameter.

This paper is organized as follows: In Sec. II, we start by
writing down the relation between real space and redshift
space, and derive an exact expression for the matter power
spectrum in redshift space. We then consider the existing
theoretical models of redshift distortion, and compare
those with N-body simulations in Sec. III, showing that
non-negligible discrepancy appears at the scales of BAOs.
In Sec. IV, nonlinear corrections relevant to describe the
small discrepancies are derived based on the exact expres-
sion for the redshift-space power spectrum. The new model
of redshift distortion including the corrections reproduces
the N-body simulations quite well in both the monopole
and quadrupole components of the redshift-space power
spectrum. In Sec. V, the relevance of this new model is
discussed in detail, especially for measurements of acous-
tic scales and growth-rate parameters. The potential impact
of the model of redshift distortion on future constraints for
modified gravity and dark energy is also estimated based
on the Fisher-matrix formalism. Finally, our important
findings are summarized in Sec. VI.

Throughout the paper, we assume a flat �CDM model
and adopt the fiducial cosmological parameters based on
the five-year WMAP results [39]: �m ¼ 0:279, �� ¼
0:721, �b=�m ¼ 0:165, h ¼ 0:701, ns ¼ 0:96, and �8 ¼
0:817. In order to compare our analytic results with
N-body simulations, the data are taken from Ref. [34], in
which 30 independent N-body simulations of 5123 parti-
cles and cubic boxes of side length 1h�1 Gpc were carried
out with initial conditions created by the 2LPT code [40] at
zinit ¼ 31, adopting the same cosmological parameters as
mentioned above. The output data were stored at redshifts
z ¼ 3, 2, 1, and 0.5, and were created by a publicly
available cosmological N-body code, GADGET2 [41], with
softening length of 0:1h�1 Mpc for tree forces.
Convergence checks of the N-body code adopting the
simulation parameters mentioned here have been previ-
ously investigated in detail in Ref. [25], and we believe
that the N-body results in this paper are accurate enough to
discuss a percent-level precision, at least on the scales of
BAOs.

II. POWER SPECTRUM IN REDSHIFT SPACE

Let us first recall that the redshift distortion arises from
the apparent mismatch of galaxy positions between real
and redshift spaces caused by the contamination of the
peculiar velocities in the redshift measurement. For distant
galaxies, the position in real space, r, is mapped to the one
in redshift space, s, as

s ¼ rþ vzðrÞ
aHðzÞ ẑ; (1)

where the unit vector ẑ indicates the line-of-sight direction,
and quantity vz is the line-of-sight component of the
velocity field, i.e., vz ¼ v � ẑ. The quantities a and H are
the scale factor of the Universe and the Hubble parameter,
respectively. Then, the density field in redshift space,

�ðSÞðsÞ, is related to the one in real space, �ðrÞ through
the relation f1þ �ðSÞðsÞgd3s ¼ f1þ �ðrÞgd3r, which leads
to

�ðSÞðsÞ ¼
��������
@s

@r

��������
�1f1þ �ðrÞg � 1: (2)

The Fourier transform of this is given by

�ðSÞðkÞ ¼
Z

d3r

�
�ðrÞ � rzvzðrÞ

aHðzÞ
�
eiðk�vz=Hþk�rÞ; (3)

where the quantity � is the cosine of the angle between ẑ
and k. Here, we used the fact that the Jacobian j@s=@rj is
written as 1þrzvz=ðaHÞ.
From this, the power spectrum of the density field in

redshift space becomes [42]

PðSÞðkÞ ¼
Z

d3xeik�xhe�ik�f�uzf�ðrÞ þ frzuzðrÞg
� f�ðr 0Þ þ frzuzðr0Þgi; (4)

where x ¼ r� r0 and h� � �i denotes an ensemble average.
We defined uzðrÞ ¼ �vzðrÞ=ðaHfÞ and �uz ¼
uzðrÞ � uzðr0Þ. The function f is the logarithmic derivative
of the linear growth function DðzÞ given by f ¼
d lnDðzÞ=d lna. This is the exact expression for the power
spectrum in redshift space, and no dynamical information
for velocity and density fields, i.e., the Euler equation and/
or continuity equation, is invoked in deriving this equation.
In the expression (4), the power spectrum is written as a

function of k and�, and is related to the statistical average
of real-space quantities in a complicated manner, but
qualitative effects on the clustering amplitude of the power
spectrum are rather clear, i.e., enhancement and damping,
well known as the Kaiser and Finger-of-God effects [43–
45]. The Kaiser effect basically comes from the braces on
the right-hand side of the expression (4), which represents
the coherent distortion by the peculiar velocity along the
line-of-sight direction. In linear theory, the relation u ¼ �
holds and the strength of clustering anisotropies is con-
trolled by the growth-rate parameter f. This is the basic
reason why the redshift distortion attracts much attention
as a powerful indicator for growth of structure. On the

ATSUSHI TARUYA, TAKAHIRO NISHIMICHI, AND SHUN SAITO PHYSICAL REVIEW D 82, 063522 (2010)

063522-2



other hand, the Finger-of-God effect roughly comes from
the factor e�ik�f�uz in Eq. (4). Because of the randomness
of peculiar velocities, dephasing arises which leads to the
suppression of clustering amplitude. The apparent reduc-
tion of amplitude becomes especially significant around
the halo forming regions.

Of course, these two effects cannot be separately treated
in principle, and a mixture of Kaiser and Finger-of-God
effects is expected to be significant in the translinear
regime, where a tight correlation between velocity and
density fields still remains. This is of particular importance
for the accurate modeling of BAOs. Before addressing
detailed modeling, however, we will first consider cur-
rently existing models of redshift distortion, and examine
how these models fail to reproduce the major trends of
BAO features in redshift space.

III. EXISTING MODELS OF REDSHIFT
DISTORTION

A. Perturbation theory description

Let us first examine the perturbation theory (PT) based
model of redshift distortion. We here specifically deal with
the two representative models: one-loop PT calculations
for redshift-space power spectrum from standard PT and
Lagrangian PT.

The standard PT usually implies a straightforward ex-
pansion of the cosmic fluid equations around their linear
solution, assuming that the amplitudes of density and
velocity fields are small. This treatment is also applied to
the evaluation of redshift-space power spectrum (4), and
the resultant expressions for the one-loop power spectrum
are schematically summarized as (see [29,46] for complete
expressions)

PðSÞ
SPTðk;�Þ ¼ ð1þ f�2Þ2PlinðkÞ þ PðSÞ

1-loopðk;�Þ: (5)

The first term on the right-hand side is the linear-order
result of the redshift-space power spectrum, and the factor
ð1þ f�2Þ2 multiplied by the linear power spectrum Plin

indicates the enhancement due to the Kaiser effect. The

second term PðSÞ
1-loop represents a collection of the leading-

order mode-coupling terms called one-loop corrections,
arising both from the gravitational clustering and the red-
shift distortion. This term is basically of the fourth order in
linear-order density or velocity fields, and is roughly pro-
portional to Plin�

2 with �2 ¼ k3Plin=ð2�2Þ.
On the other hand, the Lagrangian PT description of the

redshift-space power spectrum is obtained in a somewhat
different way. Intuitively, we rewrite the exact expression
(4) in terms of the displacement vector, and the perturba-
tive expansion is applied to the displacement vector.
Although a naive perturbative treatment merely reproduces
the standard PT result (5), Ref. [29] has applied a partial
expansion, and some of the terms have been kept in some
nonperturbative ways. The resultant expression for the

power spectrum in redshift space becomes

PðSÞ
LPTðk;�Þ ¼ e�k2f1þfðfþ2Þ�2g�2

v;lin

� ½PðSÞ
SPTðk;�Þ þ ð1þ f�2Þ2

� f1þ fðfþ 2Þ�2gk2�2
v;lin�; (6)

where the quantity �2
v;lin is the linear-order estimate of the

one-dimensional velocity dispersion given by

�2
v;lin ¼

1

3

Z d3q

ð2�Þ3
Plinðq; zÞ

q2
: (7)

The exponential prefactor in Eq. (6) can be regarded as the
result of nonperturbative treatment, and in redshift space,
this term accounts for the nonlinear damping of the BAOs
arising both from the gravitational clustering and Finger-
of-God effect of redshift distortion.
Figure 1 compares the PT-based models of redshift

distortion with the N-body simulations of Ref. [34]. The
left and right panels, respectively, show the monopole (‘ ¼
0) and quadrupole (‘ ¼ 2) moments of the power spectrum
divided by the smooth reference spectrum at different
redshifts, z ¼ 3, 1, and 0.5 (from top to bottom). The

reference spectrum PðSÞ
‘;no-wiggleðkÞ is calculated from the

no-wiggle approximation of the linear transfer function
in Ref. [47], taking account of the linear-order result of
the Kaiser effect. The multipole moments of the two-
dimensional power spectrum are defined by

PðSÞ
‘ ðkÞ ¼ 2‘þ 1

2

Z 1

�1
d�PðSÞðk;�ÞP ‘ð�Þ; (8)

with P ‘ð�Þ denoting the Legendre polynomials.
As has been repeatedly stated in the literature

[23,25,34,48], the standard PT treatment is not sufficiently
accurate to describe the BAOs. Figure 1 confirms that this
is indeed true not only in real space, but also in redshift
space. While the power spectrum amplitude of N-body
simulations tends to be smaller than that of the linear-
theory prediction (dotted lines), the predicted amplitude
of standard PT generally overestimates the N-body results,
and it exceeds the linear prediction on small scales.
Compared to the results in real space, the discrepancy
between prediction and simulation seems a bit large. For
instance, at z ¼ 1, the standard PT prediction for the
monopole spectrum starts to deviate from the N-body
results at k� 0:07h Mpc�1, whereas a good agreement
between prediction and N-body simulation still holds at
k & 0:13h Mpc�1 in real space (see vertical arrows in
Fig. 5). In contrast, in the Lagrangian PT calculation, the
amplitude of the power spectrum is rather suppressed, and
a better agreement between prediction and simulation is
achieved at low k. This is due to the exponential prefactor
in Eq. (6). As a trade-off, however, the predicted amplitude
at higher k modes largely underestimates the result of
N-body simulations. Further, a closer look at the first
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peak of BAOs around k� 0:05� 0:1h Mpc�1 reveals a
small discrepancy, which becomes significant for lower
redshifts and can produce few % errors in the power
spectrum amplitude.

These results indicate that the existing PT-based ap-
proaches fail to describe the two competitive effects of
redshift distortion in the power spectrum.1 A proper ac-
count of these is thus essential in accurately modeling
BAOs.

B. Phenomenological model description

Next consider the phenomenological models of redshift
distortion, which have been originally introduced to ex-
plain the observed power spectrum on small scales.
Although the relation between the model and exact ex-
pression (4) is less clear, for most of the models frequently
used in the literature, the redshift-space power spectrum is
expressed in the form (e.g., [42,49–54])

PðSÞðk;�Þ ¼ DFoG½k�f�v�PKaiserðk;�Þ; (9)

where the term PKaiserðk;�Þ represents the Kaiser effect,
and the term DFoG½k�f�v� indicates a damping function
which mimics the Finger-of-God effect. The quantity �v is
the one-dimensional velocity dispersion defined by �2

v ¼
hu2zð0Þi. The variety of the functional forms forPKaiserðk;�Þ
and DFoG½k�f�v� is summarized as follows.
The Kaiser effect has been first recognized from the

linear-order calculations [43], from which the enhance-
ment factor ð1þ f�2Þ2 is obtained [see Eq. (5)]. As a
simple description for the Kaiser effect, one may naively
multiply the nonlinear matter power spectrum by this
factor, just by hand. Recently, proper account of the non-
linear effect has been discussed [42,49], and a nonlinear
model of the Kaiser effect has been proposed using the
real-space power spectra. Thus, we have

PKaiserðk;�Þ ¼
� ð1þ f�2Þ2P��ðkÞ linear;
P��ðkÞ þ 2f�2P��ðkÞ þ f2�4P��ðkÞ nonlinear:

(10)

FIG. 1 (color online). Ratio of power spectra to smoothed reference spectra in redshift space, PðSÞ
‘ ðkÞ=PðSÞ

‘;no-wiggleðkÞ. N-body

results are taken from the WMAP5 simulations of Ref. [34]. The reference spectrum PðSÞ
‘;no-wiggle is calculated from the no-wiggle

approximation of the linear transfer function with the linear theory of the Kaiser effect taken into account. Short dashed and dot-dashed
lines, respectively, indicate the results of one-loop PT and Lagrangian PT calculations for the redshift-space power spectrum [Eqs. (5)
and (6)].

1Nevertheless, it should be noted that the Lagrangian PT would still be powerful in predicting the two-point correlation function
around the baryon acoustic peak. In both real and redshift spaces, the prediction reasonably recovers the smeared peak and trough
structures, and it gives a better agreement with N-body simulation.
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Here, the spectra P��, P��, and P�� denote the auto power
spectra of density and velocity divergence, and their cross
power spectrum, respectively. The velocity divergence � is
defined by � � ru ¼ �rv=ðaHfÞ.2

On the other hand, the functional form of the damping
term can be basically modeled from the distribution func-
tion of one-dimensional velocity. Historically, it is charac-
terized by a Gaussian or exponential function (e.g., [51–
54]), which leads to

DFoG½x� ¼
�
expð�x2Þ Gaussian;
1=ð1þ x2Þ Lorentzian:

(11)

Note that there is an analogous expression for the expo-
nential distribution, i.e., DFoG½x� ¼ 1=ð1þ x2=2Þ2 [50],
but the resultant power spectrum is quite similar to the
one adopting the Lorentzian form for the range of our
interest, x & 1. Since the Finger-of-God effect is thought
to be a fully nonlinear effect, which mostly comes from the
virialized random motion of the mass (or galaxy) residing
in a halo, the prediction of �v seems rather difficult. Our
primary purpose is to model the shape and structure of the

acoustic feature in the power spectrum, and the precise
form of the damping is basically irrelevant. We thus regard
�v as a free parameter and determine it by fitting the
predictions to the simulations or observations.
Figure 2 compares the phenomenological models of

redshift distortion with combination of Eqs. (10) and (11)
with N-body simulations. In computing the redshift-space
power spectrum from the phenomenological models, we
adopt the improved PT treatment by Refs. [33,34], and the
analytic results including the corrections up to the second-
order Born approximation are used to obtain the three
different power spectra P��, P��, and P��. The accuracy
of the improved PT treatment has been checked in detail by
Ref. [34], and it has been shown that the predictions of P��

reproduce the N-body results quite well within 1% accu-
racy below the wave number k1%, indicated by the vertical
arrows in Fig. 2. This has been calibrated from a proper
comparison between N-body and PT results and is empiri-
cally characterized by solving the following equa-
tion [25,34]:

k21%
6�2

Z k1%

0
dqPlinðq; zÞ ¼ C (12)

with C ¼ 0:7 and Plin being the linear matter spectrum.
Note that the 1% accuracy of the improved PT prediction at

FIG. 2 (color online). Same as in Fig. 1, but here we plot the results of phenomenological model predictions. The three different
predictions depicted as solid, dashed, dot-dashed lines are based on the phenomenological model of redshift distortion (9) with various
choices of Kaiser and Finger-of-God terms [Eqs. (10) and (11)]. The left panel shows the monopole power spectra (‘ ¼ 0), and the
right panel shows the quadrupole spectra (‘ ¼ 2). In all cases, the one-dimensional velocity dispersion �v was determined by fitting
the predictions to the N-body simulations. In each panel, the vertical arrows indicate the maximum wave number k1% for improved PT
prediction including up to the second-order Born approximation [see Eq. (12) for a definition].

2The sign convention of the definition of velocity divergence �
differs from that of Refs. [33,34], but is equivalent to the one in
Refs. [26–28,42].
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z ¼ 3 is reached at k� 0:47h Mpc�1, outside the plot
range. We basically use this criterion to determine �v,
and fit the predictions of both the monopole and quadru-
pole spectra to the N-body results in the range 0 � k �
k1%.

Since we allow �v to vary as a free parameter, the
overall behavior of the model predictions reproduces the
N-body results, and the differences between model predic-
tions are basically small compared to the results in the PT
description. However, there still exist small but non-
negligible discrepancies between N-body results and
model predictions, which are statistically significant, and
are comparable to or exceed the expected errors in upcom-
ing BAO measurements [34]. Although the agreement is
somehow improved when we adopt the nonlinear model of
PKaiser, there still remain discrepancies of a few % in
monopole and 5% in quadrupole moments of the power
spectrum amplitudes. These are irrespective of the choice
of damping function DFoG.

Furthermore, the fitted results of �v show a somewhat
peculiar behavior. Figure 3 plots the fitted values of �v as a
function of redshift (symbols), which significantly deviate
from the linear-theory prediction (solid line) at increasing
redshifts. At z ¼ 3, the fitted result eventually approaches
zero in order to minimize the residuals in fitting the pre-
diction to simulations. This could happen when we account
for a slight damping at low k and a small enhancement at
high k in power spectrum amplitudes. The fitted results of
�v are in contrast with naive expectations and indicate that
the model based on the expression (9) misses something
important and needs to be reconsidered.

IV. IMPROVED MODEL PREDICTION

A. Derivation

The comparison in the previous section reveals that even
in the models with a fitting parameter, a small but non-
negligible discrepancy appears at the scales of BAOs,
where the choice of the damping function DFoG½x� does
not sensitively affect the predictions. This implies that
there exist missing terms arising from the nonlinear
mode coupling between density and velocity fields, and
those corrections alter the acoustic feature in the redshift-
space power spectrum. In this section, starting with the
exact expression (4), we derive nonlinear corrections,
which are relevant to explain the modulation of acoustic
features in redshift space.
First recall that the expression (4) is written in the form

PðSÞðk;�Þ ¼
Z

d3xeik�xhej1A1A2A3i; (13)

where the quantities j1, Ai (i ¼ 1, 2, 3) are, respectively,
given by

j1 ¼ �ik�f; A1 ¼ uzðrÞ � uzðr0Þ;
A2 ¼ �ðrÞ þ frzuzðrÞ; A3 ¼ �ðr0Þ þ frzuzðr0Þ:

We shall rewrite the ensemble average hej1A1A2A3i in terms
of cumulants. To do this, we use the relation between the
cumulant and moment generating functions. For the sto-
chastic vector field A ¼ fA1; A2; A3g, we have (e.g.,
[29,42])

hej�Ai ¼ expfhej�Aicg (14)

with j being an arbitrary constant vector, j ¼ fj1; j2; j3g.
Taking the derivative twice with respect to j2 and j3, we
then set j2 ¼ j3 ¼ 0. We obtain [42]

hej1A1A2A3i ¼ expfhej1A1icg½hej1A1A2A3ic
þ hej1A1A2ichej1A1A3ic�: (15)

Substituting this into Eq. (13), we arrive at

PðSÞðk;�Þ ¼
Z

d3xeik�x expfhej1A1icg½hej1A1A2A3ic
þ hej1A1A2ichej1A1A3ic�: (16)

This expression clearly reveals the coupling between den-
sity and velocity fields associated with the Kaiser and
Finger-of-God effects. In addition to the prefactor
expfhej1A1icg, the ensemble averages over the quantities
A2 and A3 responsible for the Kaiser effect all include
the exponential factor ej1A1 , which can produce a non-
negligible correlation between density and velocity.
Comparing Eq. (16) with the expression (9) with (10)

and (11), we deduce that the phenomenological models
discussed in Sec. III B miss something important and are
derived based on several assumptions or treatments:

FIG. 3 (color online). Redshift evolution of velocity dispersion
�v determined by fitting the predictions of monopole and
quadrupole power spectra to the N-body results. The solid line
represents the linear-theory prediction, while the symbols indi-
cate the results obtained by fitting the models of redshift dis-
tortion with various choices of Kaiser and damping terms (see
Fig. 2).
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(i) In the integrand of Eq. (16), while taking the limit
j1 ! 0 in the bracket, we keep j1 � 0 in the expo-
nent of the prefactor.

(ii) For cumulants hAn
1ic ¼ h½uzðrÞ � uzðr0Þ�nic of any

integer value n, the spatial correlations between
different positions are ignored, and the nonvanish-
ing cumulants are assumed to be expressed as
hAn

1ic ’ 2hunz ic ¼ 2cn�
n
v for even n, with cn being

constants.
(iii) To further obtain the Gaussian or Lorentzian forms

of the damping function DFoG½x�, we assume that
the conditions, cn ¼ 0 except for c2 ¼ 1, or, c2n ¼
ð2n� 1Þ! and c2n�1 ¼ 0, are fulfilled.

In the above, the last two conditions play a role for
specifying the damping function, and they mainly affect
the broadband shape of the power spectrum. On the other
hand, the first condition leads to the expression of
PKaiserðkÞ, which can add the most dominant contribution
to the acoustic feature in the power spectrum. Since the
choice of the damping function (11) is presumably a minor
source for discrepancies between the model predictions
and simulations, taking the limit j1 ! 0 in the bracket
would be the main reason for discrepancy. In this respect,
the terms involving the exponential factor can produce
additional contributions to the spectrum PKaiserðkÞ, which
are responsible for explaining the modulated acoustic peak
and trough structure in redshift space.

Let us now derive the corrections to PKaiserðkÞ. To do
this, we keep the last two conditions, and perturbatively
treat the terms inside the bracket of Eq. (16). This treat-
ment is reasonable, because the modification of acoustic
features should be small for relevant scales of BAOs. On
the other hand, the factor expfhej1A1icg is most likely
affected by the virialized random motion of the mass
around halos, and seems difficult to treat perturbatively.
Here, regarding the quantity j1 as a small expansion pa-
rameter, we perturbatively expand the terms in the bracket
of the integrand. Up to the second order in j1, we have

hej1A1A2A3ic þ hej1A1A2ichej1A1A3ic
’ hA2A3i þ j1hA1A2A3ic

þ j21f12hA2
1A2A3ic þ hA1A2ichA1A3icg þOðj31Þ: (17)

In the above, the term hA2
1A2A3ic turns out to be higher

order when we explicitly compute it employing the pertur-
bation theory calculation, and is roughly proportional to
OðP3

linÞ. We thus drop the higher-order contribution, and

collect the leading and next-to-leading order contributions.
Then, Eq. (16) can be recast as

PðSÞðk;�Þ ¼ DFoG½k�f�v�fP��ðkÞ þ 2f�2P��ðkÞ
þ f2�4P��ðkÞ þ Aðk;�Þ þ Bðk;�Þg: (18)

Here, we replaced the exponential prefactor expfhej1A1icg
with the damping function DFoG. The corrections A and B

are, respectively, given by

Aðk;�Þ ¼ j1
Z

d3xeik�xhA1A2A3ic;

Bðk;�Þ ¼ j21

Z
d3xeik�xhA1A2ichA1A3ic:

In terms of the basic quantities of density � and velocity
divergence � ¼ �rv=ðaHfÞ, they are rewritten as

Aðk;�Þ ¼ ðk�fÞ
Z d3p

ð2�Þ3
pz

p2
fB�ðp; k� p;�kÞ

� B�ðp; k;�k� pÞg; (19)

Bðk;�Þ ¼ ðk�fÞ2
Z d3p

ð2�Þ3 FðpÞFðk� pÞ; (20)

FðpÞ ¼ pz

p2

�
P��ðpÞ þ f

p2
z

p2
P��ðpÞ

�
;

where the function B� is the cross bispectra defined by

�
�ðk1Þ

�
�ðk2Þ þ f

k22z
k22

�ðk2Þ
��
�ðk3Þ þ f

k23z
k23

�ðk3Þ
��

¼ ð2�Þ3�Dðk1 þ k2 þ k3ÞB�ðk1; k2;k3Þ: (21)

In deriving the expression (18), while we employed the
low-k expansion, we do not assume that the terms Ai

themselves are entirely small. In this sense, the expressions
(18)–(20) still have some nonperturbative properties,
although the new corrections A and B neglected in the
previous phenomenological models are expected to be
small, and can be treated perturbatively. In Appendix A,
based on the standard PT treatment, we summarize the
perturbative expressions for the corrections (19) and (20),
in which the three-dimensional integrals are reduced to the
sum of one- and two-dimensional integrals.
To see the significance of the newly derived terms A and

B, we evaluate the monopole and quadrupole contributions
to the functions defined by

PðSÞ
‘;corrðkÞ �

2‘þ 1

2

Z 1

�1
d�DFoGðk�f�vÞfAðk;�Þ

Bðk;�Þ g:
(22)

The results are then plotted in Fig. 4, divided by the

smoothed reference spectrum, PðSÞ
‘;no-wiggleðkÞ. In plotting

the results, we specifically assume the Gaussian form
of DFoG, and adopt the linear theory to estimate �v [see
Eq. (7)].
The corrections coming from the A term show oscilla-

tory behavior and tend to have a larger amplitude than
those from the B term. While the corrections from the B
term are basically smooth and small, they still yield a non-
negligible contribution, especially for the quadrupole
power spectrum. Although the actual contributions of these
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corrections to the total power spectrum are determined by
the fitting parameter �v, and thus the resultant amplitudes
shown in Fig. 4 do not simply reflect the correct ampli-
tudes, the new corrections A and B can definitely give an
important contribution to the acoustic feature in the power
spectrum.

Finally, it is interesting to note that while the new
formula for redshift-space power spectrum (18) would be
applicable to the nonlinear regime where the standard PT
calculation breaks down, the resultant expression itself is
similar to the one for the redshift-space power spectrum in
one-loop standard PT. The one-loop power spectrum in

redshift space, PðSÞ
SPTðk;�Þ given at Eq. (5), can be formally

recast as

PðSÞ
SPTðk; �Þ ¼ f1� ðk�f�v;linÞ2gfP��ðkÞ þ 2f�2P��ðkÞ

þ f2�4P��ðkÞg þ Aðk;�Þ þ Bðk;�Þ
þ Cðk;�Þ: (23)

Note that each term in the above expression should be
consistently evaluated using the perturbative solutions up
to the third order in � and �, and as a result, only the
leading-order corrections proportional to Plin�

2 (or equiv-

alently the fourth order in �ð1Þ) are included in the one-loop
power spectrum. Here, the function C is defined by

Cðk;�Þ ¼ ðk�fÞ2
Z d3pd3q

ð2�Þ3 �Dðk� p� qÞ�
2
p

p2
P��ðpÞ

� fP��ðqÞ þ 2f�2
qP��ðqÞ þ f2�4

qP��ðqÞg

’ ðk�fÞ2
Z d3pd3q

ð2�Þ3 �Dðk� p� qÞ�
2
p

p2

� ð1þ f�2
qÞ2PlinðpÞPlinðqÞ (24)

with �p ¼ pz=jpj and �q ¼ qz=jqj. The second equality

is valid for the one-loop PT calculation. Hence, if we adopt
either the Lorentzian or Gaussian form in Eq. (11) and just
expand it in powers of its argument, the new formula (18)
reduces to the one-loop result (23) by just dropping the
term C.
The C term originates from the spatial correlation of the

velocity field and is obtained through the low-k expansion
of the exponential prefactor expfhej1A1icg in Eq. (16). For
the scales of BAOs, the C term monotonically increases the
amplitude of the power spectrum, and it does not alter the
acoustic structure drastically. Indeed, our several examina-
tions reveal that the effect of this can be effectively ab-
sorbed into the damping function D½k�f�v� by varying
the velocity dispersion �v. Rather, the main drawback of
the standard PT expression (23) comes from a naive ex-
pansion of all the terms in the exact formula (4), which
fails to describe the delicate balance between the Finger-
of-God damping and the enhancement from the Kaiser
effect and nonlinear gravitational growth. As we will
see in the next section, both keeping the damping term
DFoG and including the corrections A and B seem
essential, and with this treatment, even the standard PT
calculation of the power spectrum can give an excellent
result which reproduces the N-body simulations fairly
well.

B. Comparison with N-body simulations

We now compare the new prediction for the redshift-
space power spectra with the result of N-body simulations.
Figure 5 shows the monopole (left panel) and quadrupole
(right panel) power spectra divided by their smooth refer-
ence spectra. The analytical predictions based on the
model (18) are plotted adopting the Gaussian form of the
Finger-of-God term DFoG½kf��v�, and the velocity dis-
persion �v is determined by fitting the predictions to the
N-body results. In computing the predictions, the A and B
terms are calculated from the one-loop standard PT results
in Appendix A, while the spectra P��, P��, and P�� are
obtained from improved PT in solid lines, and from stan-
dard PT in dashed lines.
Compared to Figs. 1 and 2, the agreement between

N-body simulations and predictions depicted as solid lines
is clearly improved, and the prediction including the cor-
rections faithfully traces the N-body trends of the acoustic
feature, especially around k ¼ 0:05� 0:15h Mpc�1,
where the phenomenological model shows a few % level
discrepancy. A remarkable point is that a reasonable agree-
ment basically holds over the range below the critical wave
number k1% calibrated in real space [vertical arrows,
Eq. (12) for definition]. This is also true for the case
adopting one-loop standard PT to compute P��, P��,
and P�� (dashed lines), and the range of agreement is
wider than that of the existing PT-based models in
Sec. III A.

FIG. 4 (color online). Contributions of power spectrum cor-
rections coming from the A and B terms divided by the smooth

reference power spectrum, PðSÞ
‘;corrðkÞ=PðSÞ

‘;no-wiggleðkÞ [Eq. (22)].

We adopt the Gaussian form of the damping function DFoG

with �v computed from linear theory [see Eq. (7)]. Left and
right panels, respectively, show the monopole and quadrupole
power spectra at redshifts z ¼ 3 and 1.
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In Fig. 6, to see the significance of the contributions
from corrections A and B, we divide the improved PT

prediction for the power spectra PðSÞðkÞ at z ¼ 1 into the

three pieces as PðSÞ
Kaiser, P

ðSÞ
corr;A, and PðSÞ

corr;B, which are sepa-

rately plotted as dotted, long-dashed, and short dashed

lines, respectively. The power spectrum PðSÞ
Kaiser is the con-

tribution of the nonlinear Kaiser term given in Eq. (10),
convolved with the damping function DFoG. The spectra

PðSÞ
corr;A and PðSÞ

corr;B represent the actual contributions of the

corrections A and B defined by Eq. (22), with a fitted value
of �v. The corrections A and B give different contributions
in the amplitude of the monopole and quadrupole spectra,
and their total contribution can reach�10% and�40% for
monopole and quadrupole spectra at k & 0:2h Mpc�1,
respectively. Thus, even though the resultant shape of the

total spectrum PðSÞðkÞ apparently resembles the one ob-
tained from the phenomenological model, the actual con-
tribution of the corrections A and B would be large and
cannot be neglected.
Note, however, that a closer look at low-z behavior

reveals a slight discrepancy around k� 0:15h Mpc�1

and 0:22h Mpc�1 in the monopole spectrum. Also, dis-
crepancies in the quadrupole spectrum seem a bit large,
and eventually reach �5% error in some wave numbers at
z ¼ 0:5. This is partially ascribed to our heterogeneous
treatment on the corrections A and B using the standard PT
calculations. It is known that the standard PT result generi-
cally gives rise to a strong damping in the BAOs, and it
incorrectly leads to a phase reversal of the BAOs. Thus,
beyond the validity regime of the standard PT, the predic-

FIG. 5 (color online). Same as in Fig. 2, but here we adopt a new model of redshift distortion (18). Solid and dashed lines represent
the predictions for which the spectra P��, P��, and P�� are obtained from the improved PT including the correction up to the second-
order Born correction, and one-loop calculations of the standard PT, respectively. In both cases, the corrections A and B given in
Eqs. (19) and (20) are calculated from standard PT results (see Appendix A). The vertical arrows indicate the maximum wave number
k1% defined in Eq. (12), for standard PT and improved PT (from left to right).

FIG. 6 (color online). Contribution of each term in the
redshift-space power spectrum. For monopole (‘ ¼ 0, left) and
quadrupole (‘ ¼ 2, right) spectra of the improved model pre-
diction at z ¼ 1 shown as solid lines of Fig. 5, we divide the total

power spectrum PðSÞ
total (solid) into the three pieces as PðSÞ

total ¼
PðSÞ
Kaiser þ PðSÞ

corr;A þ PðSÞ
corr;B, and each contribution is separately

plotted dividing by smoothed reference spectra, PðSÞ
‘;no-wiggle.

Here, the spectrum PðSÞ
Kaiser (dotted) is the contribution of the

nonlinear Kaiser term (10) convolved with the Finger-of-God

damping DFoG, and the corrections PðSÞ
corr;A and PðSÞ

corr;B are those

given by Eq. (22).
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tions including the small corrections tend to oversmear the
acoustic feature, leading to a small discrepancy shown in
Fig. 5.

Another source for the discrepancies may come from the
effect of finite-mode sampling caused by the finite box size
of the N-body simulations. As advocated by Refs. [25,55],
due to the finite number of Fourier modes, the matter
power spectrum measured from N-body simulations may
not agree well with the predictions of linear theory nor
standard PT even at very large scales, and tends to system-
atically deviate from them.While we follow and extend the
procedure of Ref. [25] to correct this effect in redshift
space, it relies on the leading-order calculations of standard
PT, and the correction for finite-mode sampling has been
restricted to the low-k modes, k & 0:1h Mpc�1 [34].
Hence, the high-k modes of the power spectrum plotted
here may be affected by the effect of finite-mode sampling,
and it would be significant for higher-multipole spectra
because of its small amplitude. This might still be serious
even with the 30 independent N-body simulations.

Perhaps, the best way to remedy these discrepancies at
low-z is both to apply the improved PT treatment to the
corrections A and B, and to consider the higher-order
contributions for correcting the effect of finite-mode sam-
pling over the relevant range of BAOs. The complete
analysis along this line needs some progress and is beyond
the scope of this paper. Nevertheless, it should be stressed
that the model given by Eq. (18) captures several important
aspects of redshift distortion, and even the present treat-
ment with standard PT calculations of the corrections A
and B can provide a better description for power spectra. In
Fig. 7, we plot the fitted values of the velocity dispersion

obtained from the new predictions shown in Fig. 5. The
redshift dependence of the fitted results roughly matches
physical intuition, and is rather consistent with the linear-
theory prediction. This is contrasted to the cases neglecting
the corrections (see Fig. 3).
As another significance, we plot in Fig. 8 the

quadrupole-to-monopole ratios for redshift-space power
spectra. The new model predictions using standard and
improved PT calculations (solid and dashed lines) are
compared with those neglecting the corrections A and B

(dot-dashed lines). The amplitude of the ratio PðSÞ
2 =PðSÞ

0

basically reflects the strength of the clustering anisotropies,
and is proportional to ð4f=3þ 4f2=7Þ=ð1þ 2f=3þ f2=5Þ
in the limit k ! 0 (e.g., [1,3,43]). One noticeable point is
that the N-body results for the quadrupole-to-monopole
ratio do exhibit oscillatory behavior, and the model includ-
ing the corrections (18) reproduces the N-body trends
fairly well. On the other hand, the phenomenological
model neglecting the corrections generally predicts the

smooth scale dependence of the ratio PðSÞ
2 =PðSÞ

0 , and thus

it fails to reproduce the oscillatory feature. Since this
oscillation originates from the acoustic feature in BAOs,

FIG. 7 (color online). Same as in Fig. 3, but here we adopt the
new model of redshift distortion in estimating �v. The filled
triangles and circles are the results obtained from predictions
based on standard PT and improved PT calculations, respectively
(see dashed and solid lines in Fig. 5).

FIG. 8 (color online). Quadrupole-to-monopole ratios for the

redshift-space power spectrum, PðSÞ
2 ðkÞ=PðSÞ

0 ðkÞ, given at z ¼ 3,
2, 1, and 0.5 (from top to bottom). Solid and dashed lines,
respectively, represent the predictions based on the new model
of redshift distortion combining improved PT and standard PT
calculation to estimate the three different power spectra P��,
P��, and P��. Dot-dashed lines are the results based on the
phenomenological model neglecting the corrections, which cor-
respond to solid lines in Fig. 2 (i.e., nonlinear PKaiser þ
Gaussian, DFoG). The vertical arrows indicate the maximum
wave number k1% for standard PT (left, green) and improved
PT (right, magenta).
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Fig. 8 implies that the quadrupole-to-monopole ratio pos-
sesses helpful information not only to constrain the
growth-rate parameter f, but also to determine the acoustic
scales. In other words, any theoretical template for the
redshift-space power spectrum neglecting the corrections
A and B may produce a systematic bias in determining the
growth-rate parameter fðzÞ, Hubble parameter HðzÞ, and
angular diameter distance DAðzÞ, which we will discuss in
detail in the next section.

V. IMPLICATIONS

The primary science goal of future galaxy surveys is to
clarify the nature of late-time cosmic acceleration, and
thereby constraining the parameters DAðzÞ, HðzÞ, and
fðzÞ through a precise measurement of BAOs in redshift
space would be the most important task. However, these
constraints may be biased if we use the incorrect model of
redshift distortion as a theoretical template fitting to ob-
servations. In this section, we explore the potential impact
on the uncertainty and bias in the parameter estimation for
DAðzÞ, HðzÞ, and fðzÞ.

A. Recovery of parameters DA, H, and f

Let us first examine the parameter estimation using the
new model of redshift distortion. Fitting the theoretical
template for the power spectrum to the N-body data, we
will check if the best-fit parameters for DAðzÞ, HðzÞ, and
fðzÞ can be correctly recovered from the monopole and
quadrupole moments of anisotropic BAOs.

We model the power spectrum ofN-body simulations by

PðSÞ
modelðk;�Þ ¼ HðzÞ

HfidðzÞ
�
DA;fidðzÞ
DAðzÞ

�
2
PðSÞðq; �Þ; (25)

where the comoving wave number k and the directional
cosine � for the underlying cosmological model are re-
lated to the true ones q and � by the Alcock-Paczynski
effect through (e.g., [18,53,54])

q ¼ k

��
DA;fid

DA

�
2 þ

��
H

Hfid

�
�

�
DA;fid

DA

�
2
�
�2

	
1=2

; (26)

� ¼
�
H

Hfid

�
�

��
DA;fid

DA

�
2 þ

��
H

Hfid

�
�

�
DA;fid

DA

�
2
�
�2

	�1=2
:

(27)

The quantities DA;fid and Hfid are the fiducial values of the

angular diameter distance and Hubble parameter adopted
in the N-body simulations. For a given set of cosmological

parameters, the redshift-space power spectrum PðSÞ is cal-
culated from Eq. (18), but we here treat the quantity f as a
free parameter in addition to the velocity dispersion �v.

Further, to mimic a practical data analysis using galaxy
power spectrum, we introduce the bias parameter b, assum-
ing a linear deterministic relation, i.e., �sim ¼ b�m.

3 Then,
fitting the monopole and quadrupole power spectra of
Eq. (25) to those of the N-body simulation at z ¼ 1, we
determine the best-fit values of DA, H, and f, just margi-
nalized over the parameters �v and b. To do this, we use
the Markov chain Monte Carlo (MCMC) technique de-
scribed by Ref. [56], and adopt the likelihood function
given by

�2 lnL ¼ X
n

X
‘;‘0¼0;2

fPðSÞ
‘;simðknÞ � PðSÞ

‘;modelðknÞgCov�1
‘;‘0 ðknÞ

� fPðSÞ
‘0;simðknÞ � PðSÞ

‘0;model
ðknÞg; (28)

where the quantity Cov‘;‘0 represents the covariance matrix

between different multipoles. The range of wave number
used in the likelihood analysis was chosen as k � kmax ¼
0:205h Mpc�1, so as to satisfy kmax � k1%. As for the
covariance, we simply ignore the non-Gaussian contribu-
tion (see Ref. [57] for validity of this treatment), and use
the linear theory to estimate the diagonal components of
the covariance, Cov‘;‘0 , including the effect of shot-noise

contribution assuming the galaxy number density �ng ¼
5� 10�4h3 Mpc�3. The explicit expression for the covari-
ance is presented in Appendix C. We checked that the
linear-theory estimate reasonably reproduces the N-body
results of the covariance matrix for the range of our interest
k & 0:3h Mpc�1 at z ¼ 1.
Figure 9 summarizes the result of the MCMC analysis

assuming an idealistically large survey with Vs ¼
20h�3 Gpc3. The two-dimensional contours of the 1-�
marginalized errors are shown for DA=DA;fid vs H=Hfid

(bottom left), DA=DA;fid vs f (middle left), and f vs

DA=DA;fid (bottom center). Also, the marginalized poste-

rior distribution for each parameter is plotted in the top left,
middle center, and bottom right panels. In each panel, blue
and red lines, respectively, represent the results using the
model of redshift distortion with and without the terms A
and B.
As is clear from Fig. 9, the model including the correc-

tions shows a better performance. Within the 1-� errors,
which roughly correspond to the precision of a percent
level, it correctly reproduces the fiducial values of the
parameters (indicated by crosses). On the other hand, the
two-dimensional errors of the results neglecting the cor-
rections show a clear evidence for the systematic bias on
the best-fit parameters. Accordingly, the resultant value of

3In the case adopting linear galaxy bias, the growth-rate
parameter f and the power spectra Pab in the expression (18)
are, respectively, replaced with � � f=b and b2Pab. Also, the
standard PT expression for the corrections Aðk;�; fÞ and
Bðk;�; fÞ should be replaced with b3 Aðk;�;�Þ and b4

Bðk;�;�Þ.
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�2 around the best-fit parameters, given by �2 ¼ �2 lnL,
is larger than that of the case including the corrections
�2 ¼ 10:1 and 22.2 for the cases with and without correc-
tions, respectively. Although the deviation from the fidu-
cial values seems somewhat small except for the growth-
rate parameter f, this is solely due to the fact that we only
use the monopole and quadrupole power spectra. It would
be generally significant in the analysis using the full shape
of the redshift-space power spectrum, for which the statis-
tical errors are greatly reduced, and thereby the systematic
biases would be prominent.

B. Impact of redshift distortion on future
measurements of DA, H, and f

Given the fact that the robust measurement of DA, H,
and f can be made with the new model of redshift dis-
tortion, we then move to the discussion on the potential
impact on the future measurements using the full shape of
the redshift-space power spectrum. Here, for illustrative
purpose, we consider two surveys around z ¼ 1, with

volume Vs ¼ 4 and 20h�3 Gpc3, and quantitatively esti-
mate how the wrong model of redshift distortion leads to
incorrect measurements of DA, H, and f.
The fundamental basis to estimate the uncertainties and

systematic biases on model parameters is the Fisher-matrix
formalism. The Fisher matrix for a galaxy survey is given
by

Fij ¼ Vs

ð2�Þ2
Z kmax

kmin

dkk2
Z 1

�1
d�

@ lnPðSÞ
obsðk;�Þ
@pi

� @ lnPðSÞ
obsðk; �Þ
@pj

�
�ngP

ðSÞ
obsðk;�Þ

�ngP
ðSÞ
obsðk;�Þ þ 1

�
2

(29)

with �ngal being the number density of galaxies, for which

we specifically set �ngal ¼ 5� 10�4h3 Mpc�3. The mini-

mum wave number available for a given survey, kmin, is set

to 2�=V1=3
s . Here, the observed power spectrum PðSÞ

obs is

given by Eq. (25), and we allow for the influence of galaxy
biasing adopting the deterministic linear relation, �gal ¼
b�m. Then, we have five parameters in total, given by pi ¼
fb; f; �v; DA=DA;fid; H=Hfidg. Fiducial values of these pa-

rameters are set as b ¼ 2, f ¼ 0:858, DA=DA;fid ¼ 1, and
H=Hfid ¼ 1. As for the velocity dispersion �v, we use the
fitted result to N-body simulations adopting the new model
of redshift distortion in Sec. IVB, and set �v ¼
395 km s�1.
Based on the Fisher matrix (29), the systematic bias for

parameter pi caused by incorrectly modeling the theoreti-
cal power spectrum is estimated from the following for-
mula:

�pi ¼ �X
j

ðF0�1Þijsj; (30)

where F0�1 is the inverse Fisher matrix evaluated at the
fiducial parameter set, but is obtained from an incorrect
model of redshift distortion as a theoretical template of
redshift-space power spectrum. The vector sj is given by

sj ¼ Vs

ð2�Þ2
Z

dkk2
Z 1

�1
d�

Psysðk;�Þ
Pwrongðk;�Þ

@ lnPwrongðk;�Þ
@pj

�
�

�ngP
wrongðk;�Þ

1þ �ngP
wrongðk;�Þ

�
2
: (31)

The function Pwrongðk;�Þ is the theoretical template adopt-
ing the incorrect model of redshift distortion. The system-
atic differences in the power spectrum amplitude are
quantified as Psysðk;�Þ ¼ Pwrongðk;�Þ � Ptrueðk;�Þ,
where Ptrueðk;�Þ is the correct template for the redshift-

space power spectrum PðSÞ
obs, for which we assume the new

model of redshift distortion including the terms A and B
[Eq. (18)]. Below, we will quantify the magnitude of
systematic biases if we incorrectly apply the model of
redshift distortion neglecting the corrections A and B for
the power spectrum template.
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FIG. 9 (color online). Results of MCMC analysis using the
model of redshift distortion with and without corrections (de-
picted as blue and red lines, respectively). Based on the power
spectrum template (25), we derive the posterior distribution for
the parameters DA, H, and f from the monopole and quadrupole
spectra of N-body simulations at z ¼ 1, marginalized over the
one-dimensional velocity dispersion �v and linear bias parame-
ter b. Top left, middle center, and bottom right show the
marginalized posterior distribution for DA=DA;fid, H=Hfid, and

f. Shaded regions indicate the 1% interval around the fiducial
values. Middle left, bottom left, and bottom center plot the two-
dimensional 1-� errors on the surfaces ðH=Hfid; fÞ,
ðDA=DA;fid; H=HfidÞ, and ðf;H=HfidÞ. Note that in estimating

the likelihood function (28), we adopted the linear theory to
calculate the covariance matrix Cov‘;‘0 , including the shot-noise

contribution with �ng ¼ 5� 10�4h3 Mpc�3 and assuming an

idealistically large survey volume Vs ¼ 20h�3 Gpc3 (see
Appendix C for an explicit expression).
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Figure 10 plots the results of the Fisher-matrix calcula-
tions marginalized over the nuisance parameters b and �v.
The uncertainties and biases for the best-fit values of f,DA,
and H are estimated assuming kmax ¼ 0:12h Mpc�1 (left
panel) and 0:2h Mpc�1 (right panel), and the results are
shown for the surveys with Vs ¼ 4h�3 Gpc3 (open) and
20h�3 Gpc3 (shaded). In each panel, two-dimensional con-
tours around the crosses and filled triangles show the
expected 1-� (68% C.L.) errors around the best-fit values
adopting the model of redshift distortion with and without
the corrections, respectively. The differences between best-
fit values (crosses and filled triangles) represent the sys-
tematic biases estimated from Eq. (30), which remain
unchanged irrespective of the survey volume Vs. Since
the size of marginalized uncertainties is proportional to

V�1=2
s , the systematic bias in the best-fit parameters be-

comes relatively prominent and is considered to be a
serious problem if we increase the survey volume. Note
that similar to the result in Fig. 9, there exists a tight
correlation between the growth-rate parameter f and quan-
tities DA and H. This is consistent with the finding by
Ref. [58], indicating that distinguishing dark energy from
modified gravity requires another observational constraint.

Figure 10 implies that the phenomenological model of
redshift distortion neglecting the corrections can produce a
large systematic error. By increasing the maximum wave
number kmax, the bias on the measurements of angular
diameter distance and Hubble parameter reaches

�1%–2% error, while the best-fit value for the growth-
rate parameter would be seriously biased with �5% error.
If we conservatively choose a smaller value of kmax &
0:12h Mpc�1, these systematics could still be within the
statistical error for surveys with typical volume of Vs �
4h�3 Gpc3. However, for a survey of larger volume with
Vs * 20h�3 Gpc3, the systematic error on the growth-rate
parameter exceeds the marginalized uncertainty. If we
aggressively choose kmax � 0:2h Mpc�1 in order to reduce
statistical uncertainties, the systematic biases become def-
initely serious issues in all of the parameters f, DA, and H
for both surveys of volume Vs ¼ 4 and 20h�3 Gpc3.
Hence, correctly modeling redshift distortion would be
very crucial for both stage-III and -IV class surveys defined
by the Dark Energy Task Force [59].

VI. DISCUSSION AND CONCLUSION

In this paper, we have investigated the power spectrum
in redshift space and presented a new model of redshift
distortion, which is particularly suited for modeling aniso-
tropic BAOs around k ¼ 0� 0:3h Mpc�1. Contrary to the
previous phenomenological models in which the effects of
Kaiser and Finger-of-God are separately treated in a multi-
plicative way, the new model includes the corrections
coming from the nonlinear coupling between velocity
and density fields, which give rise to a slight uplift in the
amplitude of monopole and quadrupole power spectra. The

FIG. 10 (color online). Expected two-dimensional contours on marginalized errors around the best-fit values of DA=DA;fid vs H=Hfid

(bottom left), f vs H=Hfid (bottom right) and DA=DA;fid vs f (top left) at z ¼ 1, obtained from the full shape of the redshift-space

power spectrum. The maximum wave number for parameter estimation is chosen as kmax ¼ 0:12 (left panels) and 0:2h Mpc�1 (right
panels), so as to satisfy the condition kmax < k1% for standard PT and improved PT, respectively. In each panel, open and shaded
contours indicate the two-dimensional errors for the surveys with Vs ¼ 4 and 20h�3 Gpc3.
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model predictions can give a good agreement with results
of N-body simulations, and a percent-level precision is
almost achieved.

Based on the new model of redshift distortion, we pro-
ceeded to the parameter estimation analysis and checked if
the theoretical prediction correctly recovers the cosmologi-
cal information from the monopole and quadrupole spectra
of N-body simulations. MCMC analysis revealed that
while the new model of redshift distortion combining the
improved PT calculation faithfully reproduces the fiducial
parameters DA, H, and f and the precision can reach the
percent level, the model neglecting the corrections (A and
B terms) exhibits a slight offset of the best-fit values. In
order to estimate the potential impact on future measure-
ments, we have further made the Fisher-matrix analysis

using the full shape of the power spectrum PðSÞðk;�Þ, and
found that the existing phenomenological models of red-
shift distortion neglecting the corrections produce a sys-
tematic error on measurements of the angular diameter
distance and Hubble parameter by 1%–2%, and the
growth-rate parameter by �5%. This would become non-
negligible for stage-III and -IV class surveys defined by the
Dark Energy Task Force. Correctly modeling redshift dis-
tortion is thus crucial, and the new prescription for the
redshift-space power spectrum presented here plays an
essential role in constraining the dark energy and/or modi-
fied gravity from anisotropic BAOs.

Finally, we note several remaining tasks in practical
application to the precision measurement of BAOs. One
is the improved treatment for calculation of the corrections,
A and B terms, which needs to evaluate the bispectrum of
density and velocity fields. In doing this, a systematic
treatment using a multipoint propagator developed by
Ref. [60] would be useful and indispensable. Also, the
effects of the new contributions to the redshift-space clus-
tering in the presence of the primordial non-Gaussianity
and the dark-sector interaction would be presumably im-
portant (e.g., [10,61,62]), and should deserve further in-

vestigation. Of course, the biggest issue is the galaxy
biasing. Recent numerical and analytical studies claim
that the scale-dependent and stochastic properties of the
galaxy bias can change the redshift-space power spectrum,
and the potential impact on the determination of the
growth-rate parameter would be significant [63,64]. A
realistic modeling of galaxy biasing relevant for the scale
of BAOs is thus essential, and a further improvement of the
power spectrum template needs to be developed.
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APPENDIX A: PERTURBATION THEORY
CALCULATIONS FOR CORRECTION TERMS

In this Appendix, we present the perturbative expres-
sions for the corrections A and B defined in Eqs. (19) and
(20), which originate from the coupling between Kaiser
and Finger-of-God effects.
Let us first consider the correction A, which involves the

bispectrum B� of density and velocity divergence [see
Eq. (21)]. Using the perturbative solutions up to the second
order, the leading-order result of the bispectrum becomes

B�ðk1; k2; k3Þ ¼ ð�2fÞ
��

1þ k22z
k22

f

��
1þ k23z

k23
f

�
G2ðk2; k3ÞPlinðk2ÞPlinðP3Þ

þ
�
1þ k23z

k23
f

��
F2ðk1; k3Þ þ

k22z
k22

fG2ðk1; k3Þ
�
Plinðk1ÞPlinðP3Þ

þ
�
1þ k22z

k22
f

��
F2ðk1; k2Þ þ

k23z
k23

fG2ðk1; k2Þ
�
Plinðk1ÞPlinðP2Þ

	
(A1)

with F2 and G2 being the second-order perturbation kernels given by (e.g., [22,26,65])

F2ðk1; k2Þ ¼ 5

7
þ k1 � k2

2k1k2

�
k1
k2

þ k2
k1

�
þ 2

7

�
k1 � k2
k1k2

�
2
; G2ðk1; k2Þ ¼ 3

7
þ k1 � k2

2k1k2

�
k1
k2

þ k2
k1

�
þ 4

7

�
k1 � k2
k1k2

�
2
:

Note that the bispectrum (A1) possesses the following symmetries: B�ðk1; k2; k3Þ ¼ B�ðk1; k3; k2Þ ¼ B�ð�k1;
�k2;�k3Þ. Then, substituting the expression (A1) into the definition (19), the correction A can be recast schematically
in the form as
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Aðk;�Þ ¼ �k�
X
m;n

Z d3p

ð2�Þ3 f
mpn

zQmnðk;pÞ; (A2)

where the functionQmn is the scalar function of k and p. To
further perform the angular integral, we use the formulas

presented in Appendix B [Eq. (B3)], which can be obtained
by utilizing the rotational covariance of the integral (see
also Ref. [29]). After straightforward but lengthy calcula-
tion, the correction Aðk;�Þ is finally reduced to the follow-
ing form:

Aðk;�; zÞ ¼ X3
m;n¼1

�2mfn
k3

ð2�Þ2
�Z 1

0
dr

Z þ1

�1
dxfAmnðr; xÞPlinðk; zÞ þ ~Amnðr; xÞPlinðkr; zÞgPlinðk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2 � 2rx

p
; zÞ

ð1þ r2 � 2rxÞ2

þ Plinðk; zÞ
Z 1

0
dramnðrÞPlinðkr; zÞ

	
; (A3)

where we introduce the quantities r ¼ k=p and x ¼ ðk � pÞ=k=p. Note again that� is the cosine of the angle between line-
of-sight direction ẑ and the vector k, i.e., � ¼ ðk � ẑÞ=k. The nonvanishing components of Amn, ~Amn, and amn are

A11 ¼ � r3

7
fxþ 6x3 þ r2xð�3þ 10x2Þ þ rð�3þ x2 � 12x4Þg; A12 ¼ r4

14
ðx2 � 1Þð�1þ 7rx� 6x2Þ;

A22 ¼ r3

14
fr2xð13� 41x2Þ � 4ðxþ 6x3Þ þ rð5þ 9x2 þ 42x4Þg; A23 ¼ A12;

A33 ¼ r3

14
ð1� 7rxþ 6x2Þf�2xþ rð�1þ 3x2Þg;

for Amn,

~A11 ¼ 1

7
ðxþ r� 2rx2Þð3rþ 7x� 10rx2Þ; ~A12 ¼ r

14
ðx2 � 1Þð3rþ 7x� 10rx2Þ;

~A22 ¼ 1

14
f28x2 þ rxð25� 81x2Þ þ r2ð1� 27x2 þ 54x4Þg; ~A23 ¼ r

14
ð1� x2Þðr� 7xþ 6rx2Þ;

~A33 ¼ 1

14
ðr� 7xþ 6rx2Þð�2x� rþ 3rx2Þ;

for ~Amn, and

a11 ¼ � 1

84r

�
2rð19� 24r2 þ 9r4Þ � 9ðr2 � 1Þ3 log

��������
rþ 1

r� 1

��������
	
;

a12 ¼ 1

112r3

�
2rðr2 þ 1Þð3� 14r2 þ 3r4Þ � 3ðr2 � 1Þ4 log

��������
rþ 1

r� 1

��������
	
;

a22 ¼ 1

336r3

�
2rð9� 185r2 þ 159r4 � 63r6Þ þ 9ðr2 � 1Þ3ð7r2 þ 1Þ log

��������
rþ 1

r� 1

��������
	
; a23 ¼ a12;

a33 ¼ 1

336r3

�
2rð9� 109r2 þ 63r4 � 27r6Þ þ 9ðr2 � 1Þ3ð3r2 þ 1Þ log

��������
rþ 1

r� 1

��������
	
:

for amn.
Next consider the corrections B. This term is already of the orderOðfPlinðkÞg2Þ, and the nonvanishing contribution can be

estimated without employing the perturbative calculations. Just applying the formula (B3) in Appendix B to Eq. (20), we
obtain

Bðk; �Þ ¼ X4
n¼1

X2
a;b¼1

�2nð�fÞaþb k3

ð2�Þ2
Z 1

0
dr

Z þ1

�1
dxBn

abðr; xÞ
Pa2ðk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2 � 2rx

p
ÞPb2ðkrÞ

ð1þ r2 � 2rxÞa ; (A4)

where P12ðkÞ ¼ P��ðkÞ and P22ðkÞ ¼ P��ðkÞ. The nonvanishing coefficients Bn
ab are
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B1
11 ¼

r2

2
ðx2 � 1Þ; B1

12 ¼
3r2

8
ðx2 � 1Þ2; B1

21 ¼
3r4

8
ðx2 � 1Þ2; B1

22 ¼
5r4

16
ðx2 � 1Þ3;

B2
11 ¼

r

2
ðrþ 2x� 3rx2Þ; B2

12 ¼ � 3r

4
ðx2 � 1Þð�r� 2xþ 5rx2Þ; B2

21 ¼
3r2

4
ðx2 � 1Þð�2þ r2 þ 6rx� 5r2x2Þ;

B2
22 ¼ � 3r2

16
ðx2 � 1Þ2ð6� 30rx� 5r2 þ 35r2x2Þ; B3

12 ¼
r

8
f4xð3� 5x2Þ þ rð3� 30x2 þ 35x4Þg;

B3
21 ¼

r

8
½�8xþ rf�12þ 36x2 þ 12rxð3� 5x2Þ þ r2ð3� 30x2 þ 35x4Þg�;

B3
22 ¼

3r

16
ðx2 � 1Þ½�8xþ rf�12þ 60x2 þ 20rxð3� 7x2Þ þ 5r2ð1� 14x2 þ 21x4Þg�;

B4
22 ¼

r

16
½8xð�3þ 5x2Þ � 6rð3� 30x2 þ 35x4Þ þ 6r2xð15� 70x2 þ 63x4Þ þ r3f5� 21x2ð5� 15x2 þ 11x4Þg�:

The expression (A4) is still nonperturbative in the sense
that we do not perturbatively treat the power spectra P��

and P�� in the integrand. For the leading-order calculation,
we simply apply the linear-theory calculation to these
quantities, and replace both P�� and P�� with the linear
spectrum Plin.

Codes for computing the corrections A and B, together
with the standard and improved PT calculations for P��,
P��, and P��, are available upon request.

APPENDIX B: SOME USEFUL FORMULAS FOR
INTEGRALS

In this Appendix, we give the integral formulas used in
Appendix A to derive the perturbative expressions for the
correction A and B. A brief sketch of the derivation can
also be found in Ref. [29] (see Appendix A and B of this
paper).

Let us first consider the integral of an arbitrary scalar
function fðk;pÞ times some vectors over p. A simple
example of the integrand is pipjfðk;pÞ, where subscripts

i, j select the x, y, or z direction. The rotationally invariant
properties of the integral implies that the resultant form of
the integral is given by

Z d3p

ð2�Þ3 pipjfðk;pÞ ¼ P�ij þQkikj; (B1)

irrespective of the functional form of fðk;pÞ. The coeffi-
cients P and Q are obtained by contracting the above
integral with �ij and kikj, and are functions of k ¼ jkj.
We have

P ¼ k5

ð2�Þ2
Z

drr2
Z 1

�1
dxx

r2

2
ð1� x2Þfðk; r; xÞ;

Q ¼ k3

ð2�Þ2
Z

drr2
Z 1

�1
dxx

r2

2
ð3x2 � 1Þfðk; r; xÞ;

where we write p ¼ kr and k � p ¼ k2rx. Thus, as a spe-
cial case with i ¼ j ¼ z, we get the following formula:

Z d3p

ð2�Þ3 p
2
zfðk;pÞ ¼ Pþ ðk�Þ2Q (B2)

with kz ¼ k�.
The above procedure can be generalized to the cases of

integrals involving arbitrary numbers of multiplicative
vectors. As a useful formula, we here explicitly write
down the result summing up the integrals of arbitrary
scalar functions fn times the power pn

z up to the sixth
order:

X6
n¼0

Z d3p

ð2�Þ3 p
n
zfnðk;pÞ ¼ k3

ð2�Þ2
X6

m;n¼0

�n
Z 1

0
drr2

Z þ1

�1
dxðkrÞmGnmðxÞfmðk; r; xÞ: (B3)

The nonvanishing coefficients Gnm as functions of k, r, and x are summarized as follows:

ATSUSHI TARUYA, TAKAHIRO NISHIMICHI, AND SHUN SAITO PHYSICAL REVIEW D 82, 063522 (2010)

063522-16



G00 ¼ 1; G02 ¼ � 1

2
ðx2 � 1Þ; G04 ¼ 3

8
ðx2 � 1Þ2; G06 ¼ � 5

16
ðx2 � 1Þ3; G11 ¼ x;

G13 ¼ � 3

2
xðx2 � 1Þ; G15 ¼ 15

8
xðx2 � 1Þ2; G22 ¼ 1

2
ð3x2 � 1Þ; G24 ¼ � 3

4
ð5x4 � 6x2 þ 1Þ;

G26 ¼ 15

16
ð7x2 � 1Þðx2 � 1Þ2; G33 ¼ 1

2
xð5x2 � 3Þ; G35 ¼ � 5

4
xð7x4 � 10x2 þ 3Þ;

G44 ¼ 1

8
ð35x4 � 30x2 þ 3Þ; G46 ¼ 15

16
ð�21x6 þ 35x4 � 15x2 þ 1Þ; G55 ¼ 1

8
ð63x4 � 70x2 þ 15Þ;

G66 ¼ 1

16
ð231x6 � 315x4 þ 105x2 � 5Þ:

APPENDIX C: COVARIANCE BETWEEN
MULTIPOLE POWER SPECTRA

Here, we give the explicit expression for covariance
between multipole power spectra used in the MCMC
analysis in Sec. VA.

Neglecting the non-Gaussian contribution, the nonvan-
ishing part of the covariance only appears in the diagonal
components (i.e., correlation between the same Fourier
modes), which are expressed as (e.g., Refs. [66,67])

Cov‘;‘0 ðkÞ ¼ 2

Nk

ð2‘þ 1Þð2‘0 þ 1Þ
2

Z 1

�1
d�P ‘ð�ÞP ‘0 ð�Þ

�
�
PðSÞðk;�Þ þ 1

�ng

�
2
; (C1)

where Nk is the number of Fourier modes within a given

bin at k, given by Nk ¼ 4�k2�k=ð2�=V1=3
s Þ3 with �k and

Vs being the bin width and survey volume, respectively.
For an analytic estimate of the covariance, we assume

that the power spectrum is simply written as PðSÞðk;�Þ ¼
ð1þ ��2Þ2b2PlinðkÞ, where b is the linear bias parameter
and � is defined by � � f=b. Substituting this into
Eq. (C1), we obtain

Cov0;0ðkÞ ¼ 2

Nk

��
1þ 4

3
�þ 6

5
�2 þ 4

7
�3 þ 1

9
�4

�

� fb2PlinðkÞg2 þ 2

�ng

�
1þ 2

3
�þ 1

5
�2

�

� b2PlinðkÞ þ 1

�n2g

	
(C2)

for ð‘; ‘0Þ ¼ ð0; 0Þ,

Cov 0;2ðkÞ ¼ 2

Nk

��
8

3
�þ 24

7
�2 þ 40

21
�3 þ 40

99
�4

�

�fb2PlinðkÞg2 þ 2

�ng

�
4

3
�þ 4

7
�2

�
b2PlinðkÞ

	

(C3)

for ð‘; ‘0Þ ¼ ð0; 2Þ or (2,0), and

Cov2;2ðkÞ ¼ 2

Nk

��
5þ 220

21
�þ 90

7
�2

þ 1700

231
�3 þ 2075

1287
�4

�
fb2PlinðkÞg2

þ 2

�ng

�
5þ 220

21
�þ 30

7
�2

�
b2PlinðkÞ þ 5

�n2g

	

(C4)

for ð‘; ‘0Þ ¼ ð2; 2Þ.
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